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UNIQUELY EXCHANGE RINGS

Fatemeh Rashedi

Abstract. An associative ring with unity is called exchange if every element
is exchange, i.e., there exists an idempotent e ∈ aR such that 1−e ∈ (1−a)R;
if this representation is unique for every element, we call the ring uniquely
exchange. We give a complete description of uniquely exchange rings.

1. Introduction

Let R be an associative ring with identity. An element a ∈ R is said to be
exchange if there exists an idempotent e ∈ aR such that 1 − e ∈ (1 − a)R. The ring
R is said to be exchange if all of its elements are exchange [3–5,9–11]. We say that,
an element a in a ring R is said to be uniquely exchange if there exists a unique
idempotent e ∈ aR such that 1 − e ∈ (1 − a)R. A ring R is said to be a uniquely
exchange if every element is uniquely exchange. An element a ∈ R is said to be
clean if x = e + u for some idempotent e and unit u in R. The ring R is said to be
clean if all of its elements are clean. Clean rings were first introduced in a paper by
Nicholson [9] as a class of exchange rings. It was shown by Nicholson [9, Proposition
1.8(1)] that if a is clean in the ring R, then there exists e2 = e ∈ aR such that
1−e ∈ (1−a)R. R is said to be suitable if for each a ∈ R, there exists an idempotent
e ∈ aR such that 1 − e ∈ (1 − a)R. This condition is left-right symmetric as shown
in [9]. In the same paper, Nicholson [9] also showed that R is an exchange ring
if and only if idempotents can be lifted modulo every left (right) ideal of R if and
only if R is suitable. Hence, every clean ring is an exchange ring. The converse is
known to be true in abelian rings (see [9, Proposition 1.8(2)]. An element a ∈ R
is uniquely clean provided that there exists a unique idempotent e ∈ R such that
a − e ∈ R is invertible. A ring R is uniquely clean in case every element in R
is uniquely clean. Many authors have studied such rings, see [1, 2, 6–8]. In this
paper we investigate the uniquely exchange rings, and we show that every image
of a uniquely exchange ring is again uniquely exchange and every Boolean ring is
uniquely exchange. Finally, we prove that a local ring R is uniquely exchange if
and only if R/J(R) ∼= Z2.
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2. Main results

Definition 2.1. An element a in a ring R is called uniquely exchange if there
exists a unique idempotent e ∈ aR such that 1 − e ∈ (1 − a)R. A ring R is called
a uniquely exchange if every element is uniquely exchange.

Proposition 2.1. Central idempotents and central nilpotents are uniquely ex-
change in any ring R.

Proof. By [8, Example 1], central idempotents and central nilpotents are
uniquely clean. Hence there exists a unique idempotent e ∈ R such that e − x ∈

(x − x2)R, by [9, Proposition 1.8]. Therefore there exists a unique idempotent
e ∈ aR such that 1 − e ∈ (1 − a)R, by [9, Proposition 1.1], as required. �

Corollary 2.1. Every Boolean ring is uniquely exchange.

A routine elementary argument establishes the following results.

Proposition 2.2. Every homomorphic image of a uniquely exchange ring is
uniquely exchange.

Proposition 2.3. A direct product
∏

i∈I
Ri of rings is uniquely exchange if

and only if each Ri is uniquely exchange.

Proposition 2.4. A ring R is a uniquely exchange ring if and only if R/J(R)
is a uniquely exchange ring and idempotents left modulo J(R).

Proof. Follows from Proposition 2.2 and [9, Corollary 1.3]. �

Proposition 2.5. Let R be a uniquely exchange ring,i.e; for every a ∈ R there
exists a unique idempotent e ∈ aR such that 1 − e ∈ (1 − a)R. Then ea = ae.

Proof. Let a ∈ R. Then, if there exists a unique idempotent e ∈ aR such
that 1 − e ∈ (1 − a)R, then e + (ea − eae) is an idempotent. Hence

e + (ea − eae) ∈ aR, (1 − (e + (ea − eae)) ∈ (1 − a)R.

Since R is uniquely exchange, e = e + (ea − eae). It follows that ea = eae, and
similarly ae = eae. �

Proposition 2.6. Let R be a uniquely exchange ring and e2 = e ∈ R. Then
eRe is uniquely exchange.

Proof. If a ∈ eRe choose f2 = f ∈ aR such that 1 − f ∈ (1 − a)R. Since
a ∈ eRe and f ∈ aR, we see that a = exe for some x ∈ R and f = ay for
some y ∈ R, so f = exey. Therefore ef = f , and fe is an idempotent. Hence
e − fe = e(1 − f)e ∈ (e − a)eRe. Therefore eRe is exchange. To check uniqueness,
let a ∈ eRe and there exist two idempotents f, f ′ ∈ aR such that

e − fe ∈ (e − a)eRe, e − f ′e ∈ (e − a)eRe.

Hence e(1 − f)e ∈ e(1 − a)Re and e(1 − f ′)e ∈ e(1 − a)Re, and so 1 − f ∈ (1 − a)R
and 1 − f ′ ∈ (1 − a)R, a contradiction. �
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Let R be a ring and let RMR be an R-R-bimodule which is a general ring
(possibly with no unity) in which (mn)a = m(na) = m(an) and (am)n = a(mn)
hold for all m, n ∈ M and a ∈ R. Then the ideal-extension I(R; M) of R by M
is defined to be the additive abelian group I(R; M) = R ⊕ M with multiplication
(a, m)(b, n) = (ab, an + mb + mn). Note that if S is a ring and S = R ⊕ A, where
R is a subring and A ⊳ S, then S ∼= I(R; A).

Proposition 2.7. An ideal-extension S = I(R; M) is uniquely exchange if the
following conditions are satisfied:

(1) R is uniquely exchange.
(2) If e ∈ Id(R), then em = me for all m ∈ M .
(3) If m ∈ M , then m + n + mn = 0 for some n ∈ M .

Proof. Let s = (a, m) ∈ S and by (1) there exists a unique idempotent e ∈ aR
such that 1 − e ∈ (1 − a)R. Since S is a clean, by [8, Proposition 7], and so S is a
exchange ring. Now suppose that there exist idempotents (e, x), (e′, x′) ∈ sS such
that

1S − (e, x) ∈ (1S − s)S, 1S − (e′, x′) ∈ (1S − s)S.

Hence (e, x) = (e′, x′) by the following result.
We show that, if (e, x)2 = (e, x), then e2 = e and x = 0. (e, x)2 = (e, x) gives
e2 = e and x = 2ex + x2 using (2). Then multiplying by e gives ex + ex2 = 0,
and multiplying by x gives x2 = 2ex2 + x3. Hence adding this latter equation to
x = 2ex + x2 yields x = x3, and so x2 is an idempotent in M . By (3), −x2 + y +
(−x2)y = 0, for some y ∈ M , so that x2 + n = x2n where n = −y. Multiplying by
x2 yields x2 = 0, whence x = x3 = 0, as required. �

Proposition 2.8. Suppose that the ideal-extension S = I(R; M) is uniquely
exchange. Then the following statements hold:

(1) R is uniquely exchange.
(2) If e ∈ Id(R) and (e, 0) ∈ (a, m)S such that 1S − (e, 0) ∈ (1S − (a, m))S,

then then em = me.

Proof. Suppose that S is uniquely exchange. It is routine to see that (1)
holds. If e ∈ Id(R), then (e, 0) is an idempotent in S and (e, 0) ∈ (e, m)S such that
1S − (e, 0) ∈ (1S − (e, m))S. There (e, 0) commutes with (e, m) for every m ∈ M ,
by Proposition 2.5, and (2) follows. �

In the following, we characterize the local uniquely exchange rings.

Lemma 2.1. Let R 6= 0 be a ring. Then the following are equivalent:

(1) R is local.
(2) R is clean and 0 and 1 are the only idempotents in R.
(3) R is exchange and 0 and 1 are the only idempotents in R.

Proof. (1)⇐⇒ (2) follows from [8, Lemma 14].
(2)=⇒ (3) follows from [9, Proposition 1.8].
(3)=⇒ (1) Suppose that a /∈ J(R). So, 1 − ar is not invertible for some r ∈ R.
Since the ring R is exchange, the element 1 − ar is exchange, so there exists an
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idempotent e ∈ (1 − ar)R such that 1 − e ∈ (1 − (1 − ar))R = arR. Since the
only idempotents in R are 0 and 1, and 1 − ar is not invertible, it follows that
e = 0, so 1 = 1 − 0 ∈ arR and it follows that there exists s ∈ R such that ars = 1.
Analogously, there exists r1, t ∈ R such that tr1a = 1, so a is invertible. This
proves that R is local. �

Theorem 2.1. Let R 6= 0 be a ring. Then the following are equivalent:

(1) R is local and uniquely clean.
(2) R is uniquely clean and 0 and 1 are the only idempotents in R.
(3) R is uniquely exchange and 0 and 1 are the only idempotents in R.
(4) R/J(R) ∼= Z2.

Proof. (1) ⇐⇒ (2) ⇐⇒ (4) follows from [8, Theorem 15].
(2) =⇒ (3) follows from [9, Proposition 1.8].
(3) =⇒ (4) If ā 6= 0̄ in R̄ = R/J(R), we show that ā = 1̄. If not then both a and
1 − a are units because R is local by Lemma 2.1. Hence aR = (1 − a)R. Therefore
−a = 1 − a, which implies that 0 = 1, a contradiction. �

Lemma 2.2. Let R be a exchange ring and I * J(R) is a right (or left) ideal
of R. Then there exists 0 6= e2 = e ∈ I.

Proof. Suppose that I * J(R) is a right ideal containing no nonzero idempo-
tent. If a ∈ I, then there exists e2 = e ∈ aR such that 1−e ∈ (1−a)R. Hence e = 0,
and so 1 ∈ (1 − a)R. Therefore 1 − a is a unit. Thus I ⊆ J(R), a contradiction. A
similar argument works if I is a left ideal. �

Corollary 2.2. Let R be a uniquely exchange ring. Then R/J(R) has char-
acteristic 2.

Proof. We must show that 2 = 1 + 1 ∈ J(R). If 2 /∈ J(R), then there exists
0 6= e2 = e ∈ 2R by Lemma 2.2. Hence e = 2b, where b ∈ R. We may assume
that eb = b = be. Then u = (1 − e) − 2e is a unit with inverse (1 − e) − b. Hence
1, 1 − e ∈ uR and 0, e ∈ (1 − u)R. Since R is uniquely exchange, 1 = 1 − e, and so
e = 0, a contradiction. �

Suppose RG is now the group ring of G over R defined as usual.

Proposition 2.9. Let R be a commutative uniquely exchange ring. Then
R((C2)n) is uniquely exchange for all n > 0.

Proof. It is easy to see that R((C2)n) ∼= (R(C2)n−1)C2, so it suffices to show
that if RC2 is uniquely exchange. Since R is commutative uniquely exchange, R
is a clean ring, by [9], and so RC2 is clean, by [8, Proposition 24]. Hence RC2is
exchange. To check uniqueness, let a ∈ RC2. Then there exists an idempotent
e ∈ aRC2 such that 1−e ∈ (1−a)RC2. If e = r +sg, then r2 +s2 = r and 2rs = s,
so s = 0 (as 2 ∈ J(R)). Hence e2 = e = r ∈ R. Since R is uniquely exchange, this
shows that e is uniquely determined by a. �
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