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ON TRANS-SASAKIAN 3-MANIFOLDS WITH

Da-HOMOTETIC DEFORMATION WITH REGARD

TO THE SCHOUTEN–VAN KAMPEN CONNECTION

Semra Zeren, Ahmet Yıldız, and Selcen Yüksel Perktaş

Abstract. We study some soliton types on trans-Sasakian 3-manifolds with
Da-homotetic deformation with regard to the Schouten–van Kampen connec-
tion.

1. Introduction

In [16], Oubina defined a new class of almost contact metric structure, which
is said to be trans-Sasakian structure of type (α, β). In [7], Chiena and Gonzales
introduced two subclasses of trans-Sasakian structures which contain the Kenmotsu
and Sasakian structures, respectively. Trans-Sasakian structures of type (α, 0),
(0, β) and (0, 0) are α-Sasakian, β-Kenmotsu and cosymplectic, respectively [2,13].

The Schouten–van Kampen connection defined as adapted to a linear connec-
tion for studying nonholonomic manifolds and it is one of the most natural connec-
tions on a differentiable manifold [3,12,20]. Solov’ev studied hyperdistributions in
Riemannian manifolds using the Schouten–van Kampen connection [22–25]. Then
Olszak investigated the Schouten–van Kampen connection on almost (para) contact
metric structures [17]. f -Kenmotsu manifolds admitting the Schouten–van Kam-
pen connection were studied by Yıldız [27]. In recent times, Perktaş and Yıldız
examined quasi-Sasakian manifolds and f -Kenmotsu manifolds with regard to the
Schouten–van Kampen connection [18,19].

An almost Ricci soliton in a Riemannian manifold (M, g) is given by

LXg + 2 Ric +2δg = 0,

where L is the Lie derivative, Ric is the Ricci tensor, X is a complete vector field on
M and δ is a smooth function. Then an almost Ricci soliton is said to be shrinking,
steady and expanding according as δ is negative, zero and positive, respectively [11].
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An almost η-Ricci soliton in a Riemannian manifold (M, g) is defined by

LXg + 2 Ric +2δg + 2µη ⊗ η = 0,

where µ is a smooth function [8].
In [11], Hamilton defined Yamabe flow to solve the Yamabe problem. The

Yamabe soliton comes from the blow-up procedure along the Yamabe flow, so such
solitons have been studied intensively [1,5,6,10,15].

An almost Yamabe soliton in a Riemannian manifold (M, g) is given by

(1.1)
1

2
(LXg) = (scal −λ)g,

where scal is the scalar curvature of M . If λ is a constant, then an almost Yamabe
soliton becomes a Yamabe soliton. Moreover, it is easy to see that Einstein mani-
folds are always almost Yamabe solitons. If (M, g) is of constant scalar curvature
scal, then the Riemannian metric g is called a Yamabe metric [1].

In this paper we study some soliton types of trans-Sasakian 3-manifolds with
Da-homotetic deformation with regard to the Schouten–van Kampen connection.
The paper is organized as follows: After preliminaries, we give some basic infor-
mation about trans-Sasakian 3-manifolds with regard to the Schouten–van Kam-
pen connection. In section 4, we adapt Da-homothetic deformation on a trans-
Sasakian 3-manifold. In section 5, we also adapt Da-homothetic deformation on
a trans-Sasakian 3-manifold with regard to the Schouten–van Kampen connection.
In section 6, we study some soliton types on trans-Sasakian 3-manifold with Da-
homothetic deformation with regard to the Schouten–van Kampen connection. In
the last section we give an example.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact
metric structure (φ, ξ, η, g), that is, φ is an (1, 1)-tensor field, ξ is a vector field, η

is a 1-form and g is the compatible Riemannian metric such that

φ2(U) = −U + η(U)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,

g(φU, φV ) = g(U, V ) − η(U)η(V ),

g(U, φV ) = −g(φU, V ), g(U, ξ) = η(U),

for all U, V ∈ χ(M) [2]. The fundamental 2-form Φ of the manifold is defined by
Φ(U, V ) = g(U, φV ). This may be expressed by the condition [4]

(2.1) (∇U φ)V = α(g(U, V )ξ − η(V )U) + β(g(φU, V )ξ − η(V )φU),

for smooth functions α and β on M . In this case we say that the trans-Sasakian
structure is of type (α, β). From (2.1) it follows that

∇U ξ = −αφU + β(U − η(U)ξ),(2.2)

(∇U η)V = −αg(φU, V ) + βg(φU, φV ).(2.3)
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An explicit example of proper trans-Sasakian 3-manifolds was constructed in [14].
In [9], the Ricci tensor and curvature tensor for trans-Sasakian 3-manifolds were
studied and their explicit formulae were given.

From [9] we know that for a trans-Sasakian 3-manifold 2αβ + ξα = 0, which
implies that if α and β are constants. Then the manifold is either α-Sasakian or
β-Kenmotsu or cosymplectic.

For constants α and β, we have

R(U, V )W =
( scal

2
− 2(α2 − β2)

)
(g(V, W )U − g(U, W )V )

−
( scal

2
− 3(α2 − β2)

)
(g(V, W )η(U)ξ − g(U, W )η(V )ξ

+ η(V )η(W )U − η(U)η(W )V ),

(2.4) Ric(U, V ) =
(scal

2
− (α2 − β2)

)
g(U, V ) −

( scal

2
− 3(α2 − β2)

)
η(U)η(V ),

Ric(U, ξ) = 2(α2 − β2)η(U),

R(U, V )ξ = (α2 − β2)(η(V )U − η(U)V ),

R(ξ, U)V = (α2 − β2)(g(U, V )ξ − η(V )U),

QU =
(scal

2
− (α2 − β2)

)
U −

( scal

2
− 3(α2 − β2)

)
η(U)ξ,

where Ric is the Ricci tensor, R is the curvature tensor and scal is the scalar
curvature of the manifold M , respectively [9] Throughout the paper we consider
trans-Sasakian 3-manifolds with α and β are constants.

On the other hand we have two naturally defined distributions in the tangent
bundle T M of M as follows: H = ker η, V = span{ξ}. Then we have T M = H ⊕V ,
H∩V = {0} and H ⊥ V . This decomposition allows one to define the Schouten–van
Kampen connection ∇̃ over an almost contact metric structure. The Schouten–van
Kampen connection ∇̃ on an almost contact metric manifold with regard to Levi-
Civita connection ∇ is defined by [22]

(2.5) ∇̃U V = ∇U V − η(V )∇U ξ + (∇U η)(V )ξ.

Thus with the help of the Schouten–van Kampen connection (2.5), many properties
of some geometric objects connected with the distributions H , V can be character-
ized [22–24]. For example g, ξ and η are parallel with regard to ∇̃, that is, ∇̃ξ = 0,
∇̃g = 0, ∇̃η = 0. Also the torsion T̃ of ∇̃ is defined by

T̃ (U, V ) = η(U)∇V ξ − η(V )∇U ξ + 2dη(U, V )ξ.

3. Trans-Sasakian 3-manifolds with regard

to the Schouten–van Kampen connection

Let M be a trans-Sasakian 3-manifold with α and β are constants with regard to
the Schouten–van Kampen connection. Then using (2.2) and (2.3) in (2.5), we get

(3.1) ∇̃U V = ∇UV + α{η(V )φU − g(φU, V )ξ} + β{g(U, V )ξ − η(V )U}.
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Let R and R̃ be the curvature tensors of the Levi-Civita connection ∇ and the
Schouten–van Kampen connection ∇̃ defined by

R(U, V ) = [∇U , ∇V ] − ∇[U,V ], R̃(U, V ) = [∇̃U , ∇̃V ] − ∇̃[U,V ].

Using (3.1), by direct calculations, we obtain the following formula connecting R

and R̃ on a trans-Sasakian 3-manifold as follow:

R̃(U, V )W = R(U, V )W + α2{g(φV, W )φU − g(φU, W )φV + η(U)η(W )V

− η(V )η(W )U − g(V, W )η(U)ξ + g(U, W )η(V )ξ}

+ β2{g(V, W )U − g(U, W )V }.

We will also consider the Riemann curvature (0, 4)-tensors R̃, R, the Ricci ten-
sors R̃ic, Ric, the Ricci operators Q̃, Q and the scalar curvatures ˜scal, scal of the
connections ∇̃ and ∇ are given by

R̃(U, V, W, Z) = R(U, V, W, Z) + α2{g(φV, W )g(φU, Z) − g(φU, W )g(φV, Z)

+ g(V, Z)η(U)η(W ) − g(U, Z)η(V )η(W )

− g(V, W )η(U)η(Z) + g(U, W )η(V )η(Z)}

+ β2{g(V, W )g(U, Z) − g(U, W )g(V, Z)},

R̃ic(V, W ) = Ric(V, W ) + 2β2g(V, W ) − 2α2η(V )η(W ),

Q̃U = QU + 2β2U − 2α2η(U)ξ,

˜scal = scal −2α2 + 6β2,

respectively, where

R̃(U, V, W, Z) = g(R̃(U, V )W, Z), R(U, V, W, Z) = g(R(U, V )W, Z).

4. Trans-Sasakian 3-manifolds and Da-homothetic deformations

In this section, we will present how a Da-homothetic deformation affects the
curvature tensor of a trans-Sasakian 3-manifold.

Let (M, φ, ξ, η, g) be an almost contact metric manifold with dim M = 2n + 1.
The equation η = 0 defines an 2n-dimensional distribution Da on M [26]. An 2n-
homothetic deformation or Da-homothetic deformation [26] is defined as a change
of structure tensors of the form

(4.1) ηa = aη, ξa =
1

a
ξ, φa = φ, ga = ag + a(a − 1)η ⊗ η,

where a is a positive constant. If (M, φ, ξ, η, g) is an almost contact metric struc-
ture with constant form η, then (M, φa, ξa, ηa, ga) is also an almost contact metric
structure [26].

Now by direct computations we give

Lemma 4.1. Let M be a trans-Sasakian 3-manifold. For a Da-homothetic de-

formation on M , the Levi-Civita connections ∇a and ∇ are related by

∇a
U V = ∇U V − (a − 1)α{η(U)φV + η(V )φU}(4.2)

+ (a − 1)β{g(U, V )ξ − η(U)η(V )ξ},
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for any vector fields U, V on M .

Using (4.2) we have the following relation between Ra and R:

Proposition 4.1. Let M be a trans-Sasakian 3-manifold. For a Da-homothetic
deformation on M , the Riemannian curvature tensors Ra and R are related by

R
a(U, V )Z = R(U, V )Z + (a − 1)α2{2g(φU, V )φZ − g(U, φZ)φV(4.3)

+ g(V, φZ)φU − g(U, Z)η(V )ξ

+ g(V, Z)η(U)ξ − 2η(U)η(Z)V + 2η(V )η(Z)U}

+ (a − 1)β2{2g(V, Z)U − 2g(U, Z)V

+ 2η(U)η(Z)V − 2η(V )η(Z)U

+ g(U, Z)η(V )ξ − g(V, Z)η(U)ξ}

− (a − 1)2
α

2{η(U)η(Z)V − η(V )η(Z)U}

− (a − 1)αβ{3η(U)η(Z)φV − 3η(V )η(Z)φU

+ g(V, Z)φU − g(U, Z)φV }

− (a − 1)2
αβ{g(φV, φZ)φU − g(φU, φZ)φV

+ 2g(U, φV )η(Z)ξ + g(U, φZ)η(V )ξ − g(V, φZ)η(U)ξ}.

Now taking the inner product in (4.3) with a vector field W , we write

g(Ra(U, V )Z, W ) = g(R(U, V )Z, W + (a − 1)α2{2g(φU, V )g(φZ, W )(4.4)

− g(U, φZ)g(φV, W ) + g(V, φZ)g(φU, W )

− g(U, Z)η(V )η(W ) + g(V, Z)η(U)η(W )

− 2η(U)η(Z)g(V, W ) + 2η(V )η(Z)g(U, W )}

+ (a − 1)β2{2g(V, Z)g(U, W ) − 2g(U, Z)g(V, W )

+ 2η(U)η(Z)g(V, W ) − 2η(V )η(Z)g(U, W )

+ g(U, Z)η(V )η(W ) − g(V, Z)η(U)η(W )}

− (a − 1)2
α

2{η(U)η(Z)g(V, W ) − η(V )η(Z)g(U, W )}

− (a − 1)αβ{3η(U)η(Z)g(φV, W ) − 3η(V )η(Z)g(φU, W )

+ g(V, Z)g(φU, W ) − g(U, Z)g(φV, W )}

− (a − 1)2
αβ{g(φV, φZ)g(φU, W ) − g(φU, φZ)g(φV, W )

+ 2g(U, φV )η(Z)η(W ) + g(U, φZ)η(V )η(W )

− g(V, φZ)η(U)η(W )}.

If we take U = W = ei in (4.4), {i = 1, 2, 3}, where {ei} is an orthonormal basis of
the tangent space at each point of the manifold, we get

Rica(V, Z) = Ric(V, Z) + {2(1 − a)α2 + 3(a − 1)β2}g(V, Z)(4.5)

+ {(2a2 + 2a − 4)α2 − 3(a − 1)β2}η(V )η(Z)

+ (a − 1)αβg(φV, Z),
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where Rica and Ric denote the Ricci tensors with regard to the connections ∇a and
∇, respectively. Also if we take V = Z = ei in (4.5), we get

scala = scal +2(a − 1)2α2 + 6(a − 1)β2,

where scala and scal denote the scalar curvatures with regard to the connections
∇a and ∇, respectively.

5. Trans-Sasakian 3-manifolds with Da-homothetic deformation

with regard to the Schouten–van Kampen connection

In this section, we study how a Da-homothetic deformation affects a trans-
Sasakian 3-manifold M with the Schouten–van Kampen connection.

Lemma 5.1. Let M be a trans-Sasakian 3-manifold with the Schouten–van

Kampen connection. For a Da-homothetic deformation on M , the connections ∇̃a

and ∇ are related by

∇̃a
UV = ∇U V − (a − 1)αη(U)φV + aβ{g(U, V )ξ − η(V )U}(5.1)

+ α{g(U, φV )ξ + η(V )φU},

for any U, V on M .

Proposition 5.1. Let M be a trans-Sasakian 3-manifold with the Schouten–

van Kampen connection. For a Da-homothetic deformation on M , the Riemannian

curvature tensors R̃a and R are related by

R̃a(U, V )Z = R(U, V )Z + α2{2(a − 1)g(φU, V )φZ + g(U, φZ)φV(5.2)

− g(V, φZ)φU + g(U, Z)η(V )ξ

− g(V, Z)η(U)ξ + η(U)η(Z)V − η(V )η(Z)U}

+ β2{(3a − 2){g(V, Z)U − g(U, Z)V }

− (a2 − 3a + 2){η(U)η(Z)V − η(V )η(Z)U}

+ g(U, Z)η(V )ξ − g(V, Z)η(U)ξ}

− αβ{3(a − 1){η(U)η(Z)φV − η(V )η(Z)φU}

+ (a − 1){g(V, Z)φU − g(U, Z)φV }

− (a − 1)2{g(φV, φZ)φU − g(φU, φZ)φV

+ 2g(U, φV )η(Z)ξ + g(U, φZ)η(V )ξ

− g(V, φZ)η(U)ξ}},

for any U, V, Z on M .

Now taking the inner product with a vector field W in (5.2), we write

g(R̃a(U, V )Z, W ) = g(R(U, V )Z, W ) + α
2{2(a − 1)g(φU, V )g(φZ, W )(5.3)

+ g(U, φZ)g(φV, W ) − g(V, φZ)g(φU, W )

+ g(U, Z)η(V )η(W ) − g(V, Z)η(U)η(W )

+ η(U)η(Z)g(V, W ) − η(V )η(Z)g(U, W )}
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+ β
2{(3a − 2){g(V, Z)g(U, W ) − g(U, Z)g(V, W )}

− (a2 − 3a + 2){η(U)η(Z)g(V, W )

− η(V )η(Z)g(U, W )} + g(U, Z)η(V )η(W )

− g(V, Z)η(U)η(W )} − αβ{3(a − 1){η(U)η(Z)g(φV, W )

− η(V )η(Z)g(φU, W )} + (a − 1){g(V, Z)g(φU, W )

− g(U, Z)g(φV, W )} − (a − 1)2{g(φV, φZ)g(φU, W )

− g(φU, φZ)g(φV, W ) + 2g(U, φY )η(Z)η(W )

+ g(U, φZ)η(V )η(W ) − g(V, φZ)η(U)η(W )}}.

If we take U = W = ei in (5.3), where {ei} is an orthonormal basis of the tangent
space at each point of the manifold, {i = 1, 2, 3}, we get

R̃ic
a
(V, Z) = Ric(V, Z) + 2{(1 − a)α2 + (2a2 − 3a + 2)β2}g(V, Z)(5.4)

+ 2{(a − 2)α2 − (a2 − 3a + 2)β2}η(V )η(Z)

+ (a − 1)g(V, φZ),

where R̃ic
a

and Ric denote the Ricci tensors with respect to the connections ∇̃a

and ∇, respectively. If we use (2.4) in (5.4), we have

R̃ic
a
(V, Z) =

{scal

2
+ (1 − 2a)α2 + (4a2 − 6a + 5)β2

}
g(V, Z)(5.5)

−
{scal

2
+ (1 − 2a)α2 + (2a2 − 6a + 7)β2

}
η(Z)η(V )

+ (a − 1)g(V, φZ).

Also if we take V = Z = ei in (5.5), we get

˜scal
a

= scal +(−4a + 2)α2 + (10a2 − 12a + 8)β2,

where ˜scal
a

and scal denote the scalar curvatures with respect to the connections

∇̃a and ∇, respectively.

6. Soliton types on trans-Sasakian 3-manifolds with a Da-homothetic

deformation with regard to the Schouten–van Kampen connection

In this section we study almost Ricci solitons, almost η-Ricci solitons and Yam-
abe solitons on a trans-Sasakian 3-manifold M with a Da-homothetic deformation
with regard to the Schouten–van Kampen connection.

In a trans-Sasakian 3-manifold M with a Da-homothetic deformation endowed
with the Schouten–van Kampen connection bearing an almost Ricci soliton, we can
write

(6.1) (L̃a
Xga + 2R̃ic

a
+ 2δga)(U, V ) = 0.

Putting X = ξa in (6.1), we obtain

ga(∇̃a
U ξa, V ) + ga(U, ∇̃a

V ξa) + ga(∇a
U ξa, V )(6.2)

+ ga(U, ∇a
V ξa) + 2R̃ic

a
(U, V ) + 2δga(U, V ) = 0.
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Now using (2.2), (2.5), (4.2), (5.1) and (5.5), in (6.2), we get

2β(2 − a){g(U, V ) − η(U)η(V )}(6.3)

+ 2
[{ scal

2
+ (1 − 2a)α2 + (4a2 − 6a + 5)β2

}
g(U, V )

−
{ scal

2
+ (1 − 2a)α2 + (2a2 − 6a + 7)β2

}
η(U)η(V )

− (a − 1)g(φU, V )
]

+ 2δ{ag(U, V ) + a(a − 1)η(U)η(V )} = 0.

Taking U = V = ξ in (6.3), we have 2(a2 − 1)β2 + a2δ = 0, i.e., δ = 2(1−a2)
a2 β2.

Thus we give the following:

Theorem 6.1. Let M be a trans-Sasakian 3-manifold bearing an almost Ricci

soliton (ξa, δ, ga) with a Da-homothetic deformation with regard to the Schouten–

van Kampen connection ∇̃a. Then we get: (i) If 1 − a2 > 0, then the soliton is

expanding, (ii) If 1 − a2 < 0, then the soliton is shrinking, (iii) If 1 − a2 = 0, then

the soliton is steady.

Also we can say the following:

Corollary 6.1. An almost Ricci soliton (ξa, δ, ga) on a 3-dimensional α-

Sasakian manifold with a Da-homothetic deformation with regard to the Schouten–

van Kampen connection ∇̃a is always steady.

Again considering (6.3), we obtain

R̃ic
a
(U, V ) =

(β

a
(a − 2) − δ

)
ga(U, V ) +

β

a
(2 − a)ηa(U)ηa(V ).

Thus we have the following:

Theorem 6.2. A trans-Sasakian 3-manifold M with a Da-homothetic defor-

mation bearing an almost Ricci soliton (ξa, δ, ga) with regard to the Schouten–van

Kampen connection ∇̃a is an ηa-Einstein manifold.

Now we consider almost η-Ricci soliton on a trans-Sasakian 3-manifold with a
Da-homothetic deformation with regard to the Schouten–van Kampen connection

∇̃a. Then we write

(6.4) (L̃a
Xga + 2R̃ic

a
+ 2δga + 2µηa ⊗ ηa)(U, V ) = 0.

Putting X = ξa in (6.4) and using (2.2), (2.5), (4.2), (5.1) and (5.5) in (6.4), we
have

(6.5) R̃ic
a
(U, V ) =

(β

a
(a − 2) − δ

)
ga(U, V ) −

(β

a
(a − 2) + µ

)
ηa(U)ηa(V ).

Hence we give

Theorem 6.3. A trans-Sasakian 3-manifold M with a Da-homothetic deforma-

tion bearing an almost η-Ricci soliton (ξa, δ, µ, ga) with regard to the Schouten–van

Kampen connection ∇̃a is an ηa-Einstein manifold.
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Again taking U = V = ξ in (6.5), we have

(6.6) a2(δ + µ) + 2(a2 − 1)β2 = 0.

Thus we get δ + µ = 2(1−a2)
a2 β2. Then we can say the following:

Corollary 6.2. An almost η-Ricci soliton on a trans-Sasakian 3-manifold

with a Da-homothetic deformation with regard to the Schouten–van Kampen con-

nection ∇̃a is always
(
ξa, δ,

2(1−a2)
a2 β2 − δ, ga

)
.

Finally we study almost Yamabe solitons on a trans-Sasakian 3-manifold with
a Da-homothetic deformation with regard to the Schouten–van Kampen connection

∇̃a. Assume that (M, ξa, λ, ga) is an almost Yamabe soliton on a trans-Sasakian

3-manifold with regard to the Schouten–van Kampen connection ∇̃a. Then, from
(1.1), we write

1

2
(L̃a

ξa ga)(U, V ) = ( ˜scal
a

− λ)ga(U, V ),

that is,

(6.7) β(2 − a){g(U, V ) − η(U)η(V )} = ( ˜scal
a

− λ)ga(U, V ).

Putting X = ξa in (6.7), we obtain ˜scal
a

= λ, which implies the following:

Theorem 6.4. The scalar curvature ˜scal
a

of a trans-Sasakian 3-manifold with

a Da-homothetic deformation bearing an almost Yamabe soliton (M, ξa, λ, ga) with

regard to the Schouten–van Kampen connection ∇̃a is equal to λ.

So we give the followings:

Corollary 6.3. A trans-Sasakian 3-manifold with a Da-homothetic deforma-

tion bearing a Yamabe soliton (M, ξa, λ, ga) with regard to the Schouten–van Kam-

pen connection ∇̃a is of constant scalar curvature with respect to the Schouten–van

Kampen connection.

Corollary 6.4. If a trans-Sasakian 3-manifold with a Da-homothetic defor-

mation bearing a Yamabe soliton (M, ξa, λ, ga) with regard to the Schouten–van

Kampen connection ∇̃a, then the Riemannian metric ga is a Yamabe metric.

7. An example

We consider the three dimensional manifold M = {(x, y, z) ∈ R
3 : z 6= 0} where

(x, y, z) are the standard coordinates in R
3. The vector fields

e1 = e2z ∂

∂x
, e2 = e2z ∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M . Let g be the Riemannian metric
defined by

gij =

{
1 for i = j,

0 for i 6= j.
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Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M3). Let φ be the
(1, 1) tensor field defined by

φe1 = e2, φe2 = −e1, φe3 = 0.

Then using the linearity property of φ and g we have

η(e3) = 1, φ2(Z) = −Z + η(Z)ξ, g(φZ, φW ) = g(Z, W ) − η(Z)η(W ),

for any Z, W ∈ χ(M3). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric
structure on M . Now, by direct calculations, we have

[e1, e3] = −2e1, [e2, e3] = −2e2, [e1, e2] = 0.

(7.1) ∇e1
e1 = 2e3, ∇e2

e2 = 2e3, ∇e1
e3 = −2e1, ∇e2

e3 = −2e2,

where ∇ is the the Levi-Civita connection on M . So, it can be easily shown
that M3(φ, ξ, η, g) is a trans-Sasakian manifold of type (0, −2) with the non-zero
following components of the curvature tensor R [21]

(7.2)
R(e1, e2)e2 = −4e1, R(e2, e3)e2 = 4e3, R(e1, e3)e3 = −4e1,

R(e2, e3)e3 = −4e2, R(e1, e3)e1 = 4e3, R(e1, e2)e1 = 4e2.

Now with help of (3.1) and (7.1), we obtain that M is flat with regard to the
Schouten–van Kampen connection ∇̃.

Let us consider a Da-homothetic deformation on M . Thus from (4.2), we have
the non-zero components of ∇a on M are

(7.3) ∇a
e1

e1 = (4−2a)e3, ∇a
e1

e3 = −2e1, ∇a
e2

e2 = (4−2a)e3, ∇a
e2

e3 = −2e2.

Using (7.3), we obtain that the non-zero components of the Ra on M are

Ra(e1, e2)e1 = 4(2 − a)e2, Ra(e1, e2)e2 = 4(a − 2)e1,

Ra(e1, e3)e1 = 4(2 − a)e3, Ra(e1, e3)e3 = −4e1,(7.4)

Ra(e2, e3)e2 = 4(2 − a)e3, Ra(e2, e3)e3 = −4e2.

Also using (5.1) and (7.3), we get that the non-zero components of ∇̃a on M are

(7.5)
∇̃a

e1
e3 = 2(a − 1)e1, ∇̃a

e2
e3 = 2(a − 1)e2,

∇̃a
e2

e2 = 2(1 − a)e3, ∇̃a
e1

e1 = 2(1 − a)e3.

Hence using (7.5), we have that the non-zero components of the curvature tensor
R̃a on M are

(7.6)

R̃a(e1, e2)e1 = 4(a − 1)2e2, R̃a(e1, e2)e2 = −4(a − 1)2e1,

R̃a(e1, e2)e3 = 4(a − 1)2e3, R̃a(e1, e3)e1 = 4(1 − a)e3,

R̃a(e1, e3)e3 = 4(a − 1)e1, R̃a(e2, e3)e2 = 4(1 − a)e3,

R̃a(e2, e3)e3 = 4(a − 1)e2.

Now using (7.2), (7.4) and (7.6), we have that the non-zero components of the Ricci

tensors Ric, R̃ic, Rica, and R̃ic
a

Ric(e1, e1) = −8, Ric(e2, e2) = −8, Ric(e3, e3) = −8,
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R̃ic(e1, e1) = α2 − β2 − 6β − 8, R̃ic(e2, e2) = α2 − β2 − 6β − 8,

R̃ic(e3, e3) = −4β − 8,

Rica(e1, e1) = −16 + 8a, Rica(e2, e2) = −16 + 8a, Rica(e3, e3) = −8,

and

(7.7)
R̃ic

a
(e1, e1) = −4a2 + 12a − 8, R̃ic

a
(e2, e2) = −4a2 + 12a − 8,

R̃ic
a
(e3, e3) = 8(a2 − 1),

respectively. For any U, V ∈ χ(M), we write

U = a1e1 + a2e2 + a3e3, V = b1e1 + b2e2 + b3e3.

Using (4.1) and (7.7), we have

(L̃a
ξaga)(U, V ) + 2R̃ic

a
(U, V ) + 2δga(U, V ) + 2µηa(U)ηa(V )

=
{

2β(2 − a) + 2(−4a2 + 12a − 8) + 2aδ
}

a1b1

+
{

2β(2 − a) + 2(−4a2 + 12a − 8) + 2aδ
}

a2b2

+
{

16(a2 − 1) + 2a2(δ + µ)
}

a3b3.

Since β = −2, we have 4a2 − 14a + 12 − aδ = 0 and 8(a2 − 1) + a2(δ + µ) = 0. Thus
δ = −4a − 7 + 12

a
and µ = 4a − 1 − 12

a
+ 8

a2 , which imply δ + µ = 8
a2 − 8. Hence M

admits an η-Ricci soliton
(
ξa, −4a − 7 + 12

a
, 4a − 1 − 12

a
+ 8

a2 , ga
)
. Thus Corollary

6.2 is verified.
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