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Abstract. Let α be a fixed complex number, and let Ω be a simply connected
region in complex plane C that is starlike with respect to α ∈ Ω. We define
some Banach space of analytic functions on Ω and prove that it is a Banach
algebra with respect to the α-Duhamel product defined by

(

f ⊛α g

)

(z) :=
d

dz

z
∫

α

f(z + α − t)g(t) dt.

We prove that its maximal ideal space consists of the homomorphism hα de-
fined by hα(f) = f(α). Further, we characterize the lattice of invariant sub-
spaces of the integration operator Jαf(z) =

∫

z

α
f(t) dt. Moreover, we describe

in terms of α-Duhamel operators the extended eigenvectors of Jα.

1. Introduction

Let α be a fixed complex number. Let Ω ⊂ C be a simply connected bounded
region containing the point α such that µz + (1 − µ)α ∈ Ω for all µ, 0 6 µ 6 1, i.e.,
Ω is starlike with respect to α ∈ Ω.

Let C(n)(Ω) be the space of all single-valued and analytic functions on Ω with
nth derivative continuous on Ω̄. The space C(n)(Ω) is a Banach space with the
norm

‖f‖n := max
{

max
z∈Ω̄

|f (i)(z)| : i = 0, 1, 2, . . . , n
}

.

The α-Duhamel product is defined in C(n)(Ω) by the formula

(1.1)
(

f⊛αg
)

(z) :=
d

dz

∫ z

α

f(z+α−t)g(t) dt =

∫ z

α

f p(z+α−t)g(t) dt+f(α)g(z),
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where the integral is taken over the segment joining the points α and z (z ∈ Ω).
The α-integration operator Jα is defined on C(n)(Ω) by the formula

(Jαf)(z) :=

∫ z

α

f(t) dt, z ∈ Ω,

where the integration is performed as above over straight-line segments connecting
the points α and z.

It is known (and easy to verify) that α-Duhamel product satisfies all the axioms
of multiplication and the constant function 1 is the unit element with respect to
this product. Note also that Jαf = (z − α) ⊛α f for any f ∈ C(n)(Ω). In general,
for any g ∈ C(n)(Ω), the α-Duhamel operator Dg : C(n)(Ω) → C(n)(Ω) is defined
by

(Dα,gf)(z) := g ⊛α f, f ∈ C(n)(Ω).

Recall that the classical Duhamel product (i.e., α = 0) was firstly introduced
and investigated by Wigley in [33]. In the sequel, he elaborated in [33, 34] at
length on this product and used it to provide an algebra structure to the Frechet
space Hol(D) of all holomorphic functions, as well as to the Hardy spaces Hp(D),
1 6 p < +∞, and he characterized their maximal ideal spaces. Merryfield and
Watson [27] extended the matter to the context of vector-valued Hardy spaces of
the polydisc. Guediri and etg., proved in [10] that the Bergman space L2

a(D) of
analytic functions on the unit disc D ⊂ C is a Banach algebra with respect to the
classical Duhamel product ⊛ defined by

(1.2) (f ⊛ g)(z) :=
d

dz

∫ z

0
f(z − t)g(t) dt =

∫ z

0
f p(z − t)g(t) dt + f(0)g(z).

In general, the Duhamel product and α-Duhamel product has been extensively
explored on various spaces by several authors in [8–10, 13, 24, 27, 34]. Many
applications of Duhamel products have been well investigated, see, for example,
[5,7,10,14,21,22,28,32]. In particular, Ivanova and Melikhov used Duhamel prod-
uct in their recent works [15–18] in investigation of the commutant of Pommiez
operator. Also in [29–31], the author applied Duhamel product (1.2) in describing
of nontrivial invariant subspaces of the classical Volterra integration operator W ,
Wf(x, y) =

∫ x

0

∫ y

0 f(t, τ) dτdt, on some W -invariant subspace.
Our investigation is motivated by papers [1, 9, 13]. Namely, we prove that

(C(n)(Ω),⊛α) is a commutative Banach algebra and describe its maximal ideal
space and its Jα-invariant subspaces. We also study the extended eigenvectors in
the sense of Biswas, Lambert and Petrović [2] for the α-integration operator Jα on
C(n)(Ω).

2. On the Banach algebra (C(n)(Ω), ⊛α)

In the present section, we study the Banach algebra structure of the space
C(n)(Ω) with respect to the α-Duhamel product (1.1) and describe its maximal
ideal space. We begin with the following auxiliary lemmas.

Lemma 2.1. The space C(n)(Ω) is a commutative Banach algebra with the α-

Duhamel product with the identity f = 1.
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Proof. Since C(n)(Ω) is a Banach space, only the multiplicative norm product
inequality needs to be shown. In fact, for any two functions f, g ∈ C(n)(Ω), we have
by induction that

(

f ⊛α g
)(k)

(z) :=

∫ z

α

f (k+1)(z + α − t)g(t) dt +

k
∑

m=0

f (m)(α)g(k−m)(z).

An integration by parts leads to

(

f ⊛α g
)(k)

(z) :=

∫ z

α

f (k)(z + α − t)g′(t) dt +
k−1
∑

m=0

f (m)(α)g(k−m)(z) + g(α)f (k)(z),

so we obtain that

∣

∣(f ⊛α g)(k)(z)
∣

∣ 6 d‖f (k)‖‖g′‖ +

k−1
∑

m=0

‖f (m)‖‖g(k−m)‖ + ‖g‖‖f (k)‖,

where d := diam(Ω), and hence
∥

∥(f ⊛α g)(k)(z)
∥

∥ 6 (d + k + 1)‖f‖n‖g‖n, which
implies that ‖f ⊛α g‖n 6 (d + n + 1)‖f‖n‖g‖n, as desired. By considering the
equivalent norm ‖f‖n,1 := (d+n+1)1/2‖f‖n, we have from the latter inequality that

‖f ⊛α g‖n,1 6 ‖f‖n,1‖g‖n,1. This proves that (C(n)(Ω),⊛α) is a Banach algebra.

Since clearly f ⊛α g = g ⊛α f and f ⊛α 1 = 1 ⊛α f for all f, g ∈ C(n)(Ω). �

Next lemma gives an invertibility criterion with respect to the α-Duhamel
product.

Lemma 2.2. If f ∈ (C(n)(Ω),⊛α), then it is ⊛α-invertible if and only if f(α)6=0.

Proof. In fact, if g ∈ (C(n)(Ω),⊛α) is the ⊛α-inverse of f , then we have from
(1.1) that 1 = (f ⊛α g)(α) = f(α)g(α), hence f(α) 6= 0.

Conversely, if f(α) 6= 0, we set Dα,f := f ⊛α g. Now we prove that the

α-Duhamel operator Dα,f is an invertible operator on the space C(n)(Ω). For
this purpose, let us write f as f = F + f(α), where F := f − f(α). Whence
Dα,f = f(α)I + Dα,F , where I is an identity operator on C(n)(Ω). Note that for
the proof of invertibility of operator Dα,f , we can use, in fact, two methods. The
first method is based on the classical Fredholm alternative for compact operators
and the classical Titchmarsh convolution theorem (see, Karaev [20]). The second
one uses the Gelfand formula for the spectral radius of elements of Banach algebra.
Here we will apply the second method. The present proof is similar to one of the
paper [9, Lemma 2.2]. For completeness of presentation, we provide here this proof.
So, by considering that f(α) 6= 0, it suffices to prove that Dα,F is a quasinilpotent
operator, i.e., σ(Dα,F ) = {0}. For this, by using Gelfand formula [9,22], we prove
that

(2.1) lim
k→∞

∥

∥Dk
α,F

∥

∥

1

k = 0.
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Before passing to the proof of (2.1), let us define the following convolution operator
on C(n)(Ω)

∗(Kα,f g)(z) :=
(

f ∗α g
)

(z) :=

∫ z

α

f(z + α − t)g(t) dt.

Now we are ready to start the proof of (2.1). In fact, we have:

(Dα,F g)(z) :=
d

dz

∫ z

α

F (z + α − t)g(t) dt =

∫ z

α

F ′(z + α − t)g(t) dt = Kα,F ′ , g(z),

that is Dα,F g = Kα,F ′ , g for any g ∈ C(n)(Ω), and therefore Dα,F = Kα,F ′ . Thus
we get

(

K2
α,F ′g

)

(z) = Kα,F ′(Kα,F ′ g)(z) =

∫ z

α

F ′(z + α − t)(Kα,F ′ g)(t) dt

=

∫ z

α

F ′(z + α − t)

(
∫ t

α

F ′(t + α − τ) dτ

)

dt.

Hence, we see that

∣

∣

(

K2
α,F ′g

)

(z)
∣

∣ 6 ‖F‖2
n‖g‖n

|z − α|2

2!
.

It can be easily obtained by induction that

∣

∣

(

Kk
α,F ′g

)

(z)
∣

∣ 6 ‖F‖k
n‖g‖n

|z − α|k

k!
.

On the other hand, we have

(

K2
α,F ′g

)′

(z) =

∫ z

α

F ′′(z + α − t)

(
∫ t

α

F ′(z + α − τ) dτ

)

dt

+ F ′(α)

∫ z

α

F ′(z + α − τ)g(τ) dτ.

Thus, we obtain that

∣

∣

(

K2
α,F ′g

)′

(z)
∣

∣ 6 ‖F‖2
n‖g‖n

( |z − α|2

2
+ |z − α|

)

6 ‖F‖2
n‖g‖n

(|z − α| + 1)2

2!
.

Now, assume by induction that

∣

∣

(

Kk
α,F ′g

)′

(z)
∣

∣ 6 ‖F‖k
n‖g‖n

(|z − α| + 1)k

k!
.

By differentiation we have

(

Kk+1
α,F ′g

)′

(z) =

∫ z

α

F ′′(z + α − t)
(

Kk
α,F ′g

)

(t) dt + F ′′(α)
(

Kk
α,F ′g

)

(z),
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hence we conclude that

∣

∣

(

Kk+1
α,F ′g

)′

(z)
∣

∣ 6 ‖F‖k+1
n ‖g‖n

( |z − α|k+1

(k + 1)!
+

|z − α|k

k!

)

6 ‖F‖k+1
n ‖g‖n

(|z − α| + 1)k+1

(k + 1)!
.

By considering that

(

K2
α,F ′g

)′

(z) =

∫ z

α

F ′′(z + α − t)(Kα,F ′g)(t) dt + F ′(α)(Kα,F ′ g)(z),

we have
(

K2
α,F ′g

)′′

(z) =

∫ z

α

F ′′′(z + α − t)(Kα,F ′g)(t) dt

+ F ′′(α)(Kα,F ′ g)(z) + F ′(α)(Kα,F ′ g)′(z),

which leads to
∣

∣

(

K2
α,F ′g

)′′

(z)
∣

∣ 6 ‖F‖2
n‖g‖n

( |z − α|2

2
+ |z − α| +

(|z − α| + 1)2

2

)

6 ‖F‖2
n‖g‖n

(|z − α| + 2)2

2
.

Thus, by induction we get

∣

∣

(

Kk
α,F ′g

)(j)
(z)

∣

∣ 6 ‖F‖k
n‖g‖n

(|z − α| + j)k

k!

for all j = 2, 3, . . . , n, which implies that

∥

∥Kk
α,F ′g

∥

∥

n
6 ‖F‖k

n‖g‖n
(n + 1)k

(k!)1/k
.

Hence,
∥

∥Kk
α,F ′

∥

∥

1/k
6 ‖F‖n

n + 1

(k!)1/k
→ 0 as k → ∞.

This shows that Kα,F ′ is a quasinilpotent operator. Consequently, Dα,f = f(α)I +
Dα,F is invertible. �

Now we are ready to state our main result.

Theorem 2.1.
(

C(n)(Ω),⊛α

)

is a unital commutative Banach algebra with

maximal ideal space M = {ϕα}, where ϕα : C(n)(Ω) → C and ϕα(f) = f(α).

Proof. We denote here by σ(f) the spectrum of the element f in the Banach
algebra (C(n)(Ω),⊛α) with respect to the α-Duhamel product ⊛α. It follows from
Lemma 2.2 that σ(f) = {f(α)} and by Gelfand’s theory we see that M = {ϕα}. In
fact, the set

{

f ∈ C(n)(Ω) : f(α) = 0
}

is a maximal ideal. Any other proper ideal
cannot have an element which does not vanish at α, hence there is only one maximal
ideal. Thus, the maximal ideal space M of the Banach algebra (C(n)(Ω),⊛α)
consists of one homomorphism, namely, evaluation at α, and the Gelfand transform
is trivial. �
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Let Jα, Jαf(z) =
∫ z

α f(t) dt, be the Volterra integration operator on C(n)(Ω).
It is easy to see from the definition of the α-Duhamel product (see formula (1.1))
that Jαf(z) = (z − α) ⊛α f, in general,

(2.2) Jm
α f(z) =

(z − α)m

m!
⊛α f, m > 0.

Recall that the function g ∈ C(n)(Ω) is called a cyclic vector of operator Jα if
span

{

Jm
α g : m > 0

}

= C(n)(Ω). Since Ω is the star-like bounded region including

the point α, it is known that (see Fage and Nagnibida [7])
{

(z − α)m : m > 0
}

is a

complete system in C(n)(Ω). Therefore, the following corollary is immediate from
Lemma 2.2.

Corollary 2.1. The nonzero function f ∈ C(n)(Ω) is cyclic for operator Jα

if and only if f(α) 6= 0.

Proof. Indeed, it follows from (2.2) that

span
{

Jm
α g : m > 0

}

= span
{ (z − α)m

m!
⊛α f : m > 0

}

= span
{

Dα,f

( (z − α)m

m!

)

: m > 0
}

= Dα,f span
{(z − α)m

m!
: m > 0

}

= Dα,f C(n)(Ω),

hence

(2.3) span
{

Jm
α g : m > 0

}

= Dα,f C(n)(Ω).

Now the result follows from Lemma 2.2 and (2.3). �

The following corollary of Theorem 2.1 can be proved by the same arguments
of the works Wigley [33], Fage and Nagnibida [7] and Tapdigoglu [29, 30], and
therefore omitted.

Corollary 2.2. The lattice of nontrivial Jα-invariant subspaces is the set

Lat(Jα) =
{

E(k) : k = 0, 1, 2, . . . , n
}

,

E(k) :=
{

f ∈ C(n)(Ω) : f(α) = f ′(α) = · · · = f (k)(α) = 0
}

,

that is, Jα is a unicellular operator on C(n)(Ω).

3. Extended eigenvalues and extended eigenvectors of operator Jα

Let D := {z ∈ C : |z| < 1} be a unit disc and let α ∈ D be a fixed point. In this
section, we characterize extended eigenvectors in the sense of Malamud–Biswas–
Lambert–Petrović [2, 25, 26] of the Volterra integration operator Jα on the space
C(n)(D). Recall that if A is a nonzero bounded linear operator on C(n)(D) and λ
is a complex number such that

(3.1) JαA = λAJα,
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then λ is called an extended eigenvalue of Jα and operator A is called an extended
eigenvector corresponding to λ. More detailed information about extended eigen-
values and extended eigenvectors can be found in [2–4,10,14,19,23,31].

Since ker(Jα) = {0}, it follows from (3.1) that the point λ = 0 is not an
extended eigenvalue of Jα, i.e., 0 /∈ extp(Jα) (the set of all extended eigenvalues
of Jα). Consequently, extp(Jα) ⊂ C r {0}. Our next results shows that the set
Cr {0} is the extended point spectrum of Jα, that is extp(Jα) = Cr {0}. For the
related results, see [6,11,12,23,31].

Theorem 3.1. Let λ ∈ C r {0} be any fixed number. Let Jα : C(n)(D) →
C(n)(D) be an integration operator.

(i) If |λ| > 1, then for every operator B ∈ B(C(n)(D)) with B1 6= 0, the operator

T = Dα,B1C1/λ satisfies the equation

(3.2) JαT = λT Jα,

and conversely, every nonzero operator T ∈ B(C(n)(D)) satisfying (3.2) must

be of the form T = Dα,B1C1/λ, here Dα,B1 is the α-Duhamel operator on

C(n)(D) defined by Dα,B1g = B1 ⊛α g and (C1/λf)(z) = f
(

1
λz

)

.

(ii) If |λ| 6 1, then JαB = λBJα if and only if B satisfies BCλ = Dα,B1, where

(Cλf)(z) = f(λz).

Proof. (i) Let B ∈ B(C(n)(D)) be any operator such that B1 6= 0, where 1
is the unit element of the Banach algebra (C(n)(D),⊛α). We consider the opera-
tor Dα,B1C1/λ, where Dα,B1 is the α-Duhamel operator on C(n)(D) with symbol

B1 ∈ C(n)(D), and C1/λ is the simple composition operator defined on C(n)(D) by

(C1/λf)(z) = f
(

1
λz

)

. Then it is easy to see that this operator satisfies equation

(3.2). In fact, we have for each f ∈ C(n)(D) that

Dα,B1C1/λJαf(z) = Dα,B1(Jαf)
( 1

λ
z
)

= B1 ⊛α (Jαf)
( 1

λ
z
)

= B1 ⊛α

(z − α

λ
⊛α f

( z

λ

))

=
z − α

λ
⊛α

(

B1 ⊛α f
( z

λ

))

=
z − α

λ
⊛α Dα,B1C1/λf(z)

=
1

λ

(

(z − α) ⊛α Dα,B1C1/λf(z)
)

=
1

λ
JαDα,B1C1/λf(z)

=
1

λ
JαDα,B1C1/λf(z),

and hence, (DαB1C1/λ)Jα = 1
λ Jα(Dα,B1C1/λ) which implies λ(Dα,B1C1/λ)Jα =

Jα(Dα,B1C1/λ), as desired.
On the other hand, it is not difficult to show that Dα,B1C1/λ is a nonzero

operator on C(n)(D). In fact, if not, then Dα,B1C1/λ = 0, and hence Dα,B1C1/λf =

0 for all f ∈ C(n)(D), or equivalently,

d

dz

∫ z

α

(B1)(z + α − t)f(t) dt = 0
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for all z ∈ D. From this we get that
∫ z

α

(B1)(z + α − t)f(t) dt = const

for all z ∈ D. In particular, for z = α we have that const = 0, and hence

(3.3)

∫ z

α

(B1)(z + α − t)f(t) dt = 0

for all z ∈ D. Since f is arbitrary, it follows from (3.3) by commutativity property
of the convolution ∗

α
for f = 1 that

∫ z

α
(B1)(t) dt = 0, which easily implies that

B1 = 0. This contradicts to our assumption that B1 6= 0. This shows that
actually Dα,B1C1/λ is a nonzero operator, so we deduce that λ ∈ C with |λ| > 1 is
an extended eigenvalue of the operator Jα, that is λ ∈ extp(Jα).

Now, let us prove that every extended eigenvector B ∈ B(C(n)(D)) correspond-
ing to this extended eigenvalue λ has the form Dα,B1C1/λ. Indeed, let

λBJα = JαB.

Then 1
λ JαB = BJα, and hence ( 1

λ)mJm
α B = BJm

α for all m > 0. Then
(

1
λ

)m
Jm

α B1
= BJm

α 1, therefore, using formula (2.2), we have
(

z−α
λ

)m

m!
⊛α B1 = B

(

(

z−α
λ

)m

m!
⊛α 1

)

= B

(

(

z−α
λ

)m

m!

)

,

hence

B

(

(

z−α
λ

)m

m!

)

= B1 ⊛α

(

z−α
λ

)m

m!
,

thus

B((z − α)m) = B1 ⊛α

(z − α

λ

)m

, m > 0.

Therefore, Bp(z −α) = B1⊛α p
(

z−α
λ

)

for all polynomials p. Since the polynomials

from (z − α) are dense in C(n)(D), we conclude that (Bf)(z) = Dα,B1C1/λf(z) for

all f ∈ C(n)(D). Consequently, B = Dα,B1C1/λ, as required.
(ii) We mention that (see (2.2))

(z − α)m

m!
⊛α f(z) = Jm

α f(z), ∀f ∈ C(n)(D).

Let JαB = λBJα. Then λmBJm
α = Jm

α B for any integer m > 0, in other words,
λmBJm

α f = Jm
α Bf for all f ∈ C(n)(D). In particular, λmBJm

α 1 = Jm
α B1, and

hence, by virtue of the above identity, we have

B
( (λ(z − α))m

m!
⊛α 1

)

=
( (z − α)m

m!
⊛α B1),

or equivalently,

B(λ(z − α))m = (z − α)m
⊛α B1, m > 0.

Again, since the polynomials p(z − α) are dense in C(n)(D), we obtain

(BCλ)f(z) = (Bf)(λz) = B1 ⊛α f(z) = Dα,B1f(z)
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for every f ∈ C(n)(D). So, (BCλ)f(z) = Dα,B1f(z) for all f ∈ C(n)(D). This

implies that BCλ = Dα,B1, where Cλf(z) = f(λz), f ∈ C(n)(D), since Cλ with

|λ| 6 1 is a bounded operator on C(n)(D).
Conversely, if BCλ = Dα,B1, then for every polynomial p ∈ C(n)(D), we have

JαBp(z) = JαBCλp
( z

λ

)

= JαDα,B1p
( z

λ

)

= Dα,B1Jαp
( z

λ

)

= BCλJαp
( z

λ

)

= BCλ

(

(z − α) ⊛α p
( z

λ

))

= λBCλ

(z − α

λ
⊛α p

( z

λ

))

= λBCλ(Jαp)
( z

λ

)

= λBJαp(z),

hence, JαB = λBJα, as desired. �

Note that the composition operator Cϕ on C(n)(D) in general is the operator
defined by (Cϕf)(z) = (f ◦ ϕ)(z) = f(ϕ(z)) for a suitable function ϕ : D → D.
The proof of the following corollary is similar to the proof in [10, Corollary 3.1],
however only for completeness we provide it here.

Corollary 3.1. The composition operator Cϕ satisfies CϕJα = λJαCϕ, where

λ is the number such that |λ| > 1, if and only if ϕ(z) = z
λ .

Proof. Since Cϕ is a composition operator, it is obvious that Cϕ1 = 1(ϕ(z)) =
1. Then we have from (i) of Theorem 3.1 that CϕJα = λJαCϕ if and only
if Cϕ = Dα,Cϕ1C1/λ = Dα,1C1/λ = C1/λ, which shows that ϕ(z) = z

λ for all
z ∈ D. �

Corollary 3.2. {Jα}′ =
{

Dα,f : f ∈ C(n)(D)
}

, i.e., the commutant of oper-

ator Jα consists from α-Duhamel operators Dα,f with f ∈ C(n)(D).

In conclusion, we remark that Theorem 3.1 also implies that extp(J) = Cr{0},
since it can be shown that the equation BCλ = Dα,B1 has a nonzero solution B for
any λ ∈ C such that |λ| 6 1.
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