PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 112(126) (2022), 53–57

DOI: https://doi.org/10.2298/PIM2226053R

UNIQUELY EXCHANGE RINGS

Fatemeh Rashedi

ABSTRACT. An associative ring with unity is called exchange if every element is exchange, i.e., there exists an idempotent $e \in aR$ such that $1 - e \in (1 - a)R$; if this representation is unique for every element, we call the ring uniquely exchange. We give a complete description of uniquely exchange rings.

1. Introduction

Let R be an associative ring with identity. An element $a \in R$ is said to be exchange if there exists an idempotent $e \in aR$ such that $1 - e \in (1 - a)R$. The ring R is said to be exchange if all of its elements are exchange [3-5,9-11]. We say that, an element a in a ring R is said to be uniquely exchange if there exists a unique idempotent $e \in aR$ such that $1 - e \in (1 - a)R$. A ring R is said to be a uniquely exchange if every element is uniquely exchange. An element $a \in R$ is said to be clean if x = e + u for some idempotent e and unit u in R. The ring R is said to be clean if all of its elements are clean. Clean rings were first introduced in a paper by Nicholson [9] as a class of exchange rings. It was shown by Nicholson [9, Proposition 1.8(1)] that if a is clean in the ring R, then there exists $e^2 = e \in aR$ such that $1-e \in (1-a)R$. R is said to be suitable if for each $a \in R$, there exists an idempotent $e \in aR$ such that $1 - e \in (1 - a)R$. This condition is left-right symmetric as shown in [9]. In the same paper, Nicholson [9] also showed that R is an exchange ring if and only if idempotents can be lifted modulo every left (right) ideal of R if and only if R is suitable. Hence, every clean ring is an exchange ring. The converse is known to be true in abelian rings (see [9, Proposition 1.8(2)]. An element $a \in R$ is uniquely clean provided that there exists a unique idempotent $e \in R$ such that $a - e \in R$ is invertible. A ring R is uniquely clean in case every element in R is uniquely clean. Many authors have studied such rings, see [1, 2, 6-8]. In this paper we investigate the uniquely exchange rings, and we show that every image of a uniquely exchange ring is again uniquely exchange and every Boolean ring is uniquely exchange. Finally, we prove that a local ring R is uniquely exchange if and only if $R/J(R) \cong \mathbb{Z}_2$.

53

²⁰¹⁰ Mathematics Subject Classification: Primary 16E50; Secondary 16U99; 16S70. Key words and phrases: exchange ring, uniquely exchange ring. Communicated by Zoran Petrovic.

RASHEDI

2. Main results

DEFINITION 2.1. An element a in a ring R is called uniquely exchange if there exists a unique idempotent $e \in aR$ such that $1 - e \in (1 - a)R$. A ring R is called a uniquely exchange if every element is uniquely exchange.

PROPOSITION 2.1. Central idempotents and central nilpotents are uniquely exchange in any ring R.

PROOF. By [8, Example 1], central idempotents and central nilpotents are uniquely clean. Hence there exists a unique idempotent $e \in R$ such that $e - x \in (x - x^2)R$, by [9, Proposition 1.8]. Therefore there exists a unique idempotent $e \in aR$ such that $1 - e \in (1 - a)R$, by [9, Proposition 1.1], as required.

COROLLARY 2.1. Every Boolean ring is uniquely exchange.

A routine elementary argument establishes the following results.

PROPOSITION 2.2. Every homomorphic image of a uniquely exchange ring is uniquely exchange.

PROPOSITION 2.3. A direct product $\prod_{i \in I} R_i$ of rings is uniquely exchange if and only if each R_i is uniquely exchange.

PROPOSITION 2.4. A ring R is a uniquely exchange ring if and only if R/J(R) is a uniquely exchange ring and idempotents left modulo J(R).

PROOF. Follows from Proposition 2.2 and [9, Corollary 1.3].

PROPOSITION 2.5. Let R be a uniquely exchange ring, i.e; for every $a \in R$ there exists a unique idempotent $e \in aR$ such that $1 - e \in (1 - a)R$. Then ea = ae.

PROOF. Let $a \in R$. Then, if there exists a unique idempotent $e \in aR$ such that $1 - e \in (1 - a)R$, then e + (ea - eae) is an idempotent. Hence

 $e + (ea - eae) \in aR$, $(1 - (e + (ea - eae)) \in (1 - a)R$.

Since R is uniquely exchange, e = e + (ea - eae). It follows that ea = eae, and similarly ae = eae.

PROPOSITION 2.6. Let R be a uniquely exchange ring and $e^2 = e \in R$. Then eRe is uniquely exchange.

PROOF. If $a \in eRe$ choose $f^2 = f \in aR$ such that $1 - f \in (1 - a)R$. Since $a \in eRe$ and $f \in aR$, we see that a = exe for some $x \in R$ and f = ay for some $y \in R$, so f = exey. Therefore ef = f, and fe is an idempotent. Hence $e - fe = e(1 - f)e \in (e - a)eRe$. Therefore eRe is exchange. To check uniqueness, let $a \in eRe$ and there exist two idempotents $f, f' \in aR$ such that

$$e - fe \in (e - a)eRe$$
, $e - f'e \in (e - a)eRe$.

Hence $e(1-f)e \in e(1-a)Re$ and $e(1-f')e \in e(1-a)Re$, and so $1-f \in (1-a)R$ and $1-f' \in (1-a)R$, a contradiction. Let R be a ring and let ${}_{R}M_{R}$ be an R-R-bimodule which is a general ring (possibly with no unity) in which (mn)a = m(na) = m(an) and (am)n = a(mn)hold for all $m, n \in M$ and $a \in R$. Then the ideal-extension I(R; M) of R by M is defined to be the additive abelian group $I(R; M) = R \oplus M$ with multiplication (a, m)(b, n) = (ab, an + mb + mn). Note that if S is a ring and $S = R \oplus A$, where R is a subring and $A \triangleleft S$, then $S \cong I(R; A)$.

PROPOSITION 2.7. An ideal-extension S = I(R; M) is uniquely exchange if the following conditions are satisfied:

- (1) R is uniquely exchange.
- (2) If $e \in Id(R)$, then em = me for all $m \in M$.
- (3) If $m \in M$, then m + n + mn = 0 for some $n \in M$.

PROOF. Let $s = (a, m) \in S$ and by (1) there exists a unique idempotent $e \in aR$ such that $1 - e \in (1 - a)R$. Since S is a clean, by [8, Proposition 7], and so S is a exchange ring. Now suppose that there exist idempotents $(e, x), (e', x') \in sS$ such that

$$1_S - (e, x) \in (1_S - s)S, \quad 1_S - (e', x') \in (1_S - s)S.$$

Hence (e, x) = (e', x') by the following result. We show that, if $(e, x)^2 = (e, x)$, then $e^2 = e$ and x = 0. $(e, x)^2 = (e, x)$ gives $e^2 = e$ and $x = 2ex + x^2$ using (2). Then multiplying by e gives $ex + ex^2 = 0$, and multiplying by x gives $x^2 = 2ex^2 + x^3$. Hence adding this latter equation to $x = 2ex + x^2$ yields $x = x^3$, and so x^2 is an idempotent in M. By (3), $-x^2 + y + (-x^2)y = 0$, for some $y \in M$, so that $x^2 + n = x^2n$ where n = -y. Multiplying by x^2 yields $x^2 = 0$, whence $x = x^3 = 0$, as required.

PROPOSITION 2.8. Suppose that the ideal-extension S = I(R; M) is uniquely exchange. Then the following statements hold:

- (1) R is uniquely exchange.
- (2) If $e \in Id(R)$ and $(e,0) \in (a,m)S$ such that $1_S (e,0) \in (1_S (a,m))S$, then then em = me.

PROOF. Suppose that S is uniquely exchange. It is routine to see that (1) holds. If $e \in Id(R)$, then (e, 0) is an idempotent in S and $(e, 0) \in (e, m)S$ such that $1_S - (e, 0) \in (1_S - (e, m))S$. There (e, 0) commutes with (e, m) for every $m \in M$, by Proposition 2.5, and (2) follows.

In the following, we characterize the local uniquely exchange rings.

LEMMA 2.1. Let $R \neq 0$ be a ring. Then the following are equivalent:

- (1) R is local.
- (2) R is clean and 0 and 1 are the only idempotents in R.
- (3) R is exchange and 0 and 1 are the only idempotents in R.

PROOF. (1) \iff (2) follows from [8, Lemma 14].

 $(2) \Longrightarrow (3)$ follows from [9, Proposition 1.8].

 $(3) \Longrightarrow (1)$ Suppose that $a \notin J(R)$. So, 1 - ar is not invertible for some $r \in R$. Since the ring R is exchange, the element 1 - ar is exchange, so there exists an

RASHEDI

idempotent $e \in (1 - ar)R$ such that $1 - e \in (1 - (1 - ar))R = arR$. Since the only idempotents in R are 0 and 1, and 1 - ar is not invertible, it follows that e = 0, so $1 = 1 - 0 \in arR$ and it follows that there exists $s \in R$ such that ars = 1. Analogously, there exists $r_1, t \in R$ such that $tr_1a = 1$, so a is invertible. This proves that R is local.

THEOREM 2.1. Let $R \neq 0$ be a ring. Then the following are equivalent:

(1) R is local and uniquely clean.

- (2) R is uniquely clean and 0 and 1 are the only idempotents in R.
- (3) R is uniquely exchange and 0 and 1 are the only idempotents in R.
- (4) $R/J(R) \cong \mathbb{Z}_2$.

PROOF. (1) \iff (2) \iff (4) follows from [8, Theorem 15]. (2) \implies (3) follows from [9, Proposition 1.8].

(3) \implies (4) If $\bar{a} \neq \bar{0}$ in $\bar{R} = R/J(R)$, we show that $\bar{a} = \bar{1}$. If not then both a and 1 - a are units because R is local by Lemma 2.1. Hence aR = (1 - a)R. Therefore -a = 1 - a, which implies that 0 = 1, a contradiction.

LEMMA 2.2. Let R be a exchange ring and $I \nsubseteq J(R)$ is a right (or left) ideal of R. Then there exists $0 \neq e^2 = e \in I$.

PROOF. Suppose that $I \nsubseteq J(R)$ is a right ideal containing no nonzero idempotent. If $a \in I$, then there exists $e^2 = e \in aR$ such that $1 - e \in (1 - a)R$. Hence e = 0, and so $1 \in (1 - a)R$. Therefore 1 - a is a unit. Thus $I \subseteq J(R)$, a contradiction. A similar argument works if I is a left ideal.

COROLLARY 2.2. Let R be a uniquely exchange ring. Then R/J(R) has characteristic 2.

PROOF. We must show that $2 = 1 + 1 \in J(R)$. If $2 \notin J(R)$, then there exists $0 \neq e^2 = e \in 2R$ by Lemma 2.2. Hence e = 2b, where $b \in R$. We may assume that eb = b = be. Then u = (1 - e) - 2e is a unit with inverse (1 - e) - b. Hence $1, 1 - e \in uR$ and $0, e \in (1 - u)R$. Since R is uniquely exchange, 1 = 1 - e, and so e = 0, a contradiction.

Suppose RG is now the group ring of G over R defined as usual.

PROPOSITION 2.9. Let R be a commutative uniquely exchange ring. Then $R((C_2)^n)$ is uniquely exchange for all $n \ge 0$.

PROOF. It is easy to see that $R((C_2)^n) \cong (R(C_2)^{n-1})C_2$, so it suffices to show that if RC_2 is uniquely exchange. Since R is commutative uniquely exchange, Ris a clean ring, by [9], and so RC_2 is clean, by [8, Proposition 24]. Hence RC_2 is exchange. To check uniqueness, let $a \in RC_2$. Then there exists an idempotent $e \in aRC_2$ such that $1 - e \in (1 - a)RC_2$. If e = r + sg, then $r^2 + s^2 = r$ and 2rs = s, so s = 0 (as $2 \in J(R)$). Hence $e^2 = e = r \in R$. Since R is uniquely exchange, this shows that e is uniquely determined by a.

Acknowledgement. The author would like to thank the referees for their very useful comments to improve the article.

56

UNIQUELY EXCHANGE RINGS

References

- 1. M.Y. Ahn, Weakly Clean Rings and Almost Clean Rings, Ph.D. Thesis, University of Lowa, 2003.
- 2. D. D. Anderson, V. P. Camillo, Commutative rings whose elements are a sum of unit and idempotent, Commun. Algebra **30** (2002), 3327–3336.
- V. P. Camillo, H. P. Yu, Exchange rings, units and idempotents, Commun. Algebra 22 (1994), 4737–4749.
- P.V. Danchev, Weakly clean and weakly exchange rings have the strong property, Publ. Inst. Math., Nouv. Sér. 101(115) (2017), 135–142.
- C. Y. Honga, N. K. Kimb, Y. Leec, *Exchange rings and their extensions*, J. Pure Appl. Algebra 179 (2003), 117–126.
- 6. J. Che, W. K. Nicholson, Y. Zhou, Group rings in which every element is uniquely the sum of a unit and idempotent, J. Algebra **306** (2006), 453–460.
- A. J. Diesl, Classes of Strongly Clean Rings, Ph.D. Thesis, University of California, Berkeley, 2006.
- 8. W. K. Nicholson, Y. Zhou, Rings in which elements are uniquely the some of an idempotent and unit, Glasg. Math. J. 46(2) (2004), 227–236.
- W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Am. Math. Soc. 229 (1977), 269–278.
- 10. R. B. Warfield, Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36.
- 11. H. P. Yu, On the structure of exchange rings, Commun. Algebra 25 (1997), 661–670.

Department of Mathematics Technical and Vocational university (TVU) Tehran Iran f-rashedi@tvu.ac.ir (Received 15 03 2020) (Revised 05 05 2022)