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ON ⊕-δss-SUPPLEMENTED MODULES

Esra Öztürk Sözen

Abstract. A module M is called ⊕-δss-supplemented if every submodule X

of M has a δss-supplement Y in M which is a direct summand of M such that
X + Y = M and X ∩ Y 6 Socδ(Y ) where Socδ(Y ) is the sum of simple and
δ-small submodules of Y and M = Y ⊕ Y ′ for some Y ′ 6 M . Moreover, M is
called a completely ⊕-δss-supplemented module if every direct summand of M

is ⊕-δss-supplemented. Thus, we present two new types of algebraic structures
which are stronger than δ-D11 and δ-D+

11
-modules, respectively. In this paper

we investigate basic properties, decompositions and ring characterizations of
these modules.

1. Introduction

Firstly, let us point that, R will indicate an associative ring with identity and
M will indicate an R-module throughout this article. In addition to these, for a
submodule X of M and for a direct summand X of M , the notations X 6 M and
X 6⊕ M will be used respectively. A submodule X of M is called small in M ,
(denoted by X ≪ M), if X + P 6= M for any proper submodule P of M . Besides,
the sum of all small submodules of M is denoted by Rad(M). Dual to this term,
the submodule X is called essentialin M , if the submodule {0} is the only one
satisfying X ∩ Y = {0} for Y 6 M , denoted by X E M . Besides, M is called an
essential extension of X . A module M is called closed in M , denoted by X 6c M ,
if it has no proper essential extension in M . A submodule Y of M is called a
closureof X in M if Y is closed and it is also an essential extension of X in M [2].
A module M is called extending (or CS-module) if every closed submodule of M is
a direct summand of M [20]. In [14] a module M is called a UC-module if every
submodule of M has a unique coclosure in M .

C1, C2, C3 conditions for a module M is given as follows. It is known that
modules with the condition C1 are also known as CS-modules or extending modules.

(C1) Every submodule of M is essential in a direct summand of M .
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(C2) Every submodule which is isomorphic to a summand of M is a direct
summand of M .

(C3) If X and Y are direct summands of M with X ∩Y = 0,then X ⊕Y 6⊕ M .
In [12], it is given that a module M with (C2)-condition also satisfies (C3)-

condition. Moreover in [13, Proposition 1.22] it is declared that every quasi-
injective module satisfies C1 and C2-conditions, directly.

A supplement submodule Y of a submodule X in M is the minimal element of
the set of submodules of M satisfying X +T = M for T 6 M , which is equivalent to
X +Y = M and X ∩Y ≪ Y . If every submodule of M has a supplement in M , then
M is called a supplemented module [25]. A module M is called ⊕-supplemented
if every submodule X of M has a supplement which is a direct summand of M

[12]. These modules are dual of (C11)-modules given in [15]. Recall that a module
M satisfies (C11) if every submodule of M has a complement which is a direct
summand of M . A module M is called lifting if for any submodule X of M there
exists a decomposition M = A ⊕ B provided that A 6 X and X ∩ B ≪ B [2].
Clearly, every lifting module is ⊕-supplemented.

The singular submodule Z(M) of the module M is the set of elements m of M

whose annihilators are essential in R. The module M is called singular (nonsin-
gular) if Z(M) = M (Z(M) = 0). In [24], a generalization of small submodules
and depend to this in [10], a generalization of supplemented modules are defined
as follows. The submodule X of M is called δ-small in M , denoted by X ≪δ M ,
if X + T 6= M for every proper submodule Y of M with M

T
is singular. Moreover,

δ(M) denotes the sum of all δ-small submodules of M . A submodule Y is called a δ-
supplement of X in M if X+Y = M and X∩Y ≪δ Y . M is called a δ-supplemented
module if every submodule of M has a δ-supplement in M . Additionally, in [19],
M is called a δ-D11-module if every submodule of M has a δ-supplement which is
a direct summand of M and, M is called a δ-D+

11-module if every direct summand
of M is a δ-D11-module.

In [21] the authors defined δss-supplemented modules both as a restriction
of δ-supplemented modules and as a generalization of ss-supplemented modules
studied extensively in [8] as follows. A module M is called δss-supplemented if for
any submodule X of M there exists a δss-supplement submodule of M , that is,
X + Y = M and X ∩ Y 6 Socδ(Y ) where Socδ(Y ) is the sum of δ-small simple
submodules of Y .

Combining the facts given above, we obtain two new types of algebraic structure
which are stronger than δ-D11 and δ-D+

11 modules, respectively. They are ⊕-δss-
supplemented and completely ⊕-δss-supplemented modules whose detailed concepts
can be seen in the abstract. Afterwards, the following hierarchy can be reached for
a module M :
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completely ⊕ -δss-supplemented

⊕-δss-supplemented

δss-supp. ⊕-δ-supp.

δ-supplemented

Let us give a summary of the data obtained in this article shortly. Every
strongly δ-local module is ⊕-δss-supplemented. Any finite direct sum of a (com-
pletely) ⊕-δss-supplemented module is (completely) ⊕-δss-supplemented and the
converse is true whenever M =

⊕n

i=1 Mi is the direct sum of the members of a
family of (modules with the finite exchange property) relatively projective modules
{Mi}i∈I . It is clear that every completely ⊕-δss-supplemented module is ⊕-δss-
supplemented. The converse is provided for modules with the property (D3) or UC-
extending modules. For a submodule X of a⊕-δss-supplemented module M with M

X

is projective, the case of being ⊕-δss-supplemented is inherited. Any fully invariant
δ-coclosed submodule of a ⊕-δss-supplemented module is ⊕-δss-supplemented. Any
factor module M

X
of a ⊕-δss-supplemented module M is ⊕-δss-supplemented where

X 6 M is fully invariant. A ⊕-δss-supplemented module M with δ(M) 6 Soc(M)
is ⊕-δss-supplemented. A ring R is δss-perfect if and only if every finitely generated
free R-module is ⊕-δss-supplemented.

2. Main results

Definition 2.1. A module M is called a ⊕-δss-supplemented module if any
submodule of M has a δss-supplement which is a direct summand of M .

It is clear that every semisimple module is a ⊕-δss-supplemented module.
Recall that a module M is called δ-local if δ(M) ≪δ M and δ(M) is maximal

[1]. Additionally, a module M is called strongly δ-local if it is δ-local and δ(M) 6
Soc(M) [21]. Comparing the definitions, it is possible to say that every strongly
δ-local module is δ-local; but the converse may not be true.

Lemma 2.1. Let M be a strongly δ-local module. Then, M is a ⊕-δss-supple-
mented module.

Proof. Let X be any submodule of M .

Case 1. Let X 6 δ(M). Then, X is semisimple as a submodule of δ(M) as M

is strongly δ-local. Thus, X is a δ-small submodule of M from [21, Lemma 2.2].
Hence, M is a δss-supplement of X in M which is a direct summand of M .

Case 2. Let X 
 δ(M). Then it can be written that X + δ(M) = M from the
maximality of δ(M). Since δ(M) ≪δ M , then there exists a projective semisimple
submodule Y 6 δ(M) such that X ⊕ Y = M . �
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Proposition 2.1. For a δ-local module M the following statements are equiv-
alent: (i) M is ⊕-δss-supplemented. (i) M is strongly δ-local.

Proof. (2) ⇒ (1) is clear from Lemma 2.1.
(1) ⇒ (2) is clear from [21, Proposition 4.5] as every ⊕-δss-supplemented

module is δss-supplemented. �

Clearly, every ⊕-δss-supplemented module is a δ-D11-module. The following
proposition shows that the converse may be true under a suitable condition.

Proposition 2.2. Let M be a δ-D11-module with δ(M) 6 Soc(M). Then M

is a ⊕-δss-supplemented module.

Proof. Let X be any submodule of M . By the assumption, there exists a
submodule Y of M such that X + Y = M , X ∩ Y ≪δ Y and M = Y ⊕ Y ′ for a
submodule Y ′ 6 M . As X ∩ Y 6 δ(Y ) 6 δ(M) 6 Soc(M), X ∩ Y is semisimple.
Thus, Y is a δss-supplement of X in M which is a direct summand of M . Hence,
M is ⊕-δss-supplemented. �

Now, we need to have the following useful lemma for the completeness and the
proof of Theorem 2.1.

Lemma 2.2. Let M be a module and X, Y 6 M . If X +Y has a δss-supplement
S in M and X∩(Y +S) has a δss-supplement T in X, then S+T is a δss-supplement
of Y in M .

Proof. By the assumption, we have (X +Y )+S = M , (X +Y )∩S 6 Socδ(S).
Additionally, we have

[X ∩ (Y + S)] + T = X, [X ∩ (Y + S)] ∩ T = (Y + S) ∩ T 6 Socδ(T ).

Therefore,

M = (X + Y ) + S = ([X ∩ (Y + S)] + T + Y ) + S = Y + (S + T ),

Y ∩ (S + T ) 6 [S ∩ (Y + T )] + [T ∩ (Y + S)]

6 [S ∩ (Y + X)] + [T ∩ (Y + S)] ≪δ S + T.

Moreover, Y ∩ (S + T ) is semisimple as a submodule of a sum of two semisimple
submodules from [7, Corollary 8.1.5]. Hence, S + T is a δss-supplement of Y

in M . �

Theorem 2.1. Any finite direct sum of a ⊕-δss-supplemented module module
is ⊕-δss-supplemented.

Proof. It is enough to show that M = M1 ⊕ M2 is a ⊕-δss-supplemented
module whenever each Mi is ⊕-δss-supplemented for i = 1, 2. Let X 6 M . Then
M = M1 + M2 + X and {0} is a δss-supplement of M which is a trivial direct
summand. On the other hand, M2 ∩ (M1 + X) has a δss-supplement S in M which
is a direct summand of M2. By Lemma 2.2, S is a δss-supplement of M1 + X in
M . Since the module M1 is ⊕-δss-supplemented, then M1 ∩ (X + S) has a δss-
supplement T in M1 which is a direct summand of M1. Therefore, S + T is a
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δss-supplement of X in M . Further, S + T is a direct summand of M as both S

and T are direct summands of M2 and M1, respectively. Hence, M = M1 ⊕ M2 is
⊕-δss-supplemented. �

Let {Mi}i∈I be a family of modules. The members of this family are called
relatively projective if Ms is Mt-projective for all 1 6 s 6= t 6 n for a given positive
integer n.

Theorem 2.2. Let {Mi}i∈I be any finite family of relatively projective modules.
Then the module M =

⊕n

i=1 Mi is ⊕-δss-supplemented if and only if each Mi is
⊕-δss-supplemented.

Proof. (⇒) The sufficiency part is clear from Theorem 2.1.
(⇐) For the necessity, it is enough to show that M1 is ⊕-δss-supplemented.

Let X 6 M1. Then X 6 M and so there exists a δss-supplement Y of X in M

such that M = Y ⊕ Y ′ for a submodule Y ′ of M . Thus we have X + Y = M and
X ∩ Y 6 Socδ(M). From here, we get M = X + Y = M1 + Y . Therefore, it can
be written that M = M1 + Y1 for a submodule Y1 6 Y , from [12, 4.47]. Following,
Y = (M1 + Y1) ∩ Y = Y1 ⊕ (M1 ∩ Y ) is obtained. However, as M = X + Y ,M1 =
X + (M1 ∩ Y ) is obtained by the modularity. Besides, X ∩ (M1 ∩ Y ) = X ∩ Y 6

Socδ(M). Therefore, M1 ∩ Y is a δss-supplement of X in M1. Now, let us show
that M1 ∩ Y 6⊕ M1. As M = Y ⊕ Y ′, we have

M1 = (Y ⊕ Y ′) ∩ M1 = {[Y1 ⊕ (M1 ∩ Y )] ⊕ Y ′} ∩ M1

= {(M1 ∩ Y ) ⊕ (Y1 ⊕ Y ′)} ∩ M1 = (M1 ∩ Y ) ⊕ {(Y1 ⊕ Y ′) ∩ M1},

by the modularity. Hence, M1 is a ⊕-δss-supplemented module. �

Now, we state the following known fact to prove that a submodule of a ⊕-δss-
supplemented module is ⊕-δss-supplemented module.

Lemma 2.3. [9, Lemma 2.3] Let D 6⊕ M , X 6 M with M
X

is projective and
M = D + X. Then, D ∩ X 6⊕ M .

Theorem 2.3. Let M be a ⊕-δss-supplemented module and let X 6 M such
that M

X
is projective. Then the submodule X of M is a ⊕-δss-supplemented module.

Proof. Let N 6 M and let X be any submodule of N . By the assumption,
there exists Y , Y ′ of M such that X + Y = M , X ∩Y 6 Socδ(Y ) and M = Y ⊕ Y ′.
By the modularity, we have N = X+(Y ∩N). Moreover, since M = N+Y , Y 6⊕ M

and M
N

is projective, then N ∩ Y 6⊕ M . Besides, it can be seen that N ∩ Y 6⊕ N

and N ∩ Y 6⊕ Y . On the other hand, as X ∩ (Y ∩ N) = X ∩ Y 6 N ∩ Y 6 Y ,
X ∩(Y ∩N) ≪δ Y ∩N and it is also semisimple. Hence, N is a ⊕-δss-supplemented
module. �

Recall from [19] that a submodule X of M is called weak δ-coclosed in M if,
given Y 6 X such that X

Y
is singular and X

Y
≪δ

M
Y

, then X = Y . In addition to
this, a module M has the summand intersection property if the intersection of two
summands of M is a summand of M . A fully invariant submodule X of a module
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M is a submodule provided that f(X) 6 X for each f ∈ End(M). Furthermore, if
M = M1 ⊕ M2, then X = (X ∩ M1) ⊕ (X ∩ M2).

In the light of these facts, we give the suitable conditions for some special
submodules of a ⊕-δss-supplemented module to be ⊕-δss-supplemented.

Theorem 2.4. Let M be a ⊕-δss-supplemented module, X 6 M be weak δ-
coclosed and Y 6⊕ M . If X ∩ Y 6⊕ M , then X is a ⊕-δss-supplemented module.

Proof. Let X ′ 6 X . By the assumption, there exists two submodules S,X ′′ 6

M such that X ′ +S = M , X ′ ∩S 6 Socδ(S) and M = X ′ ⊕X ′′. Therefore, we have
that X = X ′+(S∩X) and X ′∩(S∩X) = X ′∩S 6 Socδ(S). Following this, we have
X ′ ∩ S ≪δ M and so X ′ ∩ S ≪δ X as X ′ ∩ S 6 X 6 M and X is weak δ-coclosed
by [19, Lemma 2.2]. It can be easily shown that X ∩ S 6⊕ X as M = X ′ ⊕ X ′′.
Thus, X ′ ∩ (S ∩ X) = X ′ ∩ S ≪δ X ∩ S. Hence, S ∩ X is a δss-supplement of X

which is a direct summand of M , that is, X is ⊕-δss-supplemented. �

Corollary 2.1. Let M be a ⊕-δss-supplemented module that has the summand
intersection property. Then every direct summand of M is ⊕-δss-supplemented.

Proof. Since every direct summand of M is also weak δ-coclosed in M from
[19, Lemma 2.1], the proof is clear. �

Corollary 2.2. Let M be a ⊕-δss-supplemented module and X 6 M be δ-
coclosed. If X ∩D 6⊕ X where D 6⊕ M , then X is a ⊕-δss-supplemented module.

Proof. Since any δ-coclosed submodule is also weak δ-coclosed, then the proof
is clear from Theorem 2.4. �

Corollary 2.3. Let M be a ⊕-δss-supplemented module and X 6 M be weak
δ-coclosed. If f(X) 6 X for all f = f2 ∈ End(M),then X is a ⊕-δss-supplemented
module. In particular, any fully invariant δ-coclosed submodule (or direct sum-
mand) of M is ⊕-δss-supplemented.

Proof. Let M1 be any direct summand of M . So M has a decomposition
such that M = M1 ⊕ M2 for a submodule M2 6 M . For the projection map
f : M1 ⊕ M2 → M1, we have f(X) = X ∩ M1 6⊕ X . Then, X is a ⊕-δss-
supplemented module from Theorem 2.4. �

Here we give a theorem related with the decomposition of a ⊕-δss-supplemented
module.

Theorem 2.5. Let M be a ⊕-δss-supplemented module. Then M has a decom-
position such that M = M1 ⊕ M2 where δ(M1) 6 Socδ(M1) and δ(M2) = M2.

Proof. Since M is ⊕-δss-supplemented module, δ(M) has a δss-supplement
M1 in M which is a direct summand of M such that M = δ(M)+M!,δ(M)∩M1 =
δ(M1) 6 Socδ(M1) and M = M1 ⊕ M2. Additionally, M = δ(M) + M1 = [δ(M1) ⊕
δ(M2)] + M1 = M1 + δ(M2) and so, M

M1

∼= M2 = δ(M2) is obtained. �

Let us note that δ∗(M) is defined as a submodule of a module M in [19] as
follows. δ∗(M) = {m ∈ M | Rm ≪δ E(Rm)} where E(Rm) is the injective hull
of Rm.
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Corollary 2.4. Let M be a ⊕-δss-supplemented module. Then M has a
decomposition M = M1 ⊕ M2 such that δ∗(M1) 6 Socδ(M1) and δ∗(M2) = M2.

Proof. The proof is clear from Theorem 2.5. �

In the following theorem, we show that the case of being ⊕-δss-supplemented
is preserved under factor modules.

Theorem 2.6. Let M be a module and X 6 M be fully invariant. If M is a
⊕-δss-supplemented module, then M

X
is a ⊕-δss-supplemented module.

Proof. Let us assume that M is ⊕-δss-supplemented and A
X

6 M
X

be any
submodule of M . Then, there exists a decomposition of M such that M = B ⊕ B′,
A + B = M and A ∩ B 6 Socδ(B). Therefore, B+X

X
is a δss-supplement of A

X
in

M
X

[21]. Now, it remains to show that B+X
X

6⊕
M
X

. Let π : B ⊕ B′ → B be the

projection map with the kernel (1 − π)M = B′. Then π2 = π ∈ End(M) and
πM = B. From assumption πX 6 X and (1 − π)X 6 X is obtained. Thus, we
have πX = X ∩B and (1−π)X = X ∩B′. Therefore we have X = πX ⊕(1−π)X =

(X ∩B)⊕ (X ∩B′). Then it is clear that B+X
X

= B⊕(X∩B′)
X

and B′+X
X

= B′⊕(X∩B)
X

which implies M
X

= B⊕(X∩B′)
X

+ B′⊕(X∩B)
X

. In addition to these,

[B ⊕ (X ∩ B′)] ∩ [B′ ⊕ (X ∩ B)] = {[B ⊕ (X ∩ B′)] ∩ B′} ⊕ (X ∩ B)

= (X ∩ B′) ⊕ (B ∩ B′) ⊕ (X ∩ B) = (X ∩ B) ⊕ (X ∩ A) = X.

This verifies that B+X
X

6⊕
M
X

. Hence, M
X

is ⊕-δss-supplemented. �

Recall that a module M is called δ-radical if δ(M) = M [16].

Corollary 2.5. Let M be a ⊕-δss-supplemented module, then M
Pδ(M) is a ⊕-

δss-supplemented module where Pδ(M) is the sum of all δ-radical submodules of M .

Proof. Since Pδ(M) 6 M is fully invariant, then the proof is clear from
Theorem 2.6. �

2.1. Rings whose modules are ⊕-δss-supplemented.

Theorem 2.7. Let M be a finitely generated module whose direct summands
are ⊕-δss-supplemented. Then M is a direct sum of cyclic modules.

Proof. It is clear from [18, Theorem 3.1] as every ⊕-δss-supplemented module
is ⊕-δss-supplemented. �

Corollary 2.6. Every two-generated ⊕-δss-supplemented module is a direct
sum of cyclic modules.

Proof. It is clear from Theorem 2.7. �

Corollary 2.7. An n-generated module is ⊕-δss-supplemented if and only if
every cyclic module is ⊕-δss-supplemented and every n-generated module is a direct
sum of cyclic modules.
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Proof. (⇒) Assume that every n-generated module is ⊕-δss-supplemented.
Then, so is every cyclic module as a one-generated module. Let M be any n-
generated module. As every direct summand of an n-generated module is n-
generated, M is a direct sum of cyclic modules by Theorem 2.7.

(⇐) Let M be any n-generated module. By the assumption, M is a finite
direct sum of cyclic modules. Since each summand is ⊕-δss-supplemented, then M

is ⊕-δss-supplemented from Theorem 2.1. �

Theorem 2.8. Let R be a ring. Then, RR is ⊕-δss-supplemented if and only
if every finitely generated free R-module is ⊕-δss-supplemented.

Proof. (⇒) By the assumption, RR is ⊕-δss-supplemented as a finitely gen-
erated free R-module.

(⇐) Let M be a finitely generated free R-module such that M = Rx1 + Rx2 +
· · · + Rxn

∼= R(n) = R ⊕ R ⊕ · · · ⊕ R where each Rxi
∼= R. Since the R-module R

is ⊕-δss-supplemented and so is Rxi,for each i. Hence M is ⊕-δss-supplemented as
a finite direct sum of ⊕-δss-supplemented modules from Theorem 2.1. �

Theorem 2.9. For a ring R the following statements are equivalent:

(1) R is δss-perfect.
(2) RR is δss-supplemented.
(3) RR is ⊕-δss-supplemented.
(4) Every finitely generated free R-module is ⊕-δss-supplemented.

Proof. (1) ⇔ (2) is clear from [21, Theorem 5.3]
(2) ⇔ (3) is clear from [21, Theorem 5.6]
(3) ⇔ (4) is clear from Theorem 2.8. �

In the following example, we show that the containing relation is proper be-
tween the class of ⊕-δss-supplemented modules and the class ⊕-δ-supplemented
modules.

Example 2.1. Let R = F [x1,x2,... ]
〈{x2

1
,x2

2
−x1,x2

3
−x2,... }〉

be the ring of polynomials over a

field F where x1, x2, . . . are countably many indeterminates. From [24, Example
4.4], it can be seen that RR is a δ-semiperfect ring which is not δss-perfect. Hence
the R-module R is a ⊕-δ-supplemented module which is not ⊕-δss-supplemented
from Theorem 2.9 and [18, Lemma 3.5].

3. Completely ⊕-δss-supplemented modules

Definition 3.1. A module M is called a completely ⊕-δss-supplemented mod-
ule if every direct summand of M is ⊕-δss-supplemented.

Recall from [12] that a module M is called a (D3)-module, if for the submodules
M1, M2 6⊕ M with M = M1 + M2, satisfy that M1 ∩ M2 6⊕ M .

According to the definitions, it is clear that every completely ⊕-δss-supple-
mented module is ⊕-δss-supplemented. Now, we investigate the conditions when
the converse is true.
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Theorem 3.1. Let M be a ⊕-δss-supplemented module with (D3). Then, M

is a completely ⊕-δss-supplemented module.

Proof. Let X 6⊕ M and Y 6 X . As Y 6 M and M is ⊕-δss-supplemented,
there exists a δss-supplement T of Y in M such that Y + T = M , Y ∩ T 6 Socδ(T )
and M = T ⊕ T ′. By the modularity, X = (Y + T ) ∩ X = Y + (T ∩ X) and
Y ∩(T ∩X) = Y ∩T 6 Socδ(T ) is obtained. On the other hand, X ∩T 6⊕ M as M

has the property (D3). Therefore, it can be easily verified that X ∩T is also a direct
summand of X by the modularity. In addition to these, Y ∩(T ∩X) 6 Socδ(T ∩X)
by [17]. Hence, every direct summand X of M is ⊕-δss-supplemented, that is, M

is completely ⊕-δss-supplemented. �

A module M is said to have the exchange property if for any module X and a
decomposition X = M ′ ⊕ Y =

⊕
i∈I Ai where M ′ ∼= M , there exists submodules

A′
i of Ai for each i such that X = M ′ ⊕ (

⊕
A′

i). The module M is said to have
the finite exchange property whenever this condition holds for a finite set. And this
property is preserved by summands and finite direct sums [12].

Theorem 3.2. Let {Xi}
n
i=1 be a family of completely ⊕-δss-supplemented mod-

ules with the finite exchange property. Then
⊕n

i=1 Xi is completely ⊕-δss-supple-
mented.

Proof. Let X 6⊕

⊕n

i=1 Xi. Then, it can be written that
⊕n

i=1 Xi = X ⊕ Y

for a submodule Y of
⊕n

i=1 Xi. We will show that X is a ⊕-δss-supplemented
module. By [12, Lemma 3.20],

⊕n

i=1 Xi and X have the finite exchange property.
Therefore, X ⊕ Y = (

⊕n

i=1 X ′
i) ⊕ Y ,where X ′

i 6⊕ Xi for each i. Since each Xi is
completely ⊕-δss-supplemented module, then X ′

i is ⊕-δss-supplemented for every
i = 1, 2, . . . , n. Thus,

⊕n

i=1 X ′
i

∼= X is ⊕-δss-supplemented, from Theorem 2.4. �

Theorem 3.3. Let M be a UC extending module. If M is ⊕-δss-supplemented,
then M is completely ⊕-δss-supplemented.

Proof. By the assumption, M has the property (D3) from [5, Lemma 2.4].
Then M is completely ⊕-δss-supplemented from Theorem 3.2. �

A partial endomorphism of M is a homomorphism from a submodule of M into
M . If every nonzero partial endomorphism of M is one to one, then M is called
monoform. Furthermore, if every partial endomorphism of M satisfies ker(f) 6c M ,
then M is called polyform. It is clear that every monoform module is polyform.
Let X1 6 X2 6 . . . be any ascending chain of submodules of a module M . If there
exists an integer n such that Xn E Xk for every k > n, then n is called the finite
uniform dimension of M [22] and [23]. If every finitely generated submodule of M

has finite uniform dimension, then M is called a locally finite dimensional module.

Corollary 3.1. A polyform (monoform) extending module M is ⊕-δss-supple-
mented if and only if M is completely ⊕-δss-supplemented.

Proof. The sufficiency is clear. For the necessity, let us assume that M is
⊕-δss-supplemented. As M is a UC-module from [22, Proposition 2.2], M is a
completely ⊕-δss-supplemented module from Theorem 3.3. �
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Recall from [3] that a module M is said to be quasi-injective if M is M -injective,
that is, every homomorphism f : X → M can be extended to an endomorphism of
M where X 6 M . Semisimple modules and injective modules are quasi-injective.

Theorem 3.4. Let M be a locally finite dimensional polyform module. If M

is quasi-injective, then for any index set I, M (I) is ⊕-δss-supplemented if and only
if M (I) is completely ⊕-δss-supplemented.

Proof. Let M (I) be a ⊕-δss-supplemented module. By the assumption, M (I)

is a polyform module from [23, Proposition 3.3] and also M (I) is quasi-injective
from [22, Corollary 3.4]. Thus, M (I) is a (C1)-module (or extending). Hence, M (I)

is completely ⊕-δss-supplemented from Corollary 3.1. �

Theorem 3.5. Let M be a module with (D3) condition. Then the following
statements are equivalent:

(1) M is completely ⊕-δss-supplemented.
(2) M is ⊕-δss-supplemented.
(3) M = X ⊕Y , such that X and Y are ⊕-δss-supplemented, δ(X) 6 Socδ(X)

and δ(Y ) = Y .
(4) M = X ⊕ Y , such that X and Y are ⊕-δss-supplemented, δ∗(X) 6

Socδ(X) and δ∗(Y ) = Y .

Proof. (1) ⇒ (2) is clear from the definitions.
(2) ⇒ (1) is clear from Theorem 3.1.
(1) ⇒ (3) is clear from Theorem 5 and Theorem 3.1 as M is a (D3)-module.
(1) ⇒ (4) is clear from Theorem 5 and Theorem 3.1.
(3) ⇒ (2) and (4) ⇒ (2) are clear from Theorem 2.1. �
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