PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 112(126) (2022), 59–69

DOI: https://doi.org/10.2298/PIM2226059O

ON \oplus - δ_{ss} -SUPPLEMENTED MODULES

Esra Öztürk Sözen

ABSTRACT. A module M is called \oplus - δ_{ss} -supplemented if every submodule X of M has a δ_{ss} -supplement Y in M which is a direct summand of M such that X + Y = M and $X \cap Y \leq \operatorname{Soc}_{\delta}(Y)$ where $\operatorname{Soc}_{\delta}(Y)$ is the sum of simple and δ -small submodules of Y and $M = Y \oplus Y'$ for some $Y' \leq M$. Moreover, M is called a completely \oplus - δ_{ss} -supplemented module if every direct summand of M is \oplus - δ_{ss} -supplemented. Thus, we present two new types of algebraic structures which are stronger than δ - D_{11} and δ - D_{11}^+ -modules, respectively. In this paper we investigate basic properties, decompositions and ring characterizations of these modules.

1. Introduction

Firstly, let us point that, R will indicate an associative ring with identity and M will indicate an R-module throughout this article. In addition to these, for a submodule X of M and for a direct summand X of M, the notations $X \leq M$ and $X \leq_{\oplus} M$ will be used respectively. A submodule X of M is called *small* in M, (denoted by $X \ll M$), if $X + P \neq M$ for any proper submodule P of M. Besides, the sum of all small submodules of M is denoted by Rad(M). Dual to this term, the submodule X is called *essential* in M, if the submodule $\{0\}$ is the only one satisfying $X \cap Y = \{0\}$ for $Y \leq M$, denoted by $X \trianglelefteq M$. Besides, M is called an *essential extension* of X. A module M is called *closed* in M, denoted by $X \leq_c M$, if it has no proper essential extension in M. A submodule Y of M is called a *closure* of X in M if Y is closed and it is also an essential extension of X in M [2]. A module M is called *extending* (or *CS-module*) if every closed submodule of M is a direct summand of M [20]. In [14] a module M is called a *UC-module* if every submodule of M has a unique coclosure in M.

C1, C2, C3 conditions for a module M is given as follows. It is known that modules with the condition C1 are also known as CS-modules or extending modules. (C1) Every submodule of M is essential in a direct summand of M.

²⁰¹⁰ Mathematics Subject Classification: 16D10, 16D60, 16D70, 16D99.

Key words and phrases: left δ_{ss} -perfect ring, (completely) \oplus - δ_{ss} -supplemented module, strongly δ -local module, δ - D_{11} -module, δ - D_{11}^+ -module.

Communicated by Stevan Pilipović.

(C2) Every submodule which is isomorphic to a summand of M is a direct summand of M.

(C3) If X and Y are direct summands of M with $X \cap Y = 0$, then $X \oplus Y \leq_{\oplus} M$.

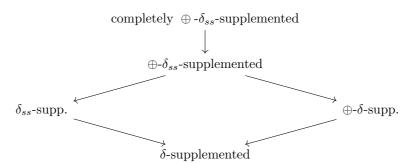
In [12], it is given that a module M with (C2)-condition also satisfies (C3)condition. Moreover in [13, Proposition 1.22] it is declared that every quasiinjective module satisfies C1 and C2-conditions, directly.

A supplement submodule Y of a submodule X in M is the minimal element of the set of submodules of M satisfying X+T = M for $T \leq M$, which is equivalent to X+Y = M and $X \cap Y \ll Y$. If every submodule of M has a supplement in M, then M is called a supplemented module [25]. A module M is called \oplus -supplemented if every submodule X of M has a supplement which is a direct summand of M [12]. These modules are dual of (C_{11}) -modules given in [15]. Recall that a module M satisfies (C_{11}) if every submodule of M has a complement which is a direct summand of M. A module M is called *lifting* if for any submodule X of M there exists a decomposition $M = A \oplus B$ provided that $A \leq X$ and $X \cap B \ll B$ [2]. Clearly, every lifting module is \oplus -supplemented.

The singular submodule Z(M) of the module M is the set of elements m of Mwhose annihilators are essential in R. The module M is called *singular* (nonsingular) if Z(M) = M (Z(M) = 0). In [24], a generalization of small submodules and depend to this in [10], a generalization of supplemented modules are defined as follows. The submodule X of M is called δ -small in M, denoted by $X \ll_{\delta} M$, if $X + T \neq M$ for every proper submodule Y of M with $\frac{M}{T}$ is singular. Moreover, $\delta(M)$ denotes the sum of all δ -small submodules of M. A submodule Y is called a δ supplement of X in M if X + Y = M and $X \cap Y \ll_{\delta} Y$. M is called a δ -supplemented module if every submodule of M has a δ -supplement in M. Additionally, in [19], M is called a δ - D_{11} -module if every submodule of M has a δ -supplement which is a direct summand of M and, M is called a δ - D_{11}^+ -module if every direct summand of M is a δ - D_{11} -module.

In [21] the authors defined δ_{ss} -supplemented modules both as a restriction of δ -supplemented modules and as a generalization of ss-supplemented modules studied extensively in [8] as follows. A module M is called δ_{ss} -supplemented if for any submodule X of M there exists a δ_{ss} -supplement submodule of M, that is, X + Y = M and $X \cap Y \leq \operatorname{Soc}_{\delta}(Y)$ where $\operatorname{Soc}_{\delta}(Y)$ is the sum of δ -small simple submodules of Y.

Combining the facts given above, we obtain two new types of algebraic structure which are stronger than δ - D_{11} and δ - D_{11}^+ modules, respectively. They are \oplus - δ_{ss} -supplemented and completely \oplus - δ_{ss} -supplemented modules whose detailed concepts can be seen in the abstract. Afterwards, the following hierarchy can be reached for a module M:



Let us give a summary of the data obtained in this article shortly. Every strongly δ -local module is \oplus - δ_{ss} -supplemented. Any finite direct sum of a (completely) \oplus - δ_{ss} -supplemented module is (completely) \oplus - δ_{ss} -supplemented and the converse is true whenever $M = \bigoplus_{i=1}^{n} M_i$ is the direct sum of the members of a family of (modules with the finite exchange property) relatively projective modules $\{M_i\}_{i\in I}$. It is clear that every completely \oplus - δ_{ss} -supplemented module is \oplus - δ_{ss} supplemented. The converse is provided for modules with the property (D3) or UCextending modules. For a submodule X of $a\oplus$ - δ_{ss} -supplemented module M with $\frac{M}{X}$ is projective, the case of being \oplus - δ_{ss} -supplemented is inherited. Any fully invariant δ -coclosed submodule of a \oplus - δ_{ss} -supplemented module is \oplus - δ_{ss} -supplemented. Any factor module $\frac{M}{X}$ of a \oplus - δ_{ss} -supplemented module M is \oplus - δ_{ss} -supplemented where $X \leq M$ is fully invariant. A \oplus - δ_{ss} -supplemented module M with $\delta(M) \leq \operatorname{Soc}(M)$ is \oplus - δ_{ss} -supplemented. A ring R is δ_{ss} -perfect if and only if every finitely generated free R-module is \oplus - δ_{ss} -supplemented.

2. Main results

DEFINITION 2.1. A module M is called a \oplus - δ_{ss} -supplemented module if any submodule of M has a δ_{ss} -supplement which is a direct summand of M.

It is clear that every semisimple module is a \oplus - δ_{ss} -supplemented module.

Recall that a module M is called δ -local if $\delta(M) \ll_{\delta} M$ and $\delta(M)$ is maximal [1]. Additionally, a module M is called *strongly* δ -local if it is δ -local and $\delta(M) \leq \operatorname{Soc}(M)$ [21]. Comparing the definitions, it is possible to say that every strongly δ -local module is δ -local; but the converse may not be true.

LEMMA 2.1. Let M be a strongly δ -local module. Then, M is a \oplus - δ_{ss} -supplemented module.

PROOF. Let X be any submodule of M.

Case 1. Let $X \leq \delta(M)$. Then, X is semisimple as a submodule of $\delta(M)$ as M is strongly δ -local. Thus, X is a δ -small submodule of M from [21, Lemma 2.2]. Hence, M is a δ_{ss} -supplement of X in M which is a direct summand of M.

Case 2. Let $X \notin \delta(M)$. Then it can be written that $X + \delta(M) = M$ from the maximality of $\delta(M)$. Since $\delta(M) \ll_{\delta} M$, then there exists a projective semisimple submodule $Y \leqslant \delta(M)$ such that $X \oplus Y = M$.

PROPOSITION 2.1. For a δ -local module M the following statements are equivalent: (i) M is \oplus - δ_{ss} -supplemented. (i) M is strongly δ -local.

PROOF. $(2) \Rightarrow (1)$ is clear from Lemma 2.1.

(1) \Rightarrow (2) is clear from [21, Proposition 4.5] as every \oplus - δ_{ss} -supplemented module is δ_{ss} -supplemented.

Clearly, every \oplus - δ_{ss} -supplemented module is a δ - D_{11} -module. The following proposition shows that the converse may be true under a suitable condition.

PROPOSITION 2.2. Let M be a δ -D₁₁-module with $\delta(M) \leq Soc(M)$. Then M is a \oplus - δ_{ss} -supplemented module.

PROOF. Let X be any submodule of M. By the assumption, there exists a submodule Y of M such that X + Y = M, $X \cap Y \ll_{\delta} Y$ and $M = Y \oplus Y'$ for a submodule $Y' \leq M$. As $X \cap Y \leq \delta(Y) \leq \delta(M) \leq \operatorname{Soc}(M)$, $X \cap Y$ is semisimple. Thus, Y is a δ_{ss} -supplement of X in M which is a direct summand of M. Hence, M is \oplus - δ_{ss} -supplemented.

Now, we need to have the following useful lemma for the completeness and the proof of Theorem 2.1.

LEMMA 2.2. Let M be a module and $X, Y \leq M$. If X + Y has a δ_{ss} -supplement S in M and $X \cap (Y+S)$ has a δ_{ss} -supplement T in X, then S+T is a δ_{ss} -supplement of Y in M.

PROOF. By the assumption, we have (X+Y)+S = M, $(X+Y)\cap S \leq \operatorname{Soc}_{\delta}(S)$. Additionally, we have

 $[X\cap (Y+S)]+T=X, \quad [X\cap (Y+S)]\cap T=(Y+S)\cap T\leqslant {\rm Soc}_{\delta}(T).$ Therefore,

$$M = (X + Y) + S = ([X \cap (Y + S)] + T + Y) + S = Y + (S + T),$$

$$Y \cap (S + T) \leq [S \cap (Y + T)] + [T \cap (Y + S)]$$

$$\leq [S \cap (Y + X)] + [T \cap (Y + S)] \ll_{\delta} S + T.$$

Moreover, $Y \cap (S + T)$ is semisimple as a submodule of a sum of two semisimple submodules from [7, Corollary 8.1.5]. Hence, S + T is a δ_{ss} -supplement of Y in M.

THEOREM 2.1. Any finite direct sum of a \oplus - δ_{ss} -supplemented module module is \oplus - δ_{ss} -supplemented.

PROOF. It is enough to show that $M = M_1 \oplus M_2$ is a \oplus - δ_{ss} -supplemented module whenever each M_i is \oplus - δ_{ss} -supplemented for i = 1, 2. Let $X \leq M$. Then $M = M_1 + M_2 + X$ and $\{0\}$ is a δ_{ss} -supplement of M which is a trivial direct summand. On the other hand, $M_2 \cap (M_1 + X)$ has a δ_{ss} -supplement S in M which is a direct summand of M_2 . By Lemma 2.2, S is a δ_{ss} -supplement of $M_1 + X$ in M. Since the module M_1 is \oplus - δ_{ss} -supplemented, then $M_1 \cap (X + S)$ has a δ_{ss} supplement T in M_1 which is a direct summand of M_1 . Therefore, S + T is a δ_{ss} -supplement of X in M. Further, S + T is a direct summand of M as both S and T are direct summands of M_2 and M_1 , respectively. Hence, $M = M_1 \oplus M_2$ is \oplus - δ_{ss} -supplemented.

Let $\{M_i\}_{i \in I}$ be a family of modules. The members of this family are called relatively projective if M_s is M_t -projective for all $1 \leq s \neq t \leq n$ for a given positive integer n.

THEOREM 2.2. Let $\{M_i\}_{i \in I}$ be any finite family of relatively projective modules. Then the module $M = \bigoplus_{i=1}^{n} M_i$ is \oplus - δ_{ss} -supplemented if and only if each M_i is \oplus - δ_{ss} -supplemented.

PROOF. (\Rightarrow) The sufficiency part is clear from Theorem 2.1.

(⇐) For the necessity, it is enough to show that M_1 is \oplus - δ_{ss} -supplemented. Let $X \leq M_1$. Then $X \leq M$ and so there exists a δ_{ss} -supplement Y of X in M such that $M = Y \oplus Y'$ for a submodule Y' of M. Thus we have X + Y = M and $X \cap Y \leq \operatorname{Soc}_{\delta}(M)$. From here, we get $M = X + Y = M_1 + Y$. Therefore, it can be written that $M = M_1 + Y_1$ for a submodule $Y_1 \leq Y$, from [12, 4.47]. Following, $Y = (M_1 + Y_1) \cap Y = Y_1 \oplus (M_1 \cap Y)$ is obtained. However, as $M = X + Y, M_1 = X + (M_1 \cap Y)$ is obtained by the modularity. Besides, $X \cap (M_1 \cap Y) = X \cap Y \leq \operatorname{Soc}_{\delta}(M)$. Therefore, $M_1 \cap Y$ is a δ_{ss} -supplement of X in M_1 . Now, let us show that $M_1 \cap Y \leq_{\oplus} M_1$. As $M = Y \oplus Y'$, we have

$$M_{1} = (Y \oplus Y') \cap M_{1} = \{ [Y_{1} \oplus (M_{1} \cap Y)] \oplus Y' \} \cap M_{1} = \{ (M_{1} \cap Y) \oplus (Y_{1} \oplus Y') \} \cap M_{1} = (M_{1} \cap Y) \oplus \{ (Y_{1} \oplus Y') \cap M_{1} \},$$

by the modularity. Hence, M_1 is a \oplus - δ_{ss} -supplemented module.

Now, we state the following known fact to prove that a submodule of a \oplus - δ_{ss} -supplemented module is \oplus - δ_{ss} -supplemented module.

LEMMA 2.3. [9, Lemma 2.3] Let $D \leq_{\oplus} M$, $X \leq M$ with $\frac{M}{X}$ is projective and M = D + X. Then, $D \cap X \leq_{\oplus} M$.

THEOREM 2.3. Let M be $a \oplus -\delta_{ss}$ -supplemented module and let $X \leq M$ such that $\frac{M}{X}$ is projective. Then the submodule X of M is $a \oplus -\delta_{ss}$ -supplemented module.

PROOF. Let $N \leq M$ and let X be any submodule of N. By the assumption, there exists Y, Y' of M such that X + Y = M, $X \cap Y \leq \operatorname{Soc}_{\delta}(Y)$ and $M = Y \oplus Y'$. By the modularity, we have $N = X + (Y \cap N)$. Moreover, since M = N + Y, $Y \leq \oplus M$ and $\frac{M}{N}$ is projective, then $N \cap Y \leq_{\oplus} M$. Besides, it can be seen that $N \cap Y \leq_{\oplus} N$ and $N \cap Y \leq_{\oplus} Y$. On the other hand, as $X \cap (Y \cap N) = X \cap Y \leq N \cap Y \leq Y$, $X \cap (Y \cap N) \ll_{\delta} Y \cap N$ and it is also semisimple. Hence, N is a \oplus - δ_{ss} -supplemented module.

Recall from [19] that a submodule X of M is called *weak* δ -coclosed in M if, given $Y \leq X$ such that $\frac{X}{Y}$ is singular and $\frac{X}{Y} \ll_{\delta} \frac{M}{Y}$, then X = Y. In addition to this, a module M has the summand intersection property if the intersection of two summands of M is a summand of M. A fully invariant submodule X of a module

M is a submodule provided that $f(X) \leq X$ for each $f \in End(M)$. Furthermore, if $M = M_1 \oplus M_2$, then $X = (X \cap M_1) \oplus (X \cap M_2)$.

In the light of these facts, we give the suitable conditions for some special submodules of a \oplus - δ_{ss} -supplemented module to be \oplus - δ_{ss} -supplemented.

THEOREM 2.4. Let M be $a \oplus -\delta_{ss}$ -supplemented module, $X \leq M$ be weak δ -coclosed and $Y \leq_{\oplus} M$. If $X \cap Y \leq_{\oplus} M$, then X is $a \oplus -\delta_{ss}$ -supplemented module.

PROOF. Let $X' \leq X$. By the assumption, there exists two submodules $S, X'' \leq M$ such that X' + S = M, $X' \cap S \leq \operatorname{Soc}_{\delta}(S)$ and $M = X' \oplus X''$. Therefore, we have that $X = X' + (S \cap X)$ and $X' \cap (S \cap X) = X' \cap S \leq \operatorname{Soc}_{\delta}(S)$. Following this, we have $X' \cap S \ll_{\delta} M$ and so $X' \cap S \ll_{\delta} X$ as $X' \cap S \leq X \leq M$ and X is weak δ -coclosed by [19, Lemma 2.2]. It can be easily shown that $X \cap S \leq_{\oplus} X$ as $M = X' \oplus X''$. Thus, $X' \cap (S \cap X) = X' \cap S \ll_{\delta} X \cap S$. Hence, $S \cap X$ is a δ_{ss} -supplement of X which is a direct summand of M, that is, X is \oplus - δ_{ss} -supplemented.

COROLLARY 2.1. Let M be a \oplus - δ_{ss} -supplemented module that has the summand intersection property. Then every direct summand of M is \oplus - δ_{ss} -supplemented.

PROOF. Since every direct summand of M is also weak δ -coclosed in M from [19, Lemma 2.1], the proof is clear.

COROLLARY 2.2. Let M be $a \oplus -\delta_{ss}$ -supplemented module and $X \leq M$ be δ -coclosed. If $X \cap D \leq_{\oplus} X$ where $D \leq_{\oplus} M$, then X is $a \oplus -\delta_{ss}$ -supplemented module.

PROOF. Since any δ -coclosed submodule is also weak δ -coclosed, then the proof is clear from Theorem 2.4.

COROLLARY 2.3. Let M be $a \oplus \delta_{ss}$ -supplemented module and $X \leq M$ be weak δ -coclosed. If $f(X) \leq X$ for all $f = f^2 \in End(M)$, then X is $a \oplus \delta_{ss}$ -supplemented module. In particular, any fully invariant δ -coclosed submodule (or direct summand) of M is $\oplus \delta_{ss}$ -supplemented.

PROOF. Let M_1 be any direct summand of M. So M has a decomposition such that $M = M_1 \oplus M_2$ for a submodule $M_2 \leq M$. For the projection map $f: M_1 \oplus M_2 \to M_1$, we have $f(X) = X \cap M_1 \leq_{\oplus} X$. Then, X is a \oplus - δ_{ss} supplemented module from Theorem 2.4.

Here we give a theorem related with the decomposition of a \oplus - δ_{ss} -supplemented module.

THEOREM 2.5. Let M be a \oplus - δ_{ss} -supplemented module. Then M has a decomposition such that $M = M_1 \oplus M_2$ where $\delta(M_1) \leq \operatorname{Soc}_{\delta}(M_1)$ and $\delta(M_2) = M_2$.

PROOF. Since M is \oplus - δ_{ss} -supplemented module, $\delta(M)$ has a δ_{ss} -supplement M_1 in M which is a direct summand of M such that $M = \delta(M) + M_!, \delta(M) \cap M_1 = \delta(M_1) \leq \operatorname{Soc}_{\delta}(M_1)$ and $M = M_1 \oplus M_2$. Additionally, $M = \delta(M) + M_1 = [\delta(M_1) \oplus \delta(M_2)] + M_1 = M_1 + \delta(M_2)$ and so, $\frac{M}{M_1} \cong M_2 = \delta(M_2)$ is obtained. \Box

Let us note that $\delta^*(M)$ is defined as a submodule of a module M in [19] as follows. $\delta^*(M) = \{m \in M \mid Rm \ll_{\delta} E(Rm)\}$ where E(Rm) is the injective hull of Rm.

COROLLARY 2.4. Let M be a \oplus - δ_{ss} -supplemented module. Then M has a decomposition $M = M_1 \oplus M_2$ such that $\delta^*(M_1) \leq \operatorname{Soc}_{\delta}(M_1)$ and $\delta^*(M_2) = M_2$.

PROOF. The proof is clear from Theorem 2.5.

In the following theorem, we show that the case of being \oplus - δ_{ss} -supplemented is preserved under factor modules.

THEOREM 2.6. Let M be a module and $X \leq M$ be fully invariant. If M is a \oplus - δ_{ss} -supplemented module, then $\frac{M}{X}$ is a \oplus - δ_{ss} -supplemented module.

PROOF. Let us assume that M is \oplus - δ_{ss} -supplemented and $\frac{A}{X} \leq \frac{M}{X}$ be any submodule of M. Then, there exists a decomposition of M such that $M = B \oplus B'$, A + B = M and $A \cap B \leq \operatorname{Soc}_{\delta}(B)$. Therefore, $\frac{B+X}{X}$ is a δ_{ss} -supplement of $\frac{A}{X}$ in $\frac{M}{X}$ [21]. Now, it remains to show that $\frac{B+X}{X} \leq \oplus \frac{M}{X}$. Let $\pi : B \oplus B' \to B$ be the projection map with the kernel $(1 - \pi)M = B'$. Then $\pi^2 = \pi \in End(M)$ and $\pi M = B$. From assumption $\pi X \leq X$ and $(1 - \pi)X \leq X$ is obtained. Thus, we have $\pi X = X \cap B$ and $(1 - \pi)X = X \cap B'$. Therefore we have $X = \pi X \oplus (1 - \pi)X = (X \cap B) \oplus (X \cap B')$. Then it is clear that $\frac{B+X}{X} = \frac{B \oplus (X \cap B')}{X}$ and $\frac{B'+X}{X} = \frac{B' \oplus (X \cap B)}{X}$ which implies $\frac{M}{X} = \frac{B \oplus (X \cap B')}{X} + \frac{B' \oplus (X \cap B)}{X}$. In addition to these,

$$[B \oplus (X \cap B')] \cap [B' \oplus (X \cap B)] = \{[B \oplus (X \cap B')] \cap B'\} \oplus (X \cap B)$$
$$= (X \cap B') \oplus (B \cap B') \oplus (X \cap B) = (X \cap B) \oplus (X \cap A) = X.$$

This verifies that $\frac{B+X}{X} \leq_{\oplus} \frac{M}{X}$. Hence, $\frac{M}{X}$ is \oplus - δ_{ss} -supplemented.

Recall that a module M is called δ -radical if $\delta(M) = M$ [16].

COROLLARY 2.5. Let M be $a \oplus \delta_{ss}$ -supplemented module, then $\frac{M}{P_{\delta}(M)}$ is $a \oplus \delta_{ss}$ -supplemented module where $P_{\delta}(M)$ is the sum of all δ -radical submodules of M.

PROOF. Since $P_{\delta}(M) \leq M$ is fully invariant, then the proof is clear from Theorem 2.6.

2.1. Rings whose modules are \oplus - δ_{ss} -supplemented.

THEOREM 2.7. Let M be a finitely generated module whose direct summands are \oplus - δ_{ss} -supplemented. Then M is a direct sum of cyclic modules.

PROOF. It is clear from [18, Theorem 3.1] as every \oplus - δ_{ss} -supplemented module is \oplus - δ_{ss} -supplemented.

COROLLARY 2.6. Every two-generated \oplus - δ_{ss} -supplemented module is a direct sum of cyclic modules.

PROOF. It is clear from Theorem 2.7.

sum of cyclic modules.

COROLLARY 2.7. An n-generated module is \oplus - δ_{ss} -supplemented if and only if every cyclic module is \oplus - δ_{ss} -supplemented and every n-generated module is a direct

PROOF. (\Rightarrow) Assume that every *n*-generated module is \oplus - δ_{ss} -supplemented. Then, so is every cyclic module as a one-generated module. Let *M* be any *n*-generated module. As every direct summand of an *n*-generated module is *n*-generated, *M* is a direct sum of cyclic modules by Theorem 2.7.

(\Leftarrow) Let M be any *n*-generated module. By the assumption, M is a finite direct sum of cyclic modules. Since each summand is \oplus - δ_{ss} -supplemented, then M is \oplus - δ_{ss} -supplemented from Theorem 2.1.

THEOREM 2.8. Let R be a ring. Then, $_RR$ is \oplus - δ_{ss} -supplemented if and only if every finitely generated free R-module is \oplus - δ_{ss} -supplemented.

PROOF. (\Rightarrow) By the assumption, $_RR$ is \oplus - δ_{ss} -supplemented as a finitely generated free R-module.

(⇐) Let M be a finitely generated free R-module such that $M = Rx_1 + Rx_2 + \cdots + Rx_n \cong R^{(n)} = R \oplus R \oplus \cdots \oplus R$ where each $Rx_i \cong R$. Since the R-module R is \oplus - δ_{ss} -supplemented and so is Rx_i , for each i. Hence M is \oplus - δ_{ss} -supplemented as a finite direct sum of \oplus - δ_{ss} -supplemented modules from Theorem 2.1.

THEOREM 2.9. For a ring R the following statements are equivalent:

- (1) R is δ_{ss} -perfect.
- (2) $_{R}R$ is δ_{ss} -supplemented.
- (3) $_{R}R$ is \oplus - δ_{ss} -supplemented.
- (4) Every finitely generated free R-module is \oplus - δ_{ss} -supplemented.

PROOF. (1) \Leftrightarrow (2) is clear from [21, Theorem 5.3]

- $(2) \Leftrightarrow (3)$ is clear from [21, Theorem 5.6]
- $(3) \Leftrightarrow (4)$ is clear from Theorem 2.8.

In the following example, we show that the containing relation is proper between the class of \oplus - δ_{ss} -supplemented modules and the class \oplus - δ -supplemented modules.

EXAMPLE 2.1. Let $R = \frac{F[x_1, x_2, \dots]}{\langle \{x_1^2, x_2^2 - x_1, x_3^2 - x_2, \dots \} \rangle}$ be the ring of polynomials over a field F where x_1, x_2, \dots are countably many indeterminates. From [24, Example 4.4], it can be seen that $_RR$ is a δ -semiperfect ring which is not δ_{ss} -perfect. Hence the R-module R is a \oplus - δ -supplemented module which is not \oplus - δ_{ss} -supplemented from Theorem 2.9 and [18, Lemma 3.5].

3. Completely \oplus - δ_{ss} -supplemented modules

DEFINITION 3.1. A module M is called a *completely* \oplus - δ_{ss} -supplemented module if every direct summand of M is \oplus - δ_{ss} -supplemented.

Recall from [12] that a module M is called a (D3)-module, if for the submodules $M_1, M_2 \leq_{\oplus} M$ with $M = M_1 + M_2$, satisfy that $M_1 \cap M_2 \leq_{\oplus} M$.

According to the definitions, it is clear that every completely \oplus - δ_{ss} -supplemented module is \oplus - δ_{ss} -supplemented. Now, we investigate the conditions when the converse is true.

THEOREM 3.1. Let M be $a \oplus \delta_{ss}$ -supplemented module with (D3). Then, M is a completely $\oplus \delta_{ss}$ -supplemented module.

PROOF. Let $X \leq_{\oplus} M$ and $Y \leq X$. As $Y \leq M$ and M is $\oplus -\delta_{ss}$ -supplemented, there exists a δ_{ss} -supplement T of Y in M such that Y + T = M, $Y \cap T \leq \operatorname{Soc}_{\delta}(T)$ and $M = T \oplus T'$. By the modularity, $X = (Y + T) \cap X = Y + (T \cap X)$ and $Y \cap (T \cap X) = Y \cap T \leq \operatorname{Soc}_{\delta}(T)$ is obtained. On the other hand, $X \cap T \leq_{\oplus} M$ as Mhas the property (D3). Therefore, it can be easily verified that $X \cap T$ is also a direct summand of X by the modularity. In addition to these, $Y \cap (T \cap X) \leq \operatorname{Soc}_{\delta}(T \cap X)$ by [17]. Hence, every direct summand X of M is $\oplus -\delta_{ss}$ -supplemented, that is, Mis completely $\oplus -\delta_{ss}$ -supplemented.

A module M is said to have the exchange property if for any module X and a decomposition $X = M' \oplus Y = \bigoplus_{i \in I} A_i$ where $M' \cong M$, there exists submodules A'_i of A_i for each i such that $X = M' \oplus (\bigoplus A'_i)$. The module M is said to have the *finite exchange property* whenever this condition holds for a finite set. And this property is preserved by summands and finite direct sums [12].

THEOREM 3.2. Let $\{X_i\}_{i=1}^n$ be a family of completely \oplus - δ_{ss} -supplemented modules with the finite exchange property. Then $\bigoplus_{i=1}^n X_i$ is completely \oplus - δ_{ss} -supplemented.

PROOF. Let $X \leq_{\bigoplus} \bigoplus_{i=1}^{n} X_i$. Then, it can be written that $\bigoplus_{i=1}^{n} X_i = X \oplus Y$ for a submodule Y of $\bigoplus_{i=1}^{n} X_i$. We will show that X is a \oplus - δ_{ss} -supplemented module. By [12, Lemma 3.20], $\bigoplus_{i=1}^{n} X_i$ and X have the finite exchange property. Therefore, $X \oplus Y = (\bigoplus_{i=1}^{n} X'_i) \oplus Y$, where $X'_i \leq_{\bigoplus} X_i$ for each i. Since each X_i is completely \oplus - δ_{ss} -supplemented module, then X'_i is \oplus - δ_{ss} -supplemented for every $i = 1, 2, \ldots, n$. Thus, $\bigoplus_{i=1}^{n} X'_i \cong X$ is \oplus - δ_{ss} -supplemented, from Theorem 2.4. \Box

THEOREM 3.3. Let M be a UC extending module. If M is \oplus - δ_{ss} -supplemented, then M is completely \oplus - δ_{ss} -supplemented.

PROOF. By the assumption, M has the property (D3) from [5, Lemma 2.4]. Then M is completely \oplus - δ_{ss} -supplemented from Theorem 3.2.

A partial endomorphism of M is a homomorphism from a submodule of M into M. If every nonzero partial endomorphism of M is one to one, then M is called *monoform*. Furthermore, if every partial endomorphism of M satisfies ker $(f) \leq_c M$, then M is called *polyform*. It is clear that every monoform module is polyform. Let $X_1 \leq X_2 \leq \ldots$ be any ascending chain of submodules of a module M. If there exists an integer n such that $X_n \leq X_k$ for every $k \geq n$, then n is called the *finite* uniform dimension of M [22] and [23]. If every finitely generated submodule of M has finite uniform dimension, then M is called a locally finite dimensional module.

COROLLARY 3.1. A polyform (monoform) extending module M is \oplus - δ_{ss} -supplemented if and only if M is completely \oplus - δ_{ss} -supplemented.

PROOF. The sufficiency is clear. For the necessity, let us assume that M is \oplus - δ_{ss} -supplemented. As M is a UC-module from [**22**, Proposition 2.2], M is a completely \oplus - δ_{ss} -supplemented module from Theorem 3.3.

Recall from [3] that a module M is said to be quasi-injective if M is M-injective, that is, every homomorphism $f: X \to M$ can be extended to an endomorphism of M where $X \leq M$. Semisimple modules and injective modules are quasi-injective.

THEOREM 3.4. Let M be a locally finite dimensional polyform module. If M is quasi-injective, then for any index set I, $M^{(I)}$ is \oplus - δ_{ss} -supplemented if and only if $M^{(I)}$ is completely \oplus - δ_{ss} -supplemented.

PROOF. Let $M^{(I)}$ be a \oplus - δ_{ss} -supplemented module. By the assumption, $M^{(I)}$ is a polyform module from [23, Proposition 3.3] and also $M^{(I)}$ is quasi-injective from [22, Corollary 3.4]. Thus, $M^{(I)}$ is a (C1)-module (or extending). Hence, $M^{(I)}$ is completely \oplus - δ_{ss} -supplemented from Corollary 3.1.

THEOREM 3.5. Let M be a module with (D3) condition. Then the following statements are equivalent:

- (1) M is completely \oplus - δ_{ss} -supplemented.
- (2) M is \oplus - δ_{ss} -supplemented.
- (3) $M = X \oplus Y$, such that X and Y are \oplus - δ_{ss} -supplemented, $\delta(X) \leq \operatorname{Soc}_{\delta}(X)$ and $\delta(Y) = Y$.
- (4) $M = X \oplus Y$, such that X and Y are \oplus - δ_{ss} -supplemented, $\delta^*(X) \leq \operatorname{Soc}_{\delta}(X)$ and $\delta^*(Y) = Y$.

PROOF. $(1) \Rightarrow (2)$ is clear from the definitions.

- $(2) \Rightarrow (1)$ is clear from Theorem 3.1.
- $(1) \Rightarrow (3)$ is clear from Theorem 5 and Theorem 3.1 as M is a (D3)-module.
- $(1) \Rightarrow (4)$ is clear from Theorem 5 and Theorem 3.1.

 $(3) \Rightarrow (2)$ and $(4) \Rightarrow (2)$ are clear from Theorem 2.1.

Acknowledgement. The author sincerely thanks the referees for the valuable suggestions and comments.

References

- 1. E. Büyükaşık, C. Lomp, When δ -semiperfect rings are semiperfect, Turk. J. Math. **34** (2010) 317–324.
- J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Front. Math., Birkhauser, Basel, 2006.
- 3. C. Faith, Lectures On Injective Modules and Quotient Rings, Lect. Notes Math. 49, 1967.
- 4. K. R. Gooderal, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.
- 5. A. Harmancı, D. Keskin, P. F. Smith, $On\oplus\text{-supplemented modules},$ Acta Math. 83 (1999), 161–169.
- A. Idelhadj, R. Tribak, On some properties of ⊕-supplemented modules, Int. J. Math. Math. Sci. 69 (2003), 4373–4387.
- F. Kasch, Modules and Rings, Lond. Math. Soc. Monogr., Academic Press, London–New York, 1982.
- E. Kaynar, E. Türkmen, H. Çalışıcı, SS-supplemented modules, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 69(1) (2020), 473–485.
- D. Keskin, W. Xue, Generalizations of lifting modules, Acta Math. Hung. 91(3) (2001), 253-261.
- 10. M.T. Koşan, δ-lifting and δ-supplemented modules, Algebra Colloq. 14(1) (2007), 53-60.

- M.T. Koşan, A. Harmancı, Generalizations of coatomic modules, Open Math. 3(2) (2005), 273–281.
- S.H. Mohammed, B.J. Müller, Continuous and Discrete Modules, London Math. Soc., LN 147, Cambridge University Press, 1990.
- W. K. Nicholson, M. F. Yousif, *Quasi-Frobenius Rings*, Cambridge University Prss, Cambridge, 158, 2003.
- P.F. Smith, Modules for which every submodule has a unique closure, Proceedings of the Biennial Ohio-State Denison Conference, May 1992, 302–313.
- P. F. Smith, A. Tercan, Generalizations of CS-modules, Commun. Algebra 21(6) (1993), 1809– 1847.
- E. Ö. Sözen, Ş. Eren, Modules that have a generalized δ-supplement in every cofinite extension, JP J. Algebra Number Theory Appl. 40(3) (2018), 241–254.
- Y. Talebi, A. R. M. Hamzekolaei, Closed weak δ-supplemented modules, JP J. Algebra Number Theory Appl. 13(2) (2009), 193–208.
- Y. Talebi, M. H. Pour, On ⊕-δ-supplemented modules, J. Algebra Number Theory, Adv. Appl. 1(2) (2009), 89–97.
- Y. Talebi, B. Talaee, Generalizations of D₁₁ and D⁺₁₁ modules, Asian-Eur. J. Math. 2(2) (2009), 285–293.
- A. Tercan, C. C. Yücel, Module Theory, Extending Modules and Generalizations, Birkhauser, Basel, 2016.
- E. Türkmen, B. N. Türkmen, δ_{ss}-supplemented modules and rings, An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 28(3) (2020), 193–216.
- J. M. Zelmanowitz, Class of modules with semisimple behaviour, in: Abelian Groups and Modules, Kluwer, 491–500, 1995.
- J. M. Zelmanowitz, Representation of rings with faithful polyform modules, Comm. Algabra 14 (1986), 1141–1169.
- Y. Zhou, Generalizations of perfect, semiperfect and semiregular rings, Algebra Colloq. 7(3) (2000), 305–318.
- 25. H. Zöschinger, Komplementierte moduln über Dedekinringen, J. Algebra 29 (1974), 42-56.

Faculty of Sciences and Arts Department of Mathematics Sinop University Sinop Turkey esozen@sinop.edu.tr (Received 09 01 2021) (Revised 21 04 2021)