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ON THE SEIDEL INTEGRAL GRAPHS

WHICH BELONG TO THE CLASS αKa,a ∪ βKb,b

Mirko Lepović

Abstract. We say that a simple graph G is Seidel integral if its Seidel spec-
trum consists entirely of integers. If αKa,a ∪ βKb,b is Seidel integral, we show
that it belongs the class of Seidel integral graphs

[

kt

τ
x0 +

mt

τ
z

]

Ka,a ∪

[

kt

τ
y0 +

a

τ
z

]

nKb,b,

where (i) a = (t+ℓn)k+ℓm and b = ℓm; (ii) t, k, ℓ, m, n ∈ N such that (m, n) =
1, (n, t) = 1 and (ℓ, t) = 1; (iii) τ = (a, mt) such that τ | kt; (iv) (x0, y0) is
a particular solution of the linear Diophantine equation ax − (mt)y = τ and

(v) z > z0 where z0 is the least integer such that
(

kt
τ

x0 + mt
τ

z0

)

> 1 and
(

kt
τ

y0 + a
τ

z0

)

> 1. In particular, we demonstrate that αKa ∪ βKb is integral

in respect to its ordinary adjacency matrix if and only if αKa,a ∪ βKb,b is
Seidel integral.

1. Introduction

Let G be a simple graph of order n and let λ1 > λ2 > · · · > λn be the
eigenvalues of its (0,1) adjacency matrix of G. The spectrum of G is the set of
its eigenvalues and is denoted by σ(G). A graph G is said to be integral if its
spectrum σ(G) consists only of integers [1]. We say that A∗ = [sij ] is the Seidel
adjacency matrix of the graph G if sij = −1 for any two adjacent vertices i and
j, sij = 1 for any two non-adjacent vertices i and j, and sij = 0 if i = j. The
Seidel spectrum of G is the set of eigenvalues λ∗

1 > λ∗

2 > · · · > λ∗

n of its (0, −1, 1)
adjacency matrix A∗ = A∗(G) and is denoted by σ∗(G). A graph G is said to be
Seidel integral if its Seidel spectrum σ∗(G) consists only of integers. We say that an
eigenvalue µ is main if and only if 〈j, Pj〉 = n cos2 α > 0, where j is the main vector
(with coordinates equal to 1) and P is the orthogonal projection of the space Rn

onto the eigenspace EA(µ). The quantity β = | cos α| is called the main angle of µ.
Similarly, we say that a Seidel eigenvalue µ∗ is the Seidel main eigenvalue if and only
if 〈j, P∗j〉 = n cos2 α∗ > 0, where P∗ is the orthogonal projection of the space Rn
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24 LEPOVIĆ

onto the eigenspace EA∗(µ∗). The quantity β∗ = | cos α∗| is called the Seidel main
angle of µ∗. In [1] was proved that the graph G and its complement G have the
same number of main eigenvalues. We also know that |M(G)| = |M∗(G)|, where
M(G) and M∗(G) denote the sets of all main and the Seidel main eigenvalues of
G, respectively.

Let G be a graph of order n with exactly two main eigenvalues µ1 and µ2 and
let n1 = nβ2

1 and n2 = nβ2
2 .

Theorem 1.1 (Lepović [3]). Let G be a graph of order n with two main eigen-

values µ1 and µ2. Then

(1.1) µ∗

1,2 =
n − 2 − 2µ1 − 2µ2

2
±

√

(2µ1 − 2µ2 + n)2 − 8n1(µ1 − µ2)

2
.

Besides, we have

(1.2) n∗

1,2 =
n

2
±

n2 + 2(n − 2n1)(µ1 − µ2)

2
√

(2µ1 − 2µ2 + n)2 − 8n1(µ1 − µ2)
,

where n∗

1 = n(β∗

1 )2 and n∗

2 = n(β∗

2)2.

Further, let Kn and Km,n denote the complete graph and the complete bipartite
graph, respectively. We note that αKa,a ∪βKb,b is an integral graph with two main
eigenvalues µ1 = a and µ2 = b, for any α, β, a, b ∈ N with a > b, where mG denotes
the m-fold union of the graph G. As is pointed out [3], if G is an integral graph
then G is Seidel integral if and only if the Seidel main spectrum of G contains
integral values. Consequently, αKa,a ∪ βKb,b is Seidel integral if and only if its
largest Seidel main eigenvalue µ∗

1 ∈ N.
Next, we have established in [4] a characterization of integral graphs which

belong to the class αKa ∪ βKb, while in [6] we have established a characterization
of Seidel integral graphs which belong to the class αKa ∪ βKb. Besides, we have
established in [5] a characterization of integral graphs which belong to the class
αKa,a ∪ βKb,b. We now proceed to establish a characterization of Seidel integral
graphs which belong to the class αKa,a ∪ βKb,b, as follows.

2. Main results

First, note that o = 2αa + 2βb is the order of αKa,a ∪ βKb,b. Then according
to (1.1) we get implicitly

(2.1) µ∗

1 = αa + βb − 1 − (a + b) + δ and µ∗

2 = αa + βb − 1 − (a + b) − δ,

where δ =

√

(

(α + 1)a + (β − 1)b
)2

− 4αa(a − b). Then αKa,a ∪ βKb,b is Seidel

integral if and only if (α, β, a, b, δ) represents a positive integral solution of the
Diophantine equation

(2.2)
(

(α + 1)a + (β − 1)b
)2

− 4αa(a − b) = δ2.

Therefore, the characterization of Seidel integral graphs which are related to the
class αKa,a ∪ βKb,b is reduced to the problem of finding the most general positive
solution of the equation (2.2).
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Next, µ∗

1µ∗

2 = 4µ1µ2 − 2(n1 − 1)µ2 − 2(n2 − 1)µ1 − (n − 1) for any G with
two main eigenvalues (see [3]). In the case that G = αKa,a ∪ βKb,b this relation is
transformed into

(2.3)
(

µ∗

1 + 1
)(

µ∗

2 + 1
)

= 4ab
(

1 − α − β
)

.

Proposition 2.1. If αKa,a ∪ βKb,b is a Seidel integral graph then µ∗

1 and µ∗

2
are two odd numbers.

Proof. Using (2.1) we obtain 2δ = µ∗

1 − µ∗

2, which provides that µ∗

1 and µ∗

2
are even or µ∗

1 and µ∗

2 are odd. If we assume that µ∗

1 and µ∗

2 are two even numbers
then (µ∗

1 + 1)(µ∗

1 + 1) is an odd number, a contradiction (see (2.3)). �

In the sequel (m, n) denotes the highest common divisor of integers m, n ∈ N
while m | n means that m divides n. With this notation, in order to demonstrate
a method applied in this paper, we prove first the following result.

Theorem 2.1. If αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 4ab − 1 then it

belongs to the class of Seidel integral graphs

(2.4) t(2m − 1) Ka,a ∪
(

(2s + 1) − t
)

(2n − 1) Kb,b,

where a = (2s + 1)n − (s + 1) and b = (2s + 1)m − (s + 1), m, n ∈ N and n > m,

t < 2s + 1 such that (2s + 1, t) = 1.

Proof. Let us assume that αKa,a ∪βKb,b is Seidel integral with µ∗

1 = 4ab − 1.
Using (2.3) we obtain µ∗

2 = −(α + β) and 2δ = 4ab + α + β − 1. Then Diophantine
equation (2.2) is reduced to

(2b + 1)
(

2a − (α + β − 1)
)

= 2α(a − b).

Let 2b + 1 = rα where r = s
t

such that (s, t) = 1. Then from the last relation we

obtain 2(a − b) = r
(

2a − (α + β − 1)
)

. In view of this, we get

α =
t

s
(2b + 1) and β =

s − t

s
(2a + 1).

Since (s, t) = 1 it follows that (s − t, s) = 1. Then it must be s | (2b + 1) and
s | (2a + 1), which provides that s is an odd number. Replacing s with 2s + 1
we find that 2b + 1 = (2s + 1)(2m − 1) and 2a + 1 = (2s + 1)(2n − 1). So we
get α = t(2m − 1), β = ((2s + 1) − t)(2n − 1), a = (2s + 1)n − (s + 1) and
b = (2s + 1)m − (s + 1), where t < 2s + 1. �

Remark 2.1. With the condition a > b note that the parameters α, β, a, b

determine the graph αKa,a ∪ βKb,b up to isomorphism.

In what follows, we show that there exists an one-to-one correspondence be-
tween the Seidel integral graphs αKa,a∪βKb,b with µ∗

1 = 4ab−1 and the parameters
m, n, s, t.

Proposition 2.2. If αKa,a ∪βKb,b is a Seidel integral graph with µ∗

1 = 4ab−1
then it uniquely determines the parameters m, n, s, t.
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Proof. Let us assume that m1, n1, s1, t1 and m2, n2, s2, t2 determine the same
Seidel integral graph αKa,a ∪ βKb,b with the largest Seidel main eigenvalue µ∗

1 =
4ab − 1. Then according to Remark 2.1 and relation (2.4) we have: (i) t1(2m1 −
1) = t2(2m2 − 1); (ii) ((2s1 + 1) − t1)(2n1 − 1) = ((2s2 + 1) − t2)(2n2 − 1); (iii)
(2s1+1)(2n1−1) = (2s2+1)(2n2−1) and (iv) (2s1+1)(2m1−1) = (2s2+1)(2m2−1).
Using (i) and (iv) we get 2s1+1

t1

= 2s2+1
t2

. Since (2s+1, t) = 1 it follows that s1 = s2

and t1 = t2. Consequently, using (i) and (ii) we obtain m1 = m2 and n1 = n2. �

Further, using a procedure similar to the proof of Theorem 2.1, we proceed to
establish a characterization of Seidel integral graphs for the class αKa,a ∪ βKb,b.
The proof is based on the following statement [2].

Theorem 2.2. The linear Diophantine equation ax + by = c has at least one

solution if and only if d | c where d = (a, b). In that case the most general solution

of this equation is given in the form

x =
c

d
x0 −

b

d
z and y =

c

d
y0 +

a

d
z (z ∈ Z),

where (x0, y0) represents a particular solution1 of the equation ax + by = d.

Theorem 2.3. If αKa,a ∪ βKb,b is Seidel integral then it belongs to the class

of Seidel integral graphs

(2.5)
[kt

τ
x0 +

mt

τ
z
]

Ka,a ∪
[kt

τ
y0 +

a

τ
z
]

nKb,b,

where (i) a = (t + ℓn)k + ℓm and b = ℓm; (ii) t, k, ℓ, m, n ∈ N such that (m, n) = 1,

(n, t) = 1 and (ℓ, t) = 1; (iii) τ = (a, mt) such that τ | kt; (iv) (x0, y0) is a

particular solution of the linear Diophantine equation ax−(mt)y = τ and (v) z > z0

where z0 is the least integer such that
(

kt
τ

x0 + mt
τ

z0
)

> 1 and
(

kt
τ

y0 + a
τ

z0
)

> 1.

Proof. Let us assume that µ∗

1 ∈ N and let θ = ρ
ϕ

so that µ∗

1 + 1 = 2θa and

(ρ, ϕ) = 1. Using Proposition 2.1 note that θa is an integer. Using (2.1) and (2.3)
we obtain

µ∗

2 = −
2b(α + β − 1)

θ
− 1 and δ = θa +

b(α + β − 1)

θ
.

Then by a straightforward calculation it is not difficult to see that (2.2) may

be transformed in the form θ+1
θ

= α(a−b)
θa−b(α+β−1) . Let c be a constant such that (1)

α(a − b) = c(θ + 1) and (2) θa − b(α + β − 1) = cθ. Combining (1) and (2) we find

that c = (α − θ)a + (β − 1)b. Observe that c is an integer because θa =
µ∗

1
+1
2 ∈ N.

Consequently, using (1) or (2) we arrive at α(a − b) =
(

(α − θ)a + (β − 1)b
)

(θ + 1).
Hence,

(2.6) (a − b) = r
(

(α − θ)a + (β − 1)b
)

and (θ + 1) = rα,

where r = s
t

such that (s, t) = 1. Making use of (2.6), by an easy calculation we

obtain (3) rβb = (r − 1)
(

rαa − (a − b)
)

.

1A particular solution of the equation ax + by = d may be obtained by using the EUCLID
algorithm. In that case the coefficients a and b uniquely determine x0 and y0.
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Using now the right-hand side of relation (2.6), note that rαa =
µ∗

1
+1
2 +a, which

shows that (rαa) is integral and r−1 = s−t
t

> 0. Since βb = (1− 1
r

)
(

rαa− (a−b)
)

(see (3)) it turns out that r | (a − b). Let (4) (a − b) = γr and let (5) γ = kt. Then
(3) is reduced to the form

(2.7) β =
(s − t)

b

(αa − kt)

t
.

Further, let (s − t, b) = ℓ and let m, n ∈ N such that (6) (s − t) = ℓn and (7)
b = ℓm, where (m, n) = 1. Since (s − t, t) = 1 according to (6) we obtain (n, t) = 1

and (ℓ, t) = 1. Consequently, using (2.7) we have β = (αa−kt) n

mt
. Since (n, mt) = 1

it follows that (mt) | (αa − kt). Therefore, setting (8) αa − kt = η(mt) we get (9)
β = ηn. We note that (8) represents a linear Diophantine equation in variables α

and η. Of course, if (a, mt) = τ then (8) has at least one solution if and only if
τ | kt. In that case, according to Theorem 2.2 we obtain that

α =
kt

τ
x0 +

mt

τ
z and η =

kt

τ
y0 +

a

τ
z,

where ax0 − (mt)y0 = τ . Finally, from (4) through (7), and according to (9) and
the last relation, we get easily that a = (t + ℓn)k + ℓm and β =

[

kt
τ

y0 + a
τ

z
]

n. �

Proposition 2.3. If αKa,a ∪ βKb,b is a Seidel integral graph then it uniquely

determines the parameters τ, t, k, ℓ, m, n.

Proof. Let assume that τ1, t1, k1, ℓ1, m1, n1 and τ2, t2, k2, ℓ2, m2, n2 determine
the same Seidel integral graph αKa,a ∪βKb,b. Since the parameters α, β, a, b deter-
mine the graph αKa ∪ βKb up to isomorphism, using the second equality of (2.6)

we have rαa =
µ∗

1
+1
2 + a, which shows that s1 = s2 and t1 = t2 because (s, t) = 1.

Next, using (4) and (5) we get k1 = k2. Since (s − t, b) = ℓ we also have ℓ1 = ℓ2.
Since b = ℓm and s − t = ℓn, we find that m1 = m2 and n1 = n2. Finally, since
(a, mt) = τ it follows that τ1 = τ2. �

Remark 2.2. If (x0, y0) is obtained by using the EUCLID algorithm then a
fixed Seidel integral graph αKa,a ∪ βKb,b also uniquely determines the parameters
x0, y0, z0, z.

Remark 2.3. We have proved in [4] that the characterization of integral graphs
which are related to the class αKa ∪ βKb (in respect to its ordinary adjacency
matrix) is reduced to the problem of finding the most general positive solution of
the equation (2.2). More precisely, we have proved the following result.

Theorem 2.4 (Lepović [4]). If αKa ∪ βKb is integral then it belongs to the

class of integral graphs

[kt

τ
x0 +

mt

τ
z
]

Ka ∪
[kt

τ
y0 +

a

τ
z
]

nKb,

where (i) a = (t + ℓn)k + ℓm and b = ℓm; (ii) t, k, ℓ, m, n ∈ N such that (m, n) = 1,

(n, t) = 1 and (ℓ, t) = 1; (iii) τ = (a, mt) such that τ | kt; (iv) (x0, y0) is a
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particular solution of the linear Diophantine equation ax−(mt)y = τ and (v) z > z0

where z0 is the least integer such that
(

kt
τ

x0 + mt
τ

z0
)

> 1 and
(

kt
τ

y0 + a
τ

z0
)

> 1.

Using Theorems 2.3 and 2.4, we obtain an unexpected result that gives a con-
nection between the Seidel integral graphs of the class αKa,a∪βKb,b and the integral

graphs of the class αKa ∪ βKb, as follows.

Theorem 2.5. We have that αKa,a ∪ βKb,b is Seidel integral if and only if

αKa ∪ βKb is integral in respect to its ordinary adjacency matrix.

Proposition 2.4. If αKa,a ∪ βKb,b is Seidel integral with main eigenvalues

µ∗

1 and µ∗

2, then αKa ∪ βKb is integral with main eigenvalues µ1 =
µ∗

1
+1
2 and

µ2 =
µ∗

2
+1
2 .

Proof. Let us assume that αKa,a∪βKb,b is Seidel integral for some α, β, a, b, δ.
Then according to [4], we have

µ1 =
αa + βb − (a + b) + δ

2
and µ2 =

αa + βb − (a + b) − δ

2
,

from which we obtain the statement using (2.1). �

Theorem 2.6. If αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 3ab − 1, then it

belongs to one of the following classes of Seidel integral graphs

(2.8) (2t − 1)m Ka,a ∪
(

2s − (2t − 1)
)

n Kb,b,

where (i) a = 2y0 + (4s)z+ and b = 2y0 + (4s)z−; (ii) m = 2x0 + 3z− and

n = 2x0 + 3z+ (iii) s, t ∈ N such that (2s, 2t − 1) = 1, (s, 3) = 1 and s > t; (iv)
(x0, y0) is a particular solution of the linear Diophantine equation (4s)x − 3y = 1
and (v) z+ > z− > z0 where z0 is the least integer such that

(

2x0 + 3z0
)

> 1 and
(

2y0 + (4s)z0
)

> 1;

(2.9) tm Ka,a ∪
(

(2s + 1) − 2t
)

n Kb,b,

where (i) a = 2y+
0 +2(2s+1)z+, b = 2y−

0 +(2s+1)z− and a > b; (ii) m = 2x−

0 +3z−

and n = 2x+
0 + 3z+ (iii) s, t ∈ N such that (2s + 1, 2t) = 1, (2s + 1, 3) = 1 and

s > t; (iv) (x+
0 , y+

0 ) is a particular solution of the linear Diophantine equation

2(2s + 1)x − 3y = 1; (v) z+ > z+
0 where z+

0 is the least integer such that
(

2x+
0 +

3z+
0

)

> 1 and
(

2y+
0 + 2(2s + 1)z+

0

)

> 1; (vi) (x−

0 , y−

0 ) is a particular solution of the

linear Diophantine equation (2s + 1)x − 3y = 1 and (vii) z− > z−

0 where z−

0 is the

least integer such that
(

2x−

0 + 3z−

0

)

> 1 and
(

2y−

0 + (2s + 1)z−

0

)

> 1 ;

(2.10) (2t − 1)m Ka,a ∪ (s − t + 1)n Kb,b,

where (i) a = 2y+
0 +(2s+1)z+, b = 2y−

0 +2(2s+1)z− and a > b; (ii) m = 2x−

0 +3z−

and n = 2x+
0 + 3z+ (iii) s, t ∈ N such that (2s + 1, 2t − 1) = 1, (2s + 1, 3) = 1

and s > t; (iv) (x+
0 , y+

0 ) is a particular solution of the linear Diophantine equation

(2s+1)x−3y = 1; (v) z+ > z+
0 where z+

0 is the least integer such that
(

2x+
0 +3z+

0

)

>

1 and
(

2y+
0 + (2s + 1)z+

0

)

> 1; (vi) (x−

0 , y−

0 ) is a particular solution of the linear

Diophantine equation 2(2s + 1)x − 3y = 1 and (vii) z− > z−

0 where z−

0 is the least

integer such that
(

2x−

0 + 3z−

0

)

> 1 and
(

2y−

0 + 2(2s + 1)z−

0

)

> 1.
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Proof. Let us assume that αKa,a ∪βKb,b is Seidel integral with µ∗

1 = 3ab − 1.
Using (2.3) we obtain µ∗

2 = − 4
3 (α + β) + 1

3 and 2δ = 3ab + 4
3 (α + β − 1). Then

Diophantine equation (2.2) is reduced to

(3b + 2)
(

2a −
4

3
(α + β − 1)

)

= 4α(a − b).

Let 3b + 2 = 2rα where r = s
t

such that (s, t) = 1. Then from the last relation we

obtain 2(a − b) = r
(

2a − 4
3 (α + β − 1)

)

. In view of this, we get

(2.11) α =
t

2s
(3b + 2) and β =

s − t

2s
(3a + 2).

Case 1. (s is even and t is odd). Let s → 2s and t → 2t − 1 where p → q means
that ’p is replaced with q’. Then

α =
2t − 1

4s
(3b + 2) and β =

2s − (2t − 1)

4s
(3a + 2).

Since (4s, 2t − 1) = 1 it follows that 4s | (3b + 2). Setting 3b + 2 = (4s)m we obtain
(1.1) (4s)m − 3b = 2. We note that (1.1) represents a linear Diophantine equation
in variables m and b. Of course, this equation has at least one solution if and only
if (s, 3) = 1. In that case, according to Theorem 2.2 we obtain that m = 2x0 + 3z−

and b = 2y0 + (4s)z−, where (4s)x0 − 3y0 = 1.
Next, since

(

4s, 2s − (2t − 1)
)

= 1 it follows that 4s | (3a + 2). Setting
3a + 2 = (4s)n we obtain (1.2) (4s)n − 3a = 2. We note that (1.2) represents a
linear Diophantine equation in variables n and a. Of course, this equation has at
least one solution if and only if (s, 3) = 1. In that case, according to Theorem 2.2
we obtain that n = 2x0 + 3z+ and a = 2y0 + (4s)z+, where (4s)x0 − 3y0 = 1. So
we arrive at the corresponding class of Seidel integral graphs displayed in (2.8).

Case 2. (s is odd and t is even). Let s → 2s + 1 and t → 2t. In this case relation
(2.11) is transformed into

α =
t

2s + 1
(3b + 2) and β =

(2s + 1) − 2t

2(2s + 1)
(3a + 2).

Since (2s+1, t) = 1 it follows that (2s+1) | (3b+2). Setting 3b+2 = (2s+1)m we
obtain (2.1) (2s+1)m−3b = 2. We note that (2.1) represents a linear Diophantine
equation in variables m and b. Of course, this equation has at least one solution if
and only if (2s + 1, 3) = 1. In that case, according to Theorem 2.2 we obtain that
m = 2x−

0 + 3z− and b = 2y−

0 + (2s + 1)z−, where (2s + 1)x−

0 − 3y−

0 = 1.
Next, since

(

2(2s + 1), (2s + 1) − 2t
)

= 1 it follows that 2(2s + 1) | (3a + 2).
Setting 3a + 2 = 2(2s + 1)n we obtain (2.2) 2(2s + 1)n − 3a = 2. We note that
(2.2) represents a linear Diophantine equation in variables n and a. Of course,
this equation has at least one solution if and only if (2s + 1, 3) = 1. In that case,
according to Theorem 2.2 we obtain that n = 2x+

0 +3z+ and a = 2y+
0 +2(2s+1)z+,

where 2(2s + 1)x+
0 − 3y+

0 = 1. So we arrive at the corresponding class of Seidel
integral graphs displayed in (2.9).
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Case 3. (s is odd and t is odd). Let s → 2s + 1 and t → 2t − 1. In this case
relation (2.11) is transformed into

α =
2t − 1

2(2s + 1)
(3b + 2) and β =

s − t + 1

2s + 1
(3a + 2).

Since
(

2(2s + 1), 2t − 1
)

= 1 it follows that 2(2s + 1) | (3b + 2). Setting 3b + 2 =
2(2s + 1)m we obtain (3.1) 2(2s + 1)m − 3b = 2. We note that (3.1) represents
a linear Diophantine equation in variables m and b. Of course, this equation has
at least one solution if and only if (2s + 1, 3) = 1. In that case, according to
Theorem 2.2 we obtain that m = 2x−

0 + 3z− and b = 2y−

0 + 2(2s + 1)z−, where
2(2s + 1)x−

0 − 3y−

0 = 1.
Next, since

(

2s + 1, 2s + 1 − (2t − 1)
)

= 1 and 2s + 1 − (2t − 1) = 2(s − t + 1) it
follows that (2s+1, s−t+1) = 1. In view of this fact, we find that (2s+1) | (3a+2).
Setting 3a + 2 = (2s + 1)n we obtain (3.2) (2s + 1)n − 3a = 2. We note that (3.2)
represents a linear Diophantine equation in variables n and a. Of course, this
equation has at least one solution if and only if (2s + 1, 3) = 1. In that case,
according to Theorem 2.2 we obtain that n = 2x+

0 +3z+ and a = 2y+
0 +(2s+1)z+,

where (2s + 1)x+
0 − 3y+

0 = 1. So we arrive at the corresponding class of Seidel
integral graphs displayed in (2.10). �

Proposition 2.5. If αKa,a ∪βKb,b is a Seidel integral graph with µ∗

1 = 3ab−1
then it uniquely determines the parameters m, n, s, t.

Proof. Let us assume that m1, n1, s1, t1 and m2, n2, s2, t2 determine the same
Seidel integral graph αKa,a ∪ βKb,b with the largest Seidel main eigenvalue µ∗

1 =
3ab − 1. Since the parameters α, β, a, b determine the graph αKa,a ∪ βKb,b up to
isomorphism, using the first equality of (2.11) we have 2rα = (3b + 2), which shows
that s1 = s2 and t1 = t2 because (s, t) = 1. In view of this, we note that the classes
represented by relations (2.8), (2.9), (2.10) are mutually disjoint. Consequently,
without loss of generality, we can assume that the corresponding Seidel integral
graph determined by the parameters m1, n1, s1, t1 and m2, n2, s2, t2 belong to the
class of Seidel integral graphs displayed in relation (2.8). Hence, using (2.8) we
have (2t1 −1)m1 = (2t2 −1)m2 and (2s1 − (2t1 −1))n1 = (2s2 − (2t2 −1))n2, which
provides that m1 = m2 and n1 = n2. �

Theorem 2.7. If αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 2ab − 1 then it

belongs to the class of Seidel integral graphs

(2.12) tm Ka,a ∪ (s − t)n Kb,b,

where a = sn − 1 and b = sm − 1, m, n ∈ N and n > m, s > t such that (s, t) = 1.

Proof. Let us assume that αKa,a ∪βKb,b is Seidel integral with µ∗

1 = 2ab − 1.
Using (2.3) we obtain µ∗

2 = −2(α + β) + 1 and 2δ = 2ab + 2(α + β − 1). Then
Diophantine equation (2.2) is reduced to

(b + 1)
(

a − (α + β − 1)
)

= α(a − b).
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Let b + 1 = rα where r = s
t

such that (s, t) = 1. Then from the last relation we

obtain a − b = r
(

a − (α + β − 1)
)

. In view of this, we get

α =
t

s
(b + 1) and β =

s − t

s
(a + 1).

Since (s, t) = 1 and (s − t, s) = 1 it follows that s | (b + 1) and s | (a + 1). Setting
(b + 1) = sm and (a + 1) = sn, we find that α = tm and β = (s − t)n. �

Theorem 2.8. If αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = ab − 1 then it

belongs to one of the following classes of Seidel integral graphs

(2.13) (2t − 1)m Ka,a ∪
(

2s − (2t − 1)
)

n Kb,b,

where a = 4sn − 2 and b = 4sm − 2, m, n ∈ N and n > m, s > t such that

(2s, 2t − 1) = 1 ;

(2.14) tm Ka,a ∪
(

(2s + 1) − 2t
)

n Kb,b,

where a = 2(2s + 1)n − 2 and b = (2s + 1)m − 2, m, n ∈ N and a > b, s > t such

that (2s + 1, 2t) = 1 ;

(2.15) (2t − 1)m Ka,a ∪ (s − t + 1 Kb,b,

where a = (2s + 1)n − 2 and b = 2(2s + 1)m − 2, m, n ∈ N and a > b, s > t such

that (2s + 1, 2t − 1) = 1.

Proof. Let us assume that αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = ab − 1.
Using (2.3) we obtain µ∗

2 = −4(α + β) + 3 and 2δ = ab + 4(α + β − 1). Then
Diophantine equation (2.2) is reduced to

(b + 2)
(

a − 2(α + β − 1)
)

= 2α(a − b).

Let b + 2 = 2rα where r = s
t

such that (s, t) = 1. Then from the last relation we

obtain (a − b) = r
(

a − 2(α + β − 1)
)

. In view of this, we get

(2.16) α =
t

2s
(b + 2) and β =

s − t

2s
(a + 2).

Case 1. (s is even and t is odd). Let s → 2s and t → 2t − 1. In this case relation
(2.16) is transformed into

α =
2t − 1

4s
(b + 2) and β =

2s − (2t − 1)

4s
(a + 2).

Since (4s, 2t − 1) = 1 and (4s, 2s − (2t − 1)) = 1 it follows that 4s | (b + 2) and
4s | (a + 2). Setting b + 2 = 4sm and a + 2 = 4sn we obtain α = (2t − 1)m and
β = (2s − (2t − 1))n. So we arrive at the corresponding class of Seidel integral
graphs displayed in (2.13).

Case 2. (s is odd and t is even). Let s → 2s + 1 and t → 2t. In this case relation
(2.16) is transformed into

α =
t

2s + 1
(b + 2) and β =

(2s + 1) − 2t

2(2s + 1)
(a + 2).
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Since (2s+1, t) = 1 and
(

2(2s+1), (2s+1)−2t
)

= 1 it follows that (2s+1) | (b+2)
and 2(2s + 1) | (a + 2). Setting b + 2 = (2s + 1)m and a + 2 = 2(2s + 1)n we obtain
α = tm and β = ((2s + 1) − 2t)n. So we arrive at the corresponding class of Seidel
integral graphs displayed in (2.14).

Case 3. (s is odd and t is odd). Let s → 2s + 1 and t → 2t − 1. In this case
relation (2.16) is transformed into

α =
2t − 1

2(2s + 1)
(b + 2) and β =

s − t + 1

2s + 1
(a + 2).

Since
(

2(2s+1), 2t−1
)

= 1 and (2s+1, s−t+1) = 1 it follows that 2(2s+1) | (b+2)
and (2s + 1) | (a + 2). Setting b + 2 = 2(2s + 1)m and a + 2 = (2s + 1)n we obtain
α = (2t − 1)m and β = (s − t + 1)n. So we arrive at the corresponding class of
Seidel integral graphs displayed in (2.15). �

Using Remark 2.1 and using the proof of Propositions 2.2 and 2.5, in a quite
analogous manner we can obtain the following two results.

Proposition 2.6. If αKa,a ∪βKb,b is a Seidel integral graph with µ∗

1 = 2ab−1
then it uniquely determines the parameters m, n, s, t.

Proposition 2.7. If αKa,a ∪ βKb,b is a Seidel integral graph with µ∗

1 = ab − 1
then it uniquely determines the parameters m, n, s, t.

Theorem 2.9. If αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 4a − 1, then it

belongs to one of the following classes of Seidel integral graphs: (10) Ka,a ∪ 2(β +
1)Kb,b where a = (3β+2)(2m−1) and b = 2(2m−1) or (20) Ka,a∪(β+2)Kb,b where

a = (3β +4)m and b = 4m or (30) Ka,a ∪2(2β +1)Kb,b where a = (3β +1)(2m−1)
and b = 2m − 1 or (40) 2Ka,a ∪ (2β + 1)Kb,b where a = (3β + 1)(2m − 1) and

b = 2m − 1 or (50) 2Ka,a ∪ (β + 1)Kb,b where a = (3β + 2)m and b = 2m for any

β, m ∈ N.

Proof. Let us assume that αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 4a − 1.
Using that µ∗

1 + 1 = 2θa we obtain θ = 2. Using the right-hand side of relation
(2.6), we find that rα = 3. Since r > 1 it follows that α = 1 or α = 2.

Case 1. (α = 1). In this situation s = 3 and t = 1. Using (4) and (5) we find that
a = 3k + b. Using (2.7) we obtain

β =
2
(

(3k + b) − k
)

b
.

Consider the case when 2 | b. Setting b = 2m it follows that m | (2k+2m). Consider
the case when m is odd. Setting m → 2m − 1 we obtain that k = ℓ(2m − 1) and
β = 2(ℓ+1). Replacing ℓ with β we obtain the corresponding class of Seidel integral
graphs displayed in (10). Consider the case when m is even. Setting m → 2m we
obtain that k = ℓm and β = ℓ + 2. Replacing ℓ with β we obtain the corresponding
class of Seidel integral graphs displayed in (20).

Next, consider the case when 2 ∤ b. Setting b = 2m−1 it follows that (2m−1) |
(2k + (2m − 1)). Setting k = ℓ(2m − 1) we obtain β = 2(2ℓ + 1). Replacing ℓ with
β we obtain the corresponding class of Seidel integral graphs displayed in (30).
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Case 2. (α = 2). In this situation s = 3 and t = 2. Using (4) and (5) we find
that a = 3k + b. Using (2.7) we obtain β = 2k+b

b
. Consider the case when b is

odd. Setting b → 2m − 1 we obtain that k = ℓ(2m − 1) and β = 2ℓ + 1. Replacing
ℓ with β we obtain the corresponding class of Seidel integral graphs displayed in
(40). Consider the case when b is even. Setting b → 2m we obtain that k = ℓm and
β = ℓ + 1. Replacing ℓ with β we obtain the corresponding class of Seidel integral
graphs displayed in (50). �

Theorem 2.10. If αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 3a − 1 then

it belongs to one of the following classes of Seidel integral graphs: (10) Ka,a ∪
(β + 1)Kb,b where a = 2(5β + 2)m and b = 9m or (20) Ka,a ∪ 3βKb,b where

a = 2(5β − 1)m and b = 3m or (30) Ka,a ∪ 3(3β − 1)Kb,b where a = 2(5β − 2)m
and b = m or (40) 2Ka,a∪βKb,b where a = 2(5β−1)m and b = 3m or (50) 2Ka,a∪
(3β − 1)Kb,b where a = 2(5β − 2)m and b = m for any β, m ∈ N.

Proof. Let us assume that αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 3a − 1.
Using that µ∗

1 + 1 = 2θa we obtain 2θ = 3. Using the right-hand side of relation
(2.6), we find that rα = 5

2 . Since r > 1 it follows that α = 1 or α = 2.

Case 1. (α = 1). In this situation s = 5 and t = 2. Using (4) and (5) we find that
a = 5k + b. Using (2.7) we obtain

β =
3
(

(5k + b) − 2k
)

2b
.

Consider the case when 3 | b. Setting b = 3m we obtain that β = 3(k+m)
2m

. Consider

the case when m | 3. Setting m → 3m we obtain that β = k+3m
2m

. Then 2m |
(k + 3m) which provides that k = (2ℓ − 1)m and β = ℓ + 1. Replacing ℓ with β we
obtain the corresponding class of Seidel integral graphs displayed in (10). Consider
the case when m ∤ 3. Then 2m | (k + m) which provides that k = (2ℓ − 1)m and
β = 3ℓ. Replacing ℓ with β we obtain the corresponding class of Seidel integral
graphs displayed in (20).

Next, consider the case when 3 ∤ b. Then 2b | (3k + b) which provides that
k = (2ℓ − 1)b and β = 3(3ℓ − 1). Replacing ℓ with β and replacing b with m we
obtain the corresponding class of Seidel integral graphs displayed in (30).

Case 2. (α = 2). In this situation s = 5 and t = 4. Using (4) and (5) we find
that a = 5k + b. Using (2.7) we obtain β = 3k+b

2b
. Consider the case when 3 | b.

Setting b = 3m we obtain that β = k+m
2m

. Then 2m | (k + m) which provides that
k = (2ℓ − 1)m and β = ℓ. Replacing ℓ with β we obtain the corresponding class of
Seidel integral graphs displayed in (40).

Next, consider the case when 3 ∤ b. Then 2b | (3k + b) which provides that
k = (2ℓ − 1)b and β = 3ℓ − 1. Replacing ℓ with β and replacing b with m we obtain
the corresponding class of Seidel integral graphs displayed in (50). �

Theorem 2.11. If αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 2a − 1, then it

belongs to the class of Seidel integral graphs Ka,a ∪(β +1)Kb,b where a = (2β +1)m
and b = m for any β, m ∈ N.
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Proof. Let us assume that αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 2a − 1.
Using that µ∗

1 + 1 = 2θa we obtain θ = 1. Using the right-hand side of relation
(2.6), we find that rα = 2. Consequently, since r > 1 we find that α = 1. In this
situation s = 2 and t = 1. Using (4) and (5) we find that a = 2k + b. Using (2.7)
we obtain

β =
(2k + b) − k

b
.

Then b | (k + b) which provides that k = ℓb and β = ℓ + 1. Replacing ℓ with β

and replacing b with m we obtain the corresponding class of Seidel integral graphs
displayed in Theorem 2.11. �

Theorem 2.12. If αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = a − 1, then it

belongs to the class of Seidel integral graphs Ka,a ∪ βKb,b where a = 2(3β − 1)m
and b = m for any β, m ∈ N.

Proof. Let us assume that αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = a − 1.
Using that µ∗

1 + 1 = 2θa we obtain θ = 1
2 . Using the right-hand side of relation

(2.6), we find that rα = 3
2 . Consequently, since r > 1 we find that α = 1. In this

situation s = 3 and t = 2. Using (4) and (5) we find that a = 3k + b. Using (2.7)
we obtain

β =
(3k + b) − 2k

2b
.

Then 2b | (k + b) which provides that k = (2ℓ − 1)b and β = ℓ. Replacing ℓ with β

and replacing b with m we obtain the corresponding class of Seidel integral graphs
displayed in Theorem 2.12. �

Theorem 2.13. There exists no Seidel integral graph from the class αKa,a ∪
βKb,b with µ∗

1 = 3a for any α, β, a, b and a > b.

Proof. Let us assume that αKa,a ∪ βKb,b is Seidel integral with µ∗

1 = 3a.
Using that µ∗

1 + 1 = 2θa we obtain θ = 3a+1
2a

. Using the right-hand side of relation

(2.6), we find that rα = 5a+1
2a

. Since r > 1 it follows that α = 1 or α = 2.

Case 1. (α = 1). In this situation we have s
t

= 5a+1
2a

. We note that (5a+1, 2a) = 1
or (5a + 1, 2a) = 2. Consider the case when (5a + 1, 2a) = 1. Then a is an even
number. Let a = 2ε where ε ∈ N. Since (s, t) = 1 we find that s = 10ε + 1
and t = 4ε. Using (4) and (5) we find that a = (10ε + 1)k + b. So we obtain
2ε = (10ε + 1)k + b, a contradiction.

Next, consider the case when (5a + 1, 2a) = 2. Then a is an odd number. Let
a = 2ε + 1 where ε ∈ N. Since s

t
= 5ε+3

2ε+1 and (s, t) = 1, (5ε + 3, 2ε + 1) = 1, we find

that s = 5ε + 3 and t = 2ε + 1. Using (4) and (5) we find that a = (5ε + 3)k + b.
So we obtain 2ε + 1 = (5ε + 3)k + b, a contradiction.

Case 2. (α = 2). In this situation we have s
t

= 5a+1
4a

. Consider the case when

a is an even number. Let a = 2ε where ε ∈ N. Since s
t

= 10ε+1
8ε

and (s, t) = 1,

(10ε + 1, 8ε) = 1, we find that s = 10ε + 1 and t = 8ε. Using (4) and (5) we find
that a = (10ε + 1)k + b. So we obtain 2ε = (10ε + 1)k + b, a contradiction.



SEIDEL INTEGRAL GRAPHS WHICH BELONG TO αKa,a ∪ βKb,b 35

Next, consider the case when a is an odd number. Setting a = 2ε+1 we obtain
s
t

= 5ε+3
2(2ε+1) , where ε ∈ N. We note that (5ε+3, 2(2ε+1)) = 1 or (5ε+3, 2(2ε+1)) =

2. Consider the case when (5ε + 3, 2(2ε + 1)) = 1. Then ε is an even number. Let

ε = 2ε• where ε• ∈ N. Since s
t

= 10ε•+3
2(4ε•+1) and (s, t) = 1, (10ε• + 3, 2(4ε• + 1)) = 1,

we find that s = 10ε• + 3 and t = 2(4ε• + 1). Using (4) and (5) we find that
a = (10ε• + 3)k + b. So we obtain 4ε• + 1 = (10ε• + 3)k + b, a contradiction.

Next, consider the case when (5ε + 3, 2(2ε + 1)) = 2. Then ε is an odd number.

Let ε = 2ε• −1 where ε• ∈ N. Since s
t

= 5ε•

−1
4ε•−1 and (s, t) = 1, (5ε• −1, 4ε• −1) = 1,

we find that s = 5ε• − 1 and t = 4ε• − 1. Using (4) and (5) we find that a =
(5ε• − 1)k + b. So we obtain 2(2ε• − 1) + 1 = (5ε• − 1)k + b, a contradiction. �

Theorem 2.14. There exists no Seidel integral graph from the class αKa,a ∪
βKb,b with µ∗

1 = a for any α, β, a, b and a > b.

Proof. Let us assume that αKa,a ∪βKb,b is Seidel integral with µ∗

1 = a. Using
that µ∗

1 + 1 = 2θa we obtain θ = a+1
2a

. Using the right-hand side of relation (2.6),

we find that rα = 3a+1
2a

. Consequently, since r > 1 we find that α = 1. We note
that (3a + 1, 2a) = 1 or (3a + 1, 2a) = 2. We shall consider the following two cases:

Case 1. (a is even). Let a = 2ε where ε ∈ N. Since s
t

= 6ε+1
4ε

and (s, t) = 1,

(6ε + 1, 4ε) = 1, we find that s = 6ε + 1 and t = 4ε. Using (4) and (5) we find that
a = (6ε + 1)k + b. So we obtain 2ε = (6ε + 1)k + b, a contradiction.

Case 2. (a is odd). Let a = 2ε + 1 where ε ∈ N. Since s
t

= 3ε+2
2ε+1 and (3ε + 2, 2ε +

1) = 1, we find that s = 3ε + 2 and t = 2ε + 1. Using (4) and (5) we find that
a = (3ε + 2)k + b. So we obtain 2ε + 1 = (3ε + 2)k + b, a contradiction. �

Remark 2.4. The following result is also presented in [4] but its proof in this
work is not exactly the same as in the paper [4]. In view of this fact, we give the
following result with its proof.

Theorem 2.15. If (α, β, a, b, δ) is a positive integral solution of the Diophan-

tine equation (2.2) then it is in the form:

• a = (t + ℓn)k + ℓm and b = ℓm;

• α =
kt

τ
x0 +

mt

τ
z;

• β =

[

kt

τ
y0 +

a

τ
z

]

n;

• δ = kℓn +

[

kt

τ
y0 +

a

τ
z

]

(t + ℓn)m,

with the same conditions (ii)–(v) which are given in Theorem 2.3.

Proof. According to Theorem 2.3 it suffices to derive the expression for δ.
First, from (2.1) we have (i) µ∗

1 −µ∗

2 = 2δ and (ii) µ∗

1 +µ∗

2 = 2(αa+βb)−2(a+b+1).
Using (i), (ii) and the equality µ∗

1 = 2(rα − 1)a − 1 (see (2.6)), by a straightforward
calculation we obtain that δ = 2rαa − (αa + βb) − (a − b). Since a − b = ks

(see (4) and (5)), rαa = ks + ηms and β = ηn (see (8) and (9)), we arrive at
δ = kℓn + (t + ℓn)ηm, which completes the proof. �
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3. Appendix

In this section we present the data given in Table 1, which represent the set of
all Seidel integral graphs from the class αKa,a ∪βKb,b, whose order does not exceed
40. In this table a Seidel integral graph is described by the parameters α, β, a, b

and ones presented in the class of Seidel integral graphs in Theorem 2.3. In Table 1
the symbol ’i’ is the identification number of an integral graph.

i x0 y0 z o α β a b τ t k ℓ m n µ∗

1 µ∗

2

1 0 – 1 1 10 1 1 4 1 2 2 1 1 1 1 3 – 5
2 0 – 1 1 10 1 2 3 1 1 1 1 1 1 1 5 – 5
3 0 – 1 1 16 1 2 6 1 3 3 1 1 1 2 7 – 7
4 0 – 1 1 16 1 3 5 1 1 1 2 1 1 1 9 – 7
5 0 – 1 1 20 1 1 9 1 3 3 2 1 1 1 5 – 7
6 0 – 1 1 20 1 1 8 2 4 2 2 1 2 1 7 – 9
7 0 – 1 1 20 1 2 6 2 2 1 2 1 2 1 11 – 9
8 0 – 1 1 20 1 6 4 1 1 1 1 1 1 2 15 – 7
9 0 – 1 1 22 1 3 8 1 4 4 1 1 1 3 11 – 9

10 0 – 1 1 22 1 4 7 1 1 1 3 1 1 1 13 – 9
11 0 – 1 2 22 2 3 4 1 2 2 1 1 1 1 15 – 5
12 0 – 1 2 22 2 5 3 1 1 1 1 1 1 1 17 – 5
13 0 – 1 1 24 1 2 10 1 2 2 3 1 1 1 9 – 9
14 0 – 1 1 24 1 6 6 1 2 2 1 1 1 3 17 – 9
15 1 – 1 0 26 1 1 9 4 3 3 1 2 2 1 11 – 13
16 0 – 1 1 26 1 4 5 2 1 1 1 2 1 1 19 – 9
17 0 – 1 1 28 1 4 10 1 5 5 1 1 1 4 15 – 11
18 1 1 0 28 2 2 6 1 2 4 1 1 1 1 17 – 5
19 0 – 1 1 28 1 5 9 1 1 1 4 1 1 1 17 – 11
20 1 1 0 28 2 2 5 2 1 2 1 1 2 1 19 – 7
21 0 – 1 1 30 1 1 12 3 6 2 3 1 3 1 11 – 13
22 0 – 1 1 30 1 2 9 3 3 1 3 1 3 1 17 – 13
23 0 – 1 1 32 1 2 12 2 3 3 2 2 1 1 15 – 13
24 0 – 1 1 32 1 3 10 2 2 1 4 1 2 1 19 – 13
25 0 – 1 1 34 1 1 16 1 4 4 3 1 1 1 7 – 9
26 0 – 1 1 34 1 2 15 1 5 5 2 1 1 2 11 – 11
27 0 – 1 1 34 1 5 12 1 6 6 1 1 1 5 19 – 13
28 0 – 1 1 34 1 6 11 1 1 1 5 1 1 1 21 – 13
29 0 – 1 1 34 1 3 8 3 2 2 1 3 1 1 23 – 13
30 0 – 1 1 34 1 4 9 2 3 3 1 2 1 2 23 – 13
31 0 – 1 3 34 3 5 4 1 2 2 1 1 1 1 27 – 5
32 0 – 1 1 34 1 10 7 1 1 1 2 1 1 2 27 – 11
33 0 – 1 3 34 3 8 3 1 1 1 1 1 1 1 29 – 5
34 0 – 1 1 34 1 12 5 1 1 1 1 1 1 3 29 – 9
35 0 – 1 2 36 2 6 6 1 3 3 1 1 1 2 27 – 7
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36 0 – 1 2 36 2 8 5 1 1 1 2 1 1 1 29 – 7
37 0 – 1 1 38 1 3 16 1 2 2 5 1 1 1 15 – 13
38 – 1 – 1 1 38 2 1 8 3 4 4 1 1 3 1 23 – 9
39 1 3 – 1 38 2 5 7 1 1 2 2 1 1 1 27 – 7
40 1 3 0 38 1 3 7 4 1 1 1 2 2 1 27 – 13
41 2 3 – 1 38 3 4 5 1 1 3 1 1 1 1 29 – 5
42 2 3 0 38 2 3 5 3 1 1 1 1 3 1 29 – 9
43 0 – 1 1 38 1 10 9 1 3 3 1 1 1 5 29 – 13
44 0 – 1 1 40 1 1 18 2 6 3 4 1 2 1 11 – 13
45 0 – 1 1 40 1 1 16 4 8 2 4 1 4 1 15 – 17
46 – 1 – 1 1 40 2 1 9 2 3 6 1 1 2 1 23 – 7
47 0 – 1 1 40 1 6 14 1 7 7 1 1 1 6 23 – 15
48 0 – 1 1 40 1 2 12 4 4 1 4 1 4 1 23 – 17
49 0 – 1 1 40 1 7 13 1 1 1 6 1 1 1 25 – 15
50 0 – 1 1 40 1 6 8 2 1 1 2 2 1 1 31 – 13

Table 1

Next, graphs represented in Table 1 with identification numbers i = 8, 11,
32, 39 are Seidel integral graphs with µ∗

1 = 4ab − 1. In view of this, there exist
exactly 4 non-isomorphic Seidel integral graphs from the class αKa,a ∪ βKb,b with
µ∗

1 = 4ab − 1, whose order does not exceed 40.

Next, graphs represented in Table 1 with identification2 numbers i = 14, 18 are
Seidel integral graphs with µ∗

1 = 3ab − 1. In view of this, there exist exactly 2 non-
isomorphic Seidel integral graphs from the class αKa,a ∪ βKb,b with µ∗

1 = 3ab − 1,
whose order does not exceed 40. In particular, there exist exactly 8, 9 and 1 non-
isomorphic Seidel integral graphs with µ∗

1 = 3ab − 1 and order o 6 142, which
belong to the classes Theorem 2.6 (2.8), (2.9) and (2.10), respectively. In view of
this, there exist exactly 8 + 9 + 1 = 18 non-isomorphic Seidel3 integral graphs from
the class αKa,a ∪ βKb,b with µ∗

1 = 3ab − 1, whose order does not exceed 142.

2The Seidel integral graphs represented in Table 1 with identification numbers i = 14, 18
belong to the class Theorem 2.6 (2.9). In particular, the Seidel integral graph with identification

number i = 14 is obtained for s = 2, t = 1, (x+

0
, y+

0
) = (1, 3), (x−

0
, y−

0
) = (2, 3), z+ = 0, z− = −1,

n = 2 and m = 1. In view of these values, we find that α = 1, β = 6, a = 6 and b = 1. The Seidel
integral graph with identification number i = 18 is obtained for s = 2, t = 2, (x+

0
, y+

0
) = (1, 3),

(x−

0
, y−

0
) = (2, 3), z+ = 0, z− = −1, n = 2 and m = 1. In view of these values, we find that

α = 2, β = 2, a = 6 and b = 1.
3There exists no Seidel integral graph from the classes Theorem 2.6 (2.8) and (2.10), whose

order does not exceed 40. We here present a Seidel integral graph which belongs to the class
Theorem 2.6 (2.8), obtained for s = 1, t = 1, (x0, y0) = (1, 1), z+ = 1, z− = 0, n = 5 and m = 2.
In view of these values, we find that α = 2, β = 5, a = 6 and b = 2. Note that 2K6,6 ∪5K2,2 is the
Seidel integral graph of the least order o = 44 which belongs to the class Theorem 2.6 (2.8). We
here also present a Seidel integral graph which belongs to the class Theorem 2.6 (2.10), obtained

for s = 3, t = 1, (x+

0
, y+

0
) = (1, 2), (x−

0
, y−

0
) = (2, 9), z+ = 1, z− = −1, n = 5 and m = 1. In view

of these values, we find that α = 1, β = 15, a = 11 and b = 4. Note that K11,11 ∪ 15K4,4 is the

Seidel integral graph of the least order o = 142 which belongs to the class Theorem 2.6 (2.10).
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Next, graphs represented in Table 1 with identification numbers i = 2, 4, 10,
16, 19, 20, 28, 42, 49, 50 are Seidel integral graphs with µ∗

1 = 2ab − 1. In view
of this, there exist exactly 10 non-isomorphic Seidel integral graphs from the class
αKa,a ∪ βKb,b with µ∗

1 = 2ab − 1, whose order does not exceed 40.

Next, graphs represented in Table 1 with identification numbers i = 1, 7, 13,
24, 29, 37, 38, 40 are Seidel integral graphs with µ∗

1 = ab − 1. In view of this, there
exist exactly 8 non-isomorphic Seidel4 integral graphs from the class αKa,a ∪βKb,b

with µ∗

1 = ab − 1, whose order does not exceed 40.

Next, graphs represented in Table 1 with identification numbers i = 8, 11, 16,
20, 32, 39, 40, 50 are Seidel integral graphs with µ∗

1 = 4a − 1. In view of this, there
exist exactly 8 non-isomorphic Seidel5 integral graphs from the class αKa,a ∪βKb,b

with µ∗

1 = 4a − 1, whose order does not exceed 40.

Next, graphs represented in Table 1 with identification numbers i = 14, 18,
29, 38 are Seidel integral graphs with µ∗

1 = 3a − 1. In view of this, there exist
exactly 4 non-isomorphic Seidel6 integral graphs from the class αKa,a ∪ βKb,b with
µ∗

1 = 3a − 1, whose order does not exceed 40.

Next, graphs represented in Table 1 with identification numbers i = 2, 4, 7,
10, 19, 22, 24, 28, 48, 49 are Seidel integral graphs with µ∗

1 = 2a − 1. In view
of this, there exist exactly 10 non-isomorphic Seidel integral graphs from the class
αKa,a ∪ βKb,b with µ∗

1 = 2a − 1, whose order does not exceed 40.

Next, graphs represented in Table 1 with identification numbers i = 1, 6, 13,
21, 37, 45 are Seidel integral graphs with µ∗

1 = a − 1. In view of this, there exist
exactly 6 non-isomorphic Seidel integral graphs from the class αKa,a ∪ βKb,b with
µ∗

1 = a − 1, whose order does not exceed 40. This completes7 my explanation on
Table 1.

4We note (i) graphs represented in Table 1 with identification numbers i = 7, 24 belong to
the class Theorem 2.8 (2.13); (ii) graphs represented in Table 1 with identification numbers i = 1,
13, 29, 37, 38 belong to the class Theorem 2.8 (2.14) and (iii) graph represented in Table 1 with
identification number i = 40 belongs to the class Theorem 2.8 (2.15).

5We note (i) graphs represented in Table 1 with identification numbers i = 16, 50 belong to
the class Theorem 2.9 (10); (ii) graph represented in Table 1 with identification number i = 40
belongs to the class Theorem 2.9 (20); (iii) graphs represented in Table 1 with identification
numbers i = 8, 32 belong to the class Theorem 2.9 (30); (iv) graphs represented in Table 1 with
identification numbers i = 11, 39 belong to the class Theorem 2.9 (40) and (v) graph represented
in Table 1 with identification number i = 20 belongs to the class Theorem 2.9 (50).

6First, there exists no Seidel integral graph from the class Theorem 2.10 (10), whose order
does not exceed 40. We note (i) graph represented in Table 1 with identification number i = 29
belongs to the class Theorem 2.10 (20); (ii) graph represented in Table 1 with identification
number i = 14 belongs to the class Theorem 2.10 (30); (iii) graph represented in Table 1 with
identification number i = 38 belongs to the class Theorem 2.10 (40) and (iv) graph represented
in Table 1 with identification number i = 18 belongs to the class Theorem 2.10 (50).

7In this work the data given in Tables 1 and 2 are obtained in two different ways: (i) they
are generated by using relation (2.5) and (ii) by varying the parameters α, β, a, b in all possible
ways in equation (2.2).
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01002 01602 02004 02204 02402 02602 02804 03002 03202 03410

03602 03807 04007 04406 04607 04806 05006 05210 05408 05607

05806 06008 06207 06409 06609 06814 07008 07207 07406 07621

07808 08015 08211 08409 08609 08814 09005 09217 09413 09610

09807 10017 10217 10418 10614 10815 11011 11218 11417 11615

11819 12019 12215 12425 12604 12817 13019 13218 13410 13640

13817 14022 14212 14419 14611 14823 15016 15230 15414 15622

15811 16032 16217 16429 16623 16821 17022 17227 17417 17636

17823 18015 18210 18428 18612 18828 19029 19225 19415 19624

19818 20025 20231 20440 20624 20832 21019 21230 21425 21634

21824 22032 22224 22423 22615 22839 23025 23229 23428 23633

23828 24036 24215 24440 24629 24842 25028 25230 25415 25634

25826 26045 26224 26442 26614 26835 27022 27254 27422 27653

27820 28044 28220 28431 28636 28832 29032 29234 29420 29643

29822 30048 30218 30453 30629 30831 31035 31238 31421 31635

31837 32053 32224 32443 32622 32858 33028 33263 33429 33643

33822 34051 34237 34448 34642 34850 35021 35258 35432 35648

35839 36037 36226 36451 36628 36852 37032 37245 37440 37646

37824 38058 38231 38456 38629 38856 39036 39245 39436 39642

39839 40051 40231 40454 40632 40881 41033 41257 41434 41650

41844 42048 42225 42465 42629 42856 43040 43264 43431 43660

43831 44059 44243 44468 44620 44853 45033 45246 45440 45674

45837 46070 46234 46441 46631 46863 47034 47270 47439 47657

47828 48075 48226 48441 48643 48861 49034 49266 49442 49674

49844 50059 50237 50459 50630 50851 51047 51251 51450 51669

51831 52070 52237 52448 52646 52891 53041 53252 53454 53657

53842 54075 54234 54485 54636 54854 55032 55286 55438 55669

55834 56076 56232 56463 56646 56871 57057 57267 57427 57662

57835 58094 58244 58466 58650 58861 59050 59278 59451 59658

59843 60079 60230 60459 60659 60881 61051 61275 61433 61667

61852 62076 62244 62477 62637 62852 63035 63277 63433 63684

63837 64085 64261 64464 64656 64885 65047 65260 65461 65688

65852 66073 66228 66494 66654 66871 67052 67272 67426 67663

67845 68095 68254 68490 68631 68880 69049 69269 69457 69688

69835 70069 70256 70488 70660 70867 71050 71284 71469 71678

71848 72080 72243 72472 72656 72884 73047 73281 73436 73684

73864 74077 74243 74484 74632 74890 75064

Table 2.
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There exists exactly 14541 non-isomorphic Seidel integral graphs which belong
to the class αKa,a ∪ βKb,b, whose order does not exceed 750. Table 2 contains a
distribution of those graphs in respect to their orders. In Table 2 the symbol on

denotes the number of integral graphs of the corresponding order o = 1, 2, . . . , 750.
In this table on is omitted if the corresponding number n = 0.
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