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POLYNOMIAL OF A MEROMORPHIC FUNCTION

AND ITS k-th DERIVATIVE SHARING A SET

Abhijit Banerjee and Molla Basir Ahamed

Abstract. With the help of weighted sharing of sets, we find out the class
of meromorphic functions f , when P (f) and [P (f)](k) share a set Sm of small
functions. Our results improve and extend the results of Zhang and Yang
[Ann. Acad. Sci. Fenn. Math. 34 (2009), 249–260] and Xu et al. [Rev. Mat.
Teor. Apl. 23(1) (2016), 291–308]. A number of examples are exhibited to
validate certain claims of the main results.

1. Introduction

Let f be a nonconstant meromorphic function in the whole complex plane C.
We shall use the following standard notations of the value distribution theory such
as m(r, f), the proximity function, N(r, f), the counting function and T (r, f), the
characteristic function of f , etc. (see [20]). We denote S(r, f) by any quantity
satisfying S(r, f) = O(T (r, f)), as r → +∞ possibly outside of a set of finite
measure. A meromorphic function a ≡ a(z) is said to be a small function with
respect to f if T (r, a) = S(r, f). Let S(f) be the set of all small functions of f in
the complex plane C.

Let f be a nonconstant meromorphic function and a ≡ a(z) ∈ S(f) ∪ {∞} and
S ⊂ S(f) ∪ {∞}. We define

E(S, f) :=
⋃

a∈S
{z : f(z) − a(z) = 0, counting multiplicity},

Ē(S, f) :=
⋃

a∈S
{z : f(z) − a(z) = 0, ignoring multiplicity},

If E(S, f) = E(S, g), we say that f and g share the set S CM; if Ē(S, f) =
Ē(S, g), we say that f and g share the set S IM. Especially, when a(z) is constant
and S = {a}, we say that f and g share the value a CM if E(S, f) = E(S, g); and
we say that f and g share the value a IM if Ē(S, f) = Ē(S, g). For more details
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regarding values sharing by two meromorphic functions, we refer the reader to the
paper [11] and references therein.

In 1996, Brück [7] initiated the research of finding a relation between an en-
tire function f and its derivative f ′ counterpart sharing a value. Brück [7] have
proposed the following conjecture which is famously known as Brück conjecture.

Conjecture 1.1. Let f be a nonconstant entire function. Suppose that ρ1(f)
is not a positive integer or infinite. If f and f ′ share one finite value a CM, then
f ′−a
f−a = c, for some nonzero constant c, where ρ1(f) is the first iterated order of f

which is defined by

ρ1(f) = lim sup
r→∞

log log T (r, f)

log r
.

Since then a widely studied subtopic of uniqueness theory have been developed
as to find the relationship between a meromorphic function f and its derivative f (k)

sharing some value or small functions (see e.g. [9,15,21,23]). A number of honest
attempts have been made by many researchers such as Gundersen and Yang [10],
Chen and Shon [8] and Al-Kahaladi [1] to solve the conjecture. In 2008, Yang and
Zhang [17] studied Brück conjecture for a slightly different class of function to give
the specific form of the function as the following.

Theorem 1.1. [17] Let f be a nonconstant entire function, n > 7 be an

integer. Denote F = fn. If F and F ′ share 1 CM, then F ≡ F ′ and f assumes

the form f(z) = cez/n, where c is a nonzero constant.

Theorem 1.2. [17]Let f be a nonconstant meromorphic function and n > 12
be an integer. Denote F = fn. If F and F ′ share 1 CM, then F ≡ F ′, and f
assumes the form f(z) = ce

z
n , where c is a nonzero constant.

In 2009, Zhang and Yang [22] improved further the above two theorems at a
large extent and proved the following results.

Theorem 1.3. [22] Let f be a nonconstant entire function, n, k be positive

integers and a(z) be a small function of f such that a(z) 6≡ 0, ∞. If fn − a and

(fn)(k) − a share the value 0 CM and n > k + 2, then fn ≡ (fn)(k) and f assumes

the form f(z) = ceλz/n, where c is a nonzero constant and λk = 1.

Theorem 1.4. [22] Let f be nonconstant meromorphic function, n, k be pos-

itive integers and a(z) be a small function of f such that a(z) 6≡ 0, ∞. If fn − a
and (fn)(k) − a share the value 0 CM and n > k + 1 +

√
k + 1, then the conclusion

of Theorem 1.3 holds.

Theorem 1.5. [22]Let f be a nonconstant entire function, n, k be positive

integers and a(z) be a small meromorphic function of f such that a(z) 6≡ 0, ∞. If

fn − a and (fn)(k) − a share the value 0 IM and n > 2k + 3, then the conclusion of

Theorem 1.3 holds.

Theorem 1.6. [22]Let f be a nonconstant meromorphic function, n, k be

positive integers and a(z) be a small meromorphic function of f such that a(z) 6≡
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0, ∞. If fn − a and (fn)(k) − a share the value 0 IM and

n > 2k + 3 +
√

(k + 3)(2k + 3),

then the conclusion of Theorem 1.3 holds.

Though the standard definitions and notations of the value distribution theory
are available in [3,19], we explain the following definitions and notations which are
used in the paper.

Definition 1.1. [3, 19] When f and g share 1 IM, we denote by N̄L(r, 1; f)
the counting function of the 1-points of g. Similarly, we have N̄L(r, 1; g). Let z0

be a zero of f − 1 of multiplicity p and a zero of g − 1 of multiplicity q, we also
denote by N11(r, 1; f) the counting function of those 1-points of f where p = q = 1;

N̄
(2
E (r, 1; f) denotes the counting function of those 1−points of f where p = q > 2,

each point in these counting functions is counted only once. In the same way, one

can define N11(r, 1; g), N̄
(2
E (r, 1; g).

Definition 1.2. [5] For a ∈ C ∪ {∞} and p a positive integer, let f be
a nonconstant meromorphic function, we denote by N(r, a; f |= 1) the counting
function of simple a-points of f , denote by N(r, a; f |6 p) (N(r, a; f |> p)) the
counting functions of those a-points of f whose multiplicities are not greater (less)
than p where each a-point is counted according to its multiplicities. N̄(r, a; f |6 p)
(N̄(r, a; f |> p)) are defined similarly, where in counting the a-points of f we ignore
the multiplicities.

Definition 1.3. [5] For a ∈ C ∪ {∞} and a positive integer p we denote by

Np(r, a; f) = N̄(r, a; f) + N̄(r, a; f |> 2) + · · · + N̄(r, a; f |> p).

Clearly, N1(r, a; f) = N̄(r, a; f).

Next, we recall the following definition of weighted sharing of values which
generally measures how closed a shared value is to being sharing IM or CM.

Definition 1.4. [12, 13] Let q be a nonnegative integer or infinity. For
c ∈ C ∪ {∞}, we denote by Ef (a, q) the set of all a−points of f where an a-point
of multiplicity m is counted m times if m 6 q and q + 1 times if m > q. If
Ef (a, q) = Eg(a, q), we say that f, g share the value a with weight q.

We write f, g share (a, q) to mean that f, g share the value a with weight q.
Clearly if f, g share (a, q), then f, g share (a, p) for all integer p (0 6 p < q). Also,
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) and (a, ∞)
respectively.

Let S be a subset of S(f) ∪ {∞} and Ef (S, q) is defined (see [12]) by

Ef (S, q) =
⋃

a∈S
Ef (a, q).

We say that f and g share the set S with weight q if Ef (S, q) = Eg(S, q). Recently,
Xu et al. [16] have raised the following question for further investigations in this
direction:
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Question 1.1. [16] Can the nature of sharing 1 or a(z) CM be further relaxed

in Theorems 1.1 and 1.3?

Define the set Sm by Sm =
{

a(z), a(z)ζ, a(z)ζ2, . . . , a(z)ζm−1
}

, where a(z) is
a small function of f and ζ = cos(2π/m) + i sin(2π/m) and m is a positive integer.
It is easy to see that Sm is a set of small functions. Therefore, it is natural to ask
the following question.

Question 1.2. [16] What will happen when 1 or a(z) are replaced by the set

Sm in the Theorems 1.1–1.4?

In order to answer this question, Xu et al. [16] have proved the following two
results which improved Theorems 1.3 and 1.4.

Theorem 1.7. [16] Let f be a nonconstant entire function, n, k, m be positive

integers and a(z) be a small function of f such that a(z) 6≡ 0, ∞. If Efn(Sm, q) =

E(fn)(k)(Sm, q) and n > max{k+1, k+ η
qm }, where η = k+q+2, then fn ≡ t(fn)(k)

with tm = 1 and f assumes the form f(z) = ceλz/n, where c is a nonzero constant

and λkm = 1.

Theorem 1.8. [16] Let f be a nonconstant meromorphic function, n, k, m
be positive integers and a(z) be a small function of f such that a(z) 6≡ 0, ∞. If

Efn(Sm, q) = E(fn)(k) (Sm, q) and

n > max

{

k + 1,
q(m + 1)k + 2η

2qm
+

√

4η(η + qk) + (m − 1)2q2k2

2qm

}

,

where η = k + q + 2, then fn ≡ t(fn)(k) with tm = 1 and f assumes the form

f(z) = ceλz/n, where c is a nonzero constant and λkm = 1.

Considering all the developments of Brück conjecture and research thereafter,
it is quite natural to expect certain extensions of Theorems 1.1–1.8 up to a rela-
tion between P (f) and [P (f)](k) sharing a set of small functions, where P (f) is a
polynomial defined in Lemma 4.2.

The above discussions motivate us to raise the following question.

Question 1.3. Can the lower bounds of n in Theorems 1.7 and 1.8 be further

reduced?

Note 1.1. It is worth noticing that the Theorems 1.7 and 1.8 are in fact valid
for the weight q > 1.

A natural question thus arises as the following.

Question 1.4. Can we obtain the same conclusions when the nature of sharing

in Theorems 1.7 and 1.8 is replaced by IM (q = 0) sharing?

2. Main results

In this paper, taking the possible answers of all the above mentioned questions
into background, our aim is to prove results such that Theorems 1.1–1.8 can be ac-
commodated under a single theorem. Henceforth, we adopt the following notations
from [6].
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Let P (z) = anzn + · · · + a1z + a0, where ai (i = 0, 1, . . . , n) are all complex
numbers with an 6= 0 and n ∈ N. Let

P (f) = an(f − dl1 )l1 (f − dl2 )l2 . . . (f − dlr
)lr ,

where an 6= 0 and dlj
(j = 1, 2 . . . , r) are distinct finite complex numbers and

l1, l2, . . . , lr, r, n and k are all positive integers with
∑r

j=1 lj = n. Let l =

max{l1, l2, . . . , lr} > k. In view of the factorization of P (f), we set a nonzero
polynomial Q(f1) by

Q(f1) = an

r
∏

j=1, lj 6=l

(f1 + dl − dlj
)li = bpfp

1 + · · · + b1f1 + b0,

where ap = bn, f1 = f −dl and p = n−l. Then it is easy to see that P (f) = f l
1Q(f1).

We define χ
p

by

χ
p

:=

{

0, if p = 0,

1, if p > 1.

We also define δm
p−i and γm

p−i, respectively, by

δm
p−i := (p + k − i)m + k + 3 and γm

p−i := (p + k − i)m + 1 +
1

q
,

where m, q, k ∈ N and p, i ∈ N ∪ {0}.
For meromorphic functions, we prove the following result which are the main

results of this paper.

Theorem 2.1. Let f be a nonconstant meromorphic function, k, l(> k), n,

m be positive integers and a(z) be a small function of f such that a(z) 6≡ 0, ∞. If

EP (f)(Sm, q) = E[P (f)](k)(Sm, q) and

(i) q > 2 and n >
γm

p−i+γ1
0 +

√
(γm

p−i
−γ1

0 )2+4C

2m , or

(ii) q = 0 and n >
δm

p−i+δ1
0+

√
(δm

p−i
−δ1

0)2+4D

2m ,

where C =
(

k+1+χ
p
+ 1

q

)(

1+ 1
q

)

and D = (2k+χ
p
+3)(k+3), then f l+i

1 ≡ t [f l+i
1 ](k)

for some i ∈ {0, 1, . . . , p} with tm = 1. Furthermore, f assumes the form

f(z) = ce
λ

l+i
z + dl,

where c(6= 0), dl ∈ C and λmk = 1.

For entire functions, we prove the following result.

Theorem 2.2. Let f be a nonconstant entire function, k, l(> k), n, m be

positive integers and a(z) be a small function of f such that a(z) 6≡ 0, ∞. If

EP (f)(Sm, q) = E[P (f)](k)(Sm, q) and

(i) q > 2 and n > (p+k−i)mq+q+1
mq , or (ii) q = 0 and n > (p+k−i)m+k+3

m ,

then the conclusions of Theorem 2.1 hold.

In Theorems 2.1 and 2.2, if we consider P (f) = fn, then it is easy to see that
χ

p
= 0, hence we obtain some corollaries of our main results. It is worth noticing

that the lower bound of n is reduced as compared to Theorems 1.7 and 1.8.
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Corollary 2.1. Let f be a nonconstant meromorphic function and k, n, m be

positive integers and a(z) be a small meromorphic function of f such that a(z) 6=
0, ∞. If Efn(Sm, q) = E(fn)(k)(Sm, q) and if

(i) q > 2 and n > q(m+1)k+2τ
2qm +

√
4τ(kq+τ)+(m−1)2q2k2

2qm , or if

(ii) q = 0 and n > (m+3)k+6
2m +

√
4(k+3)(2k+3)+(m−1)2k2

2m , where τ = q + 1

then fn ≡ t(fn)(k), where tm = 1. Furthermore, f assumes the form f(z) =
ceλz/n, where c is a nonzero constant and λmk = 1.

Remark 2.1. From Corollary 2.1, we see that τ = q + 1 < q + k + 2 = η. Thus
the conclusion of Theorem 1.8 can be obtained under reduced lower bound of n.

Corollary 2.2. Let f be a nonconstant entire function and k, n, m be positive

integers and a(z) be a small meromorphic function of f such that a(z) 6= 0, ∞. If

Efn(Sm, q) = E(fn)(k) (Sm, q) and if

(i) q > 2 and n > k + q+1
qm , or if (ii) q = 0 and n > k + k+3

m ,

then the conclusions of Corollary 2.1 hold.

Remark 2.2. From Corollary 2.2, it is easy to see that Theorem 1.7 can be
obtained under reduced lower bound of n.

Corollary 2.3. Let f be a nonconstant meromorphic function and k, n be

positive integers and a ≡ a(z) be a small meromorphic function of f such that

fn − a and (fn)(k) − a share (0, q). If

(i) q > 2 and n > k + 1 + 1
q +

√

(1 + 1/q)(k + 1 + 1/q), or if

(ii) q = 0 and n > 2k + 3 +
√

(k + 3)(2k + 3),

then fn ≡ (fn)(k) and f assumes the form f(z) = ceλz/n, where c is a nonzero

constant and λk = 1.

Remark 2.3. From Corollary 2.3, we observe that if f be nonconstant mero-
morphic function, n, k be positive integers and a(z)(6≡ 0, ∞) is a small function
such that fn − a and (fn)(k) − a share (0, ∞) and n > k + 1 +

√
k + 1, then we

obtain the conclusion of Theorem 1.4.

Corollary 2.4. Let f be a nonconstant entire function and k, n be positive

integers and a ≡ a(z) is a small meromorphic function of f such that fn − a and

(fn)(k) − a share (0, q). If

(i) q > 2 and n > k + 1 + 1
q , or if (ii) q = 0 and n > 2k + 3,

then the conclusions of Corollary 2.3 hold.

Remark 2.4. From Corollary 2.4 we see that when f be nonconstant entire
function, n, k be positive integers and a(z)(6≡ 0, ∞) be a small function such that
fn − a and (fn)(k) − a share (0, 2) and n > k + 2, then we obtain the conclusion of
Theorem 1.3.
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3. Some examples

The following two examples validate that the conclusions of Corollaries 2.1 and
2.2 fail to hold for nonconstant entire or meromorphic functions respectively when
the conditions over n are not satisfied.

Example 3.1. For n > 2, let the principal branch of f is given by f(z) =

(eθz + 2a)
1
n , where a 6= 0 is a constant and θ is a root of the equation zn + 1 = 0.

Let Sm = {a} and P (f) = fn. Clearly, P (f) = eθz + 2a and [P (f)](k) = −eθz with
k = n. Therefore, we see that EP (f)(Sm, ∞) = E[P (f)](k)(Sm, ∞) and

n 6 min
{

k +
q + 1

qm
, k +

k + 3

m

}

= min{n + 1, 2n + 3} = n + 1.

It is easy to see that P (f) 6≡ [P (f)](k) and f(z) 6= ceλ/n with λk = 1.

Example 3.2. Consider the meromorphic function

f(z) =
z + 6e− 1

3 z − 3
2 (e− 1

3 z)2

(1 − e− 1
3 z)3

.

A simple computations shows that P (f) = f and [P (f)]′ share (1, ∞). The con-
dition in Corollary 2.4 over n is not satisfied. Hence we see that P (f) 6≡ [P (f)]′.
Also note that f(z) 6= cez/n.

Remark 3.1. In case of when Q(z) is a nonconstant polynomial, the next two
examples show that for nonconstant entire or meromorphic functions, if conditions
over n are violating, the conclusion of Theorem 2.1 fails to hold.

Example 3.3. Let

f(z) =
−b ±

√

b2 + 4a(ceez + ez)

2a
,

where a, b, c ∈ C − {0}. Evidently, f [af + b] = ceez

+ ez and it is clear that
P (f) = f [af + b] and [P (f)]′ share (ez, ∞). Here n = 2, k = 1, m = 1, p = 1
and i = 0 and condition in main Theorem 2.2 over n is not satisfied. Note that
p = 1 6= 0 and hence, χp = 1. Clearly, P (f) 6≡ [P (f)]′ and f(z) 6= cez/n,

Example 3.4. Let

f(z) =
−b

√
ez + 1 ±

√

b2(ez + 1) + 4a(2ez + z + 1)

2a
√

ez + 1
,

where a, b, c ∈ C − {0}. Then we see that f [af + b] = 2ez+z+1
ez+1 . Therefore, it is

clear that P (f) = f [af + b] and [P (f)]′ share (1, ∞). Note that here n = 2, k = 1,
m = 1, p = 1 and i = 0. The condition in main Theorem 2.2 over n is not satisfied.
Here p = 1 6= 0, so χp = 1. We see that P (f) 6≡ [P (f)]′ and f(z) 6= cez/n.

The next two examples show that in order to obtain the specific form of the
function from the assumption of the main results, the conditions over n are essential.
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Example 3.5. Let P (f) = f where f(z) = sin ζz or cos ζz, where ζ is a nonreal
m-th roots of unity and Sm = {a, aζ, aζ2, . . . , aζm−1}, where a ≡ a(z)(6= 0, ∞) is
a small function of a meromorphic function and m is an even positive integer. Here
we see that n = 1, k = 2s, ∀ s ∈ N, dl = 0 and EP (f)(Sm, ∞) = E[P (f)](k)(Sm, ∞)
and

n 6 min
{

k +
q + 1

qm
, k +

k + 3

m

}

= min
{

2s +
1

m
, 2s +

2s + 3

m

}

= 2s +
1

m
.

But P (f) ≡ t [P (f)](k) with tm = 1. Also we see that f(z) 6= ceλz/n with λmk = 1.

Example 3.6. Let P (f) = f where f(z) = sin ζz or cos ζz, where ζ is a nonreal
m-th roots of unity and Sm = {a, aζ, aζ2, . . . , aζm−1}, where a ≡ a(z)(6= 0, ∞) is a
small function of a meromorphic function and m is an odd positive integer. Here we
see that n = 1, k = 4s − 2, ∀ s ∈ N, dl = 0 and EP (f)(Sm, ∞) = E[P (f)](k)(Sm, ∞)
and

n 6 min
{

4s − 2 +
1

m
, 4s − 2 +

4s + 1

m

}

= 4s − 2 +
1

m
.

But P (f) ≡ t [P (f)](k) with tm = 1. Also we see that f(z) 6= ceλz/n with λmk = 1.

Remark 3.2. The following example shows that the conclusion of Theorem
2.1 ceases to hold for n = 1.

Example 3.7. Let P (f) = f , where f(z) =
1
m zm + b

1 + ce−z
and b, c (6= 0) are

complex constants and m be a positive integer. Let a(z) = zm−1, then it is clear
that P (f) − a and [P (f)](k) − a share (0, ∞) with n = 1 = k and

n 6 min

{

k+1+
1

q
+

√

(

1 +
1

q

)(

k + 1 +
1

q

)

, 2k+3+
√

(k + 3)(2k + 3)

}

= k+1+
√

k + 1.

But we see that P (f) 6≡ [P (f)](k). Also note that Also we see that f(z) 6= ceλz/n

with λmk = 1.

The following example shows that the conditions (i) and (ii) used in Corollaries
2.1 and 2.2 are not necessary but sufficient.

Example 3.8. Let S6 =
{

−1, 1, 1−
√

3i
2 , 1+

√
3i

2 , −1−
√

3i
2 , −1+

√
3i

2

}

and f is given

by f(z) = eλz/6, where λ is a root of the equation z6 + 1 = 0 and k = 6. Let
P (f) = f6. We see that EP (f)(S6, ∞) = E[P (f)](k)(S6, ∞) and

n 6 min
{

k +
q + 1

qm
, k +

k + 3

m

}

= min
{37

6
,

45

6

}

=
37

6
.

But P (f) ≡ t[P (f)](k) with tm = (−1)6 = 1. Also here f assumes the form
f(z) = ceλz/n, where c = 1 and λmk = λ36 = 1.

Example 3.9. Let Sm = {a, aζ, aζ2, aζ3, aζ4} where ζ is a nonreal 5th roots

of unity. Let P (f) = fn, where f(z) = e
1
n

ζ
1
k z where k = n. Then it is clear

that EP (f)(Sm, ∞) = E[P (f)](k)(Sm, ∞) with n 6 min
{

k + 1
m , k + k+3

m

}

= n + 1
m .

Although we see that P (f) ≡ t[P (f)](k) with tm = 1/ζ5 = 1. Also here f assumes
the form f(z) = ceλz/n, where c = 1 and λmk = (ζ1/k)5k = ζ5 = 1.
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The following examples show that the set Sm in the Theorems 2.1 and 2.2 can
not replaced by other set.

Example 3.10. Let Sm = {0, −1, 1, −i, i} and f(z) = e
λ
7 z , where λ is a root of

the equation z5 +1 = 0. Let P (f) = f7 and k = 5. It is clear that EP (f)(Sm, ∞) =

E[P (f)](k)(Sm, ∞) and n > max
{

k + 1
m , k + k+3

m

}

= 33
5 . But P (f) 6≡ t[P (f)](k)

with tm = 1, although f assumes the form f(z) = ceλz/n, with c = 1. We also note
that λmk 6= 1.

Example 3.11. Let Sm =
{

aω
2 , aω

3 , 2aω
3 , aω

4 , 3aω
4 , aω

5 , 4aω
5

}

, where a is an arbi-

trary nonzero complex number. Let f be such that fn = Beθz + aω, where n 6 52
is a positive integer and θ and ω are roots of the equations zn−7 + 1 = 0 and
z3 − 1 = 0 respectively and B ∈ C r {0}. Let P (f) = fn. Then it is clear that
EP (f)(Sm, ∞) = E[P (f)](k)(Sm, ∞) where k = n − 7 and

n > max
{

k +
p + 1

pm
, k +

k + 3

m

}

.

But we see that P (f) 6≡ t[P (f)](k) with tm = 1and hence f does not assume the
form f(z) = ceλz/n with λmk = 1.

4. Key lemmas

In this section, we present some necessary lemmas which will be required to
prove the main results of this paper. Let F , G be two nonconstant meromorphic
functions. Henceforth, we shall denote H, V and U by the following functions

H =
(F ′′

F ′ − 2F ′

F − 1

)

−
(G′′

G′ − 2G′

G − 1

)

.(4.1)

V =
( F ′

F − 1
− F ′

F
)

−
( G′

G − 1
− G′

G
)

,(4.2)

U =
F ′

F − 1
− G′

G − 1
.(4.3)

Lemma 4.1. [16] Let f be a nonconstant meromorphic function and k, p are

positive integers. Then

Np(r, 0; f (k)) 6 T (r, f (k)) − T (r, f) + Np+k(r, 0; f) + S(r, f).

Np(r, 0; f (k)) 6 kN̄(r, ∞; f) + Np+k(r, 0; f) + S(r, f).

Lemma 4.2. [18] Let f be a nonconstant meromorphic function and P (f) =
anfn + an−1fn−1 + · · · + a0, where a0, a1, . . . , an are constants with an 6= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 4.3. [18] Let H be given by (4.1), F and G be two nonconstant mero-

morphic functions. If H 6≡ 0, then N11(r, 1; F) 6 N(r, H) + S(r, F) + S(r, G).
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Lemma 4.4. Let f and hence f1 = f − d
l

be a nonconstant meromorphic

function and a ≡ a(z) be a small meromorphic functions of f such that a(z) 6≡ 0, ∞
and let

F
1

:=
P (f)

a(z)
=

f l
1
Q(f

1
)

a(z)
, G

1
:=

[P (f)](k)

a(z)
=

[f l
1
Q(f

1
)](k)

a(z)
.

Let V be given by (4.2) and F = Fm
1 and G = Gm

1 . If n, m, l and k are positive

integers such that n > k + 1 and V ≡ 0, then f l+i
1 ≡ t[f l+i

1 ](k) for some i ∈
{0, 1, . . . , p} and tm = 1. Furthermore, f assumes the form f(z) = ce

λ
l+i

z + d
l
,

where c is a nonzero constant and λmk = 1.

Proof. Let V ≡ 0. Then it is easy to see that

(4.4) 1 − 1

Fm
1

≡ A − A
Gm

1

,

where A is a nonzero constant. We now consider the following possible cases.

Case 1. Let A 6= 1.

Subcase 1.1. If N(r, ∞; f) = S(r, f), then from (4.4), we obtain

N̄
(

r,
1

1 − A ; Fm
1

)

= N̄(r, ∞; Gm
1

) = S(r, f).

By the Second Fundamental Theorem and in view of the definitions of F
1
, G

1
, we

obtain

T (r, Fm
1

) 6 N̄(r, ∞; Fm
1

) + N̄(r, 0; Fm
1

) + N̄
(

r,
1

1 − A ; Fm
1

)

+ S(r, f),

which implies that

mn T (r, f) 6 N̄(r, 0; f l
1
Q(f

1
)) + S(r, f) < n T (r, f) + S(r, f),

which is not possible.

Subcase 1.2. Let N(r, ∞; f) 6= S(r, f). Then there exists a z0 which is not a
zero or pole of a(z) such that 1/f(z0) = 0. Therefore, a simple computation shows
that 1/F1(z0) = 1/G1(z0) = 0. Hence it follows from (4.4) that A = 1, which is
not possible.

Case 2. Let A = 1. Thus, from (4.4) we obtain, Fm
1 = Gm

1 , i.e.,

P (f) ≡ t[P (f)](k) i.e., f l
1
Q(f

1
) ≡ t[f l

1
Q(f

1
)](k),

where tm = 1. By the similar argument being used in [6, Page 160], we see that f1

assumes the form f1(z) = ce
λ

l+i
z for some i ∈ {0, 1, . . . , p} and λmk = 1. Hence f

assumes the form f(z) = ce
λ

l+i
z+d

l
, where c is a nonzero constant and λmk = 1. �

Lemma 4.5. Let V be given by (4.2) and F , G, F1 and G1 be given by Lemma

4.4 and n, m be positive integers. If V 6≡ 0, then

(mn − 1)N̄(r, ∞; f) 6 N(r, ∞; V) + S(r, f).
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Proof. From (4.2) and in view of the definitions of F , G, it is easy to see that
if z0 is a pole of f with the multiplicity q such that a(z0) 6= 0 and a(z0) 6= ∞,
then z0 is a zero of F ′/(F − 1) − F ′/F with the multiplicity mnq − 1 and a zero
of G′/(G − 1) − G′/G with the multiplicity m(nq + k) − 1. Therefore, it is easy to
see that z0 is zero of V with multiplicity p > min{mn − 1, m(n + k) − 1} = mn − 1,
Also, we note that m(r, V) = S(r, f). Therefore,

(mn − 1)N̄(r, ∞; f) 6 N(r, 0; V) + S(r, f)

6 T (r, V) + S(r, f) 6 N(r, ∞; V) + S(r, f). �

Lemma 4.6. Let U be given by (4.3) and F , G, F1 and G1 be given by Lemma

4.4. If n, m are psotive integers such that n > k and U ≡ 0, then f l+i
1 ≡ t[f l+i

1 ](k)

for some i ∈ {0, 1, . . . , p} and tm = 1 and f assumes the form f(z) = ce
λ

l+i
z + d

l
,

where c is a nonzero constant and λmk = 1.

Proof. Since U = 0, we obtain

(4.5) F ≡ BG + 1 − B,

where B is a nonzero constant. By the definitions of F , G, F1 and G1, we obtain
N(r, ∞; f) = S(r, f). We discuss the following cases.

Case 1. Let B = 1. Then it is easy to see that F ≡ G. Therefore, we have
Fm

1 ≡ Gm
1 . Next proceeding exactly the same way as done in Case 2 of Lemma 4.4,

we obtain f l+i
1 ≡ t[f l+i

1 ](k) for some i ∈ {0, 1, . . . , p} and tm = 1 and f assumes the

form f(z) = ce
λ

l+i
z + d

l
, where c is a nonzero constant and λmk = 1.

Case 2. Let B 6= 1.

Subcase 2.1. If N(r, 0; P (f)) 6= S(r, f), then there exists a point z0 for which
P (f(z0)) = 0 but a(z0) 6= 0. Since l > k, then it is clear that F (z0) = 0 = G(z0).
Now from (4.5), we obtain B = 1, which is clearly absurd.

Subcase 2.2. If N(r, 0; P (f)) = S(r, f), then from (4.5) and using Lemma
4.1, we obtain

N̄(r, 1 − B; F) = N̄(r, 0; G) 6 Nk+1(r, 0; P (f)) + k N̄(r, ∞; f) 6 S(r, f).

By the Second Fundamental Theorem, in view of N(r, 0; P (f)) = N(r, ∞; f) =
S(r, f), a simple computation shows that

mn T (r, f) 6 T (r, F) + S(r, f)

6 N̄(r, ∞; F) + N̄(r, 0; F) + N̄(r, 1 − B; F) + S(r, f)

6 N̄(r, 0; P (f)) + N̄(r, ∞; f) + N̄(r, 0; G) + S(r, f) 6 S(r, f),

which is not possible. �

Lemma 4.7. Let U be given by (4.3) and F , G, F1 and G1 be given by Lemma

4.4. If n, m, l, i and k are positive integers such that l > k and U 6≡ 0, then

[(l + i − k)m − 1]N̄(r, 0; P (f)) 6 N(r, ∞; U) + S(r, f),

when bi is the last nonvanishing coefficient in Q(f1) for 0 6 i 6 p.
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Proof. Let z0 be a zero of f1 with multiplicity q(> 1) such that a(z0) 6= 0, ∞.
Then z0 is a zero of F ′/(F − 1) with the multiplicity (l+i)qm−1 and z0 is also a zero
of G′/(G − 1) of multiplicity ((l+i)q−k)m−1 for some i ∈ {0, 1, . . . , p}. Therefore,
z0 is a zero of U of multiplicity at least (l + i − k)m − 1. Since m(r, U) = S(r, f),
we obtain

[(l + i − k)m − 1]N̄(r, 0; P (f)) 6 N(r, 0; U) + S(r, f)

6 T (r, U) + S(r, f)

6 N(r, ∞; U) + S(r, f). �

Lemma 4.8. Let F , G, F1, G1 are as in Lemma 4.4 and V as in (4.2). Now if

l > k and EF (1, q) = EG(1; q) and V 6≡ 0, then the following hold:

(i) if q > 2, then
(

mn − 1 − k − 1

q

)

N̄(r, ∞; f) 6
(

k + 1 + χ
p

+
1

q

)

N̄(r, 0; P (f)) + S(r, f).

(ii) if q = 0, then

(mn − 2k − 3)N̄(r, ∞; f) 6 (2k + χ
p

+ 3)N̄(r, 0; P (f)) + S(r, f).

Proof. Let q > 2 and V be defined by

V :=
F ′

F(F − 1)
− G′

G(G − 1)
.

Since Eq(1; F) = Eq(1; G), hence it is easy to see that

N(r, ∞; V) 6 χ
p
N̄(r, 0; F) + N̄(r, 0; G) + N̄(q+1(r, 1; F) + S(r, f),

where

N̄(q+1(r, 1; F) 6
1

q
N

(

r,
F
F ′

)

6
1

q
N

(

r,
F ′

F
)

+ S(r, f)

6
1

q
N̄(r, ∞; F) +

1

q
N̄(r, 0; F) + S(r, f)

6
1

q
N̄(r, ∞; f) +

1

q
N̄(r, 0; P (f)) + S(r, f).

In view of Lemmas 4.1 and 4.5, we obtain

(mn−1)N̄(r, ∞; f) 6
(1

q
+χ

p

)

N̄(r, 0; P (f))+
1

q
N̄(r, ∞; f)+ N̄(r, 0; G)+S(r, f)

6

(1

q
+χ

p

)

N̄(r, 0; P (f))+
1

q
N̄(r, ∞; f)+Nk+1(r, 0; P (f))+k N̄(r, ∞; f)+S(r, f),

which implies that
(

mn − 1 − k − 1

q

)

N̄(r, ∞; f) 6
(

k + 1 + χ
p

+
1

q

)

N̄(r, 0; P (f)) + S(r, f).

Suppose that q = 0. A simple computation shows that

N(r, ∞; V) 6 χ
p
N̄(r, 0; F) + N̄(r, 0; G) + N̄L(r, 1; F) + N̄L(r, 1; G) + S(r, f),
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where

N̄L(r, 1; F) 6 N
(

r,
F
F ′

)

6 N
(

r,
F ′

F
)

+ S(r, f)

6 N̄(r, ∞; F) + N̄(r, 0; F) + S(r, f)

6 N̄(r, ∞; f) + N̄(r, 0; P (f)) + S(r, f).

Similarly, applying Lemma 4.1 and using a similar argument as above, we obtain

N̄L(r, 1; G) 6 N̄(r, ∞; G) + N̄(r, 0; G) + S(r, f)

6 (k + 1)N̄(r, ∞; f) + (k + 1)N̄(r, 0; P (f)) + S(r, f).

By Lemmas 4.1 and 4.5, we easily obtain

(mn − 1)N̄(r, ∞; f) 6 {2k + χ
p

+ 3}N̄(r, 0; P (f)) + 2(k + 1)N̄(r, ∞; f) + S(r, f),

which implies that

(mn − 2k − 3)N̄(r, ∞; f) 6 (2k + χ
p

+ 3)N̄(r, 0; P (f)) + S(r, f). �

Lemma 4.9. Let F , G, F1, G1 are as in Lemma 4.4 and U as in (4.3). If l > k
and EF (1, q) = EG(1; q) and U 6≡ 0, then the following hold:

(i) if q > 2, then

(

(l + i − k)m − 1 − 1

q

)

N̄(r, 0; P (f)) 6
(

1 +
1

q

)

N̄(r, ∞; f) + S(r, f).

(ii) if q = 0, then

((l + i − k)m − k − 3)N̄(r, 0; P (f)) 6 (k + 3)N̄(r, ∞; f) + S(r, f),

for some i ∈ {0, 1, . . . , p}.

Proof. Let q > 2. A simple computation now shows that

N(r, ∞; U) 6 N̄(r, ∞; F) + N̄(q+1(r, 1; F) + S(r, f)

6 N̄(r, ∞; f) +
(1

q
N̄(r, 0; P (f)) +

1

q
N̄(r, ∞; f)

)

+ S(r, f)

6
1

q
N̄(r, 0; P (f)) +

(

1 +
1

q

)

N̄(r, ∞; f) + S(r, f).

Then applying Lemma 4.7, we obtain

((l + i − k)m − 1)N̄(r, 0; P (f)) 6
1

q
N̄(r, 0; P (f)) +

(

1 +
1

q

)

N̄(r, ∞; f) + S(r, f).

which turns out that
(

(l + i − k)m − 1 − 1

q

)

N̄(r, 0; P (f)) 6
(

1 +
1

q

)

N̄(r, ∞; f) + S(r, f).
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Let q = 0. Applying Lemmas 4.1, 4.7 and following the similar argument as used
in the proof of Lemma 4.8, we obtain

N(r, ∞; U) 6 N̄(r, ∞; F) + N̄L(r, 1; F) + N̄L(r, 1; G) + S(r, f)

6 N̄(r, ∞; f) + (N̄(r, 0; P (f)) + N̄(r, ∞; f)) +
(

(k + 1)N̄(r, ∞; f)

+ (k + 1)N̄(r, 0; P (f))
)

+ S(r, f),

which implies that

((l + i − k)m − k − 3)N̄(r, 0; P (f)) 6 (k + 3)N̄(r, ∞; f) + S(r, f).

This completes the proof. �

Lemma 4.10. [19] If F and G be two nonconstant meromorphic functions such

that they share (1, 0) and H 6≡ 0, then N
1)
E (r, 1, F) 6 N(r, H) + S(r, F) + S(r, G).

Lemma 4.11. [4] Let F and G be two nonconstant meromorphic functions

sharing (1, m) where 0 6 m < ∞. Then

N̄(r, 1; F) + N̄(r, 1; G) − N
1)
E (r, 1, F)

+
(

m − 1

2

)

N̄∗(r, 1; F , G) 6
1

2
[N(r, 1; F) + N(r, 1; G)].

Lemma 4.12. [14] Let F and G be two nonconstant meromorphic function

sharing (1, 0), (∞, 0) and H 6≡ 0. Then

N(r, H) 6 N̄(r, 0; F| > 2) + N̄(r, 0; G| > 2) + N̄∗(r, ∞; F , G)

+ N̄∗(r, 1; F , G) + N̄0(r, 0; F ′) + N̄0(r, 0; G′),

where N̄0(r, 0; F ′) is the reduced counting function of the zeros of F ′ which are not

the zeros of F(F − 1) and similarly, N̄0(r, 0; G′) is defined.

Lemma 4.13. Let F and G be two nonconstant meromorphic functions such

that EF (1, q) = EG(1, q) and H 6≡ 0 and q = 0, then

T (r, F) + T (r, G) 6 2N2(r, 0; F) + 2N2(r, 0; G) + 6N̄(r, ∞; F)

+ 3N̄L(r, 1; F) + 3N̄L(r, 1; G) + S(r, F).

Proof. Since S(r, F) = S(r, G), the Lemma can be proved by using Lemmas
4.10, 4.11 and 4.12. Hence we omit the details. �

Lemma 4.14. [2] If F and G are two nonconstant meromorphic functions

sharing (1, 2) and (∞, k), where 0 6 k 6 ∞, then one of the following two cases

holds:

(i) T (r, F) + T (r, G) 6 2[N2(r, 0; F) + N2(r, 0; G) + N̄(r, ∞; F)
+ N̄(r, ∞; G) + N̄∗(r, ∞; F , G) + S(r, F) + S(r, G)],

(ii) F ≡ G,

(iii) FG ≡ 1.
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Lemma 4.15. Let F and G be two nonconstant meromorphic functions such

that EF (1, q) = EG(1, q) and H 6≡ 0 and q > 2, then

T (r, F) + T (r, G) 6 2N2(r, 0; F) + 2N2(r, 0; G) + 6N̄(r, ∞; F) + S(r, F).

Proof. Since F and G share (1, q) where q > 2, hence it is easy to see that F
and G share (1, 2). Now, the Lemma can be easily obtained using Lemma 4.14. �

Lemma 4.16. Let H be given by (4.1) and F , G, F1 and G1 be given by Lemma

4.4. If n, m, l and k are positive integers such that l > k and

N̄(r, ∞; f) = N(r, 0; P (f)) = S(r, f)

and H ≡ 0, then P (f) ≡ t [P (f)](k) i.e., f l
1
Q(f

1
) ≡ t [f l

1
Q(f

1
)](k), where tm = 1

and f assumes the form f(z) = ce
λ

l+i
z + d

l
, for some i ∈ {0, 1, . . . , p} and c is a

nonzero constant and λmk = 1.

Proof. Since H ≡ 0, by integration, we obtain

(4.6)
1

F − 1
≡ C

G − 1
+ D,

where C(6= 0) and D are constants. It follows from (4.6) that G ≡ (D−C)F+(C−D−1)
DF−(D+1) ,

which can be written as

(4.7) Gm
1 ≡ (D − C)Fm

1 + (C − D − 1)

DFm
1 − (D + 1)

.

We now discuss the following possible cases.

Case 1. Let D 6= 0, −1. Therefore, it follows from (4.7) that

N̄
(

r,
D + 1

D ; Fm
1

)

= N̄(r, ∞; Gm
1 ).

By the Second Fundamental Theorem and in view of S(r, F) = S(r, f), a simple
computation shows that

mn T (r, f) = T (r, Fm
1 ) + S(r, f)

6 N̄(r, ∞; Fm
1 ) + N̄(r, 0; Fm

1 ) + N̄
(

r,
D + 1

D ; Fm
1

)

+ S(r, f)

6 N̄(r, ∞; f) + N̄(r, 0; P (f)) + N̄(r, ∞; Gm
1 ) + S(r, f) 6 S(r, f),

which is not possible.

Case 2. Suppose D = 0. Then from (4.7), it is easy to see that

N̄
(

r,
C − 1

C ; Fm
1

)

= N̄(r, 0; Gm
1 ).
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Subcase 2.1. Let C 6= 1. By the Second Fundamental Theorem and using
Lemma 4.1, we obtain

mn T (r, f) = T (r, Fm
1 ) + S(r, f)

6 N̄(r, ∞; Fm
1 ) + N̄(r, 0; Fm

1 ) + N̄
(

r,
C − 1

C ; Fm
1

)

+ S(r, f)

6 N̄(r, ∞; f) + N̄(r, 0; P (f)) + N̄(r, 0; Gm
1 ) + S(r, f)

6 (k + 1)N(r, 0; P (f)) + (k + 1)N̄(r, ∞; f) + S(r, f) 6 S(r, f),

which is not possible.

Subcase 2.2. Let C = 1. Then it is easy to see that Fm
1 ≡ Gm

1 and this can be
written as P (f) ≡ t [P (f)](k) .e., f l

1
Q(f

1
) ≡ t [f l

1
Q(f

1
)](k). By the same argument

used in Case 2 of Lemma 4.4, it is easy to see that f assumes the form

f(z) = ce
λ

l+i
z + d

l
,

where c(6= 0), d
l

∈ C and λmk = 1.

Case 3. Let D = −1, then from (4.7), we obtain

(4.8) Gm
1 ≡ (C + 1)Fm

1 − C
Fm

1
.

Following Case 2, it is easy to show that C = −1. Therefore, from (4.8) we obtain
Fm

1 Gm
1 ≡ 1 which turns out that P (f)[P (f)](k) ≡ t a2, where t is a constant

satisfying tm = 1.

Since N̄(r, ∞; f) = S(r, f) = N(r, 0; P (f)), a simple computation shows that

2n T (r, f) = 2T
(

r,
P (f)

a

)

= T
(

r,
ta2

(P (f))2

)

+ O(1)

6 T
(

r,
[P (f)](k)

P (f)

)

+ O(1)

6 m
(

r,
[P (f)](k)

P (f)

)

+ N
(

r,
[P (f)](k)

P (f)

)

+ O(1)

6 N(r, ∞; [P (f)](k)) + N(r, 0; P (f))) + O(1)

6 N̄(r, ∞; f) + N(r, 0; P (f)) + O(1)

6 S(r, f),

which is not possible. �

5. Proof of the main results

Proof of Theorem 2.1. Let F1 = P (f)
a(z) =

f l

1
Q(f1 )
a(z) and G1 = [P (f)](k)

a(z) =

[f l

1
Q(f

1
)](k)

a(z) and F = Fm
1 , G = Gm

1 , where f and hence f1 = f − d
l

is a nonconstant

meromorphic function. We discuss here the following cases.

Case 1. If UV ≡ 0, then by using Lemmas 4.4 and 4.6, we obtain the conclu-
sions of Theorem 2.1.
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Case 2. Let UV 6≡ 0, then from the assumption of Theorem 2.1, we see that
EF (1, q) = EG(1, q).

Subcase 2.1. When q > 2, then by using Lemmas 4.8 and 4.9, we obtain

(5.1)
(

mn − 1 − k − 1

q

)(

(l + i − k)m − 1 − 1

q

)

N̄(r, ∞; f)

6

(

k + 1 + χ
p

+
1

q

)(

1 +
1

q

)

N̄(r, ∞; f) + S(r, f),

(5.2)
(

mn − 1 − k − 1

q

)(

(l + i − k)m − 1 − 1

q

)

N̄(r, 0; P (f))

6

(

k + 1 + χ
p

+
1

q

)(

1 +
1

q

)

N̄(r, 0; P (f))) + S(r, f).

Therefore, it follows from (5.1) and (5.2) that

((mn − γ1
0
)(mn − γm

p−i) − C)N̄ (r, ∞; f) 6 S(r, f),(5.3)

((mn − γ1
0
)(mn − γm

p−i) − C)N̄ (r, 0; P (f)) 6 S(r, f),(5.4)

where γm
p−i = (p + k − i)m + 1 + 1

q and C =
(

k + 1 + χ
p

+ 1
q

)(

1 + 1
q

)

.

It is easy to see that

(mn − γm
p−i)(mn − γ1

0
) − C = m2n2 − m(γm

p−i + γ1
0
)n + (γ1

0
γm

p−i − C)

= m2
(

n −
γm

p−i + γ1
0

+
√

(γm
p−i − γ1

0
)2 + 4C

2m

)

×
(

n −
γm

p−i + γ1
0

−
√

(γm
p−i − γ1

0
)2 + 4C

2m

)

.

In view of the assumptions of Theorem 2.1, it follows from (5.3) and (5.4) that

(5.5) N̄(r, 0; P (f)) = S(r, f) = N̄(r, ∞; f).

We consider the following two cases:

Case 2.1.1. Let H 6≡ 0. Using Lemmas 4.13, 4.15 and (5.5), we obtain
T (r, f) = S(r, f), which is a contradiction.

Case 2.1.2. Let H ≡ 0. Then from Lemma 4.16, we obtain the conclusion of
Theorem 2.1.

Subcase 2.2. When q = 0, using Lemmas 4.8 and 4.9, a simple computation
shows that

(5.6) (mn − 2k − 3)((l + i − k)m − k − 3)N̄(r, ∞; f)

6 (2k + χ
p

+ 3)(k + 3)N̄(r, ∞; f) + S(r, f),

(5.7) (mn − 2k − 3)((l + i − k)m − k − 3)N̄(r, 0; P (f))

6 (2k + χ
p

+ 3)(k + 3)N̄(r, 0; P (f)) + S(r, f).
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In view of equations (5.6) and (5.7) and following Subcase 2.1, rest of the proof can
be carried out, hence we omit the details. �

Proof of Theorem 2.2. Since f is an entire function, we have N(r, ∞; f) =
S(r, f). If U ≡ 0, then using Lemma 4.6, we obtain the conclusion of Theorem 2.2.
If U 6≡ 0, then using Lemma 4.9 for q > 2, we obtain

(mn − δm
p−i)N̄(r, 0; P (f)) 6 S(r, f).

Since n > (p+k−i)mq+q+1
mq , we arrive at a contradiction.

When q = 0, applying Lemma 4.9, we obtain

(mn − δm
p−i)N̄(r, 0; P (f)) 6 S(r, f),

which is a contradiction since n > (p+k−i)m+k+3
m .

Thus, N̄(r, 0; P (f)) = S(r, f). Rest of the proof follows from Cases 1 and 2 of
the proof of Theorem 2.1. �

6. Some questions

In the study of sharing set problem by meromorphic functions, reducing cardi-
nality of the set is the main trend of the research. Hence, it is our utmost interest
to see the possible answer of the following question.

Question 6.1. Can the lower bound of n be further reduced in Theorems 2.1
and 2.2?

To prove the main results of this paper, we have used Lemma 4.13 for q = 0
and Lemma 4.15 for q > 2. But we are unable to prove the main results for q = 1.
Hence we have utmost interests to see the possible answer of the following question.

Question 6.2. Can we prove Theorems 2.1 and 2.2 for q = 1?

Acknowledgment. The authors thank the referees for their helpful sugges-
tions and insightful comments to improve the exposition of the paper. The first
author is supported PRG of University of Kalyani.

References

1. A. Al-Khaladi, On meromorphic functions that share one value with their derivative, Analysis
25 (2005), 131–140.

2. A. Banerjee, Meromorphic functions sharing two sets, Czech. Math. J. 57(132) (2007),
1199–1214.

3. , Weighted sharing of a small function by a meromorphic function and its derivative,
Comput. Math. Appl. 53 (2007), 1750–1761.

4. , Uniqueness of meromorphic functions sharing two sets with finite weight II, Tamkang
J. Math. 41(4) (2010), 379–392.

5. A. Banerjee, M. B. Ahamed, Uniqueness of a polynomial and a differential monomial sharing

a small function, An. Univ. Vest Timis,., Ser. Mat.-Inform. 54(1) (2016), 55–71.
6. A. Banerjee, S. Majumder, On a generalization of a result of Zhang and Yang, Mat. Vesn.

68(3) (2016), 155–163.
7. R. Brück, On entire functions which share one value CM with their first derivative, Result.

Math. 30 (1996), 21–24.



POLYNOMIAL OF A MEROMORPHIC FUNCTION... 169

8. Z. X. Chen, K. H. Shon, On conjecture of R. Brück concerning entire function sharing one

value CM with its derivative, Taiwanese J. Math. 8 (2004), 235–244.
9. G. G. Gundersen, Meromorphic functions that share finite values with their derivative, J.

Math. Anal. Appl. 75 (1980), 441–446.
10. G. G. Gundersen, L. Z. Yang, Entire functions that share one value with one or two of their

derivatives, J. Math. Anal. Appl. 223 (1998), 88–95.
11. W. K. Hayman, Meromorphic function, Clarendon Press, Oxford, 1964.
12. I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 16(1)

(2001), 193–206.
13. , Weighted value sharing and uniqueness of meromorphic functions, Complex Vari-

ables, Theory Appl. 46 (2001), 241–253.
14. I. Lahiri, A. Banerjee, Weighted sharing of two sets, Kyungpook Math. J. 46 (2006), 79–87.
15. E. Mues, N. Steinmetz, Meromorphic function, die mit iher ersten und zweiten Ablenitung

einen endlichen Wert teilen, Complex Variables, Theory Appl. 6 (1986), 51–71.
16. H. Y. Xu, C. F. Yi, H. Wang, On a conjecture of R. Brück concerning meromorphic function

sharing small functions, Rev. Mat. Teor. Apl. 23(1) (2016), 291–308.
17. L. Z. Yang, J. L Zhang, Non-existance of meromorphic functions of Fermat type functional

equation, Aequationes Math. 76(2008), 140–150.
18. H. X. Yi, Unicity theorems for meromorphic function whose n-th derivatives share the same

1-points, Complex Variables, Theory Appl. 34 (1997), 421–436.
19. , Meromorphic functions that share one or two values II, Kodai Math. J. 22(1999),

264–272.
20. H. X. Yi, C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press/Kluwer,

Beijing/ New York, 1995/2003.
21. Q. C. Zhang, Meromorphic function that shares one entire function with its derivative, J.

Inequal. Pure Appl. Math. 6 (2005), 116.
22. J. L. Zhang, L. Z. Yang, A power of a meromorphic function sharing a small function with

its derivative, Ann. Acad. Sci. Fenn. Math. 34 (2009), 249–260.
23. J. H. Zheng, S. P. Wang, On unicity properties of meromorphic functions and their derivatives,

Adv. Math., Beijing 21 (1992), 334–341.

Department of Mathematics (Received 24 02 2017)
University of Kalyani (Revised 01 07 2021)
West Bengal
India
abanerjee_kal@yahoo.co.in, abanerjeekal@gmail.com

Department of Mathematics
Kalipada Ghosh Tarai Mahavidyalaya
West Bengal
India

Department of Mathematics
Jadavpur University
West Bengal
Kolkata
India

mbahamed.math@jadavpuruniversity.in


	1. Introduction
	2. Main results
	3. Some examples
	4. Key lemmas
	5. Proof of the main results
	6. Some questions
	References

