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INEQUALITIES FOR s-TH MEANS

FUNCTION OF ORDER k

Chang-Jian Zhao

Abstract. We establish some new inequalities for s-th functions and means of
order k by using Popoviciu’s, Bellman’s, Menon’s and Mitrinović, Bullen and
Vasić’s inequalities. The new inequalities in special cases yield some related in-
equalities published recently, which provide also new estimates on inequalities
of these type.

1. Introduction

Let a be a real n-tuple, s (6= 0) be a real, k be a positive integer, and r

(1 6 r 6 n) be an integer. The s-th functions of order k, t
[k,s]
n (a), is defined by

(see [14, p. 166])

+∞
∑

k=0

t[k,s]
n (a)xk =

+∞
∑

k=0

(

k

ns

)

ω[k,s]
n (a)xk =

n
∏

i=1

(1 + aix)s,

where s > 0, while the s-th mean of order k which is connected to this function is
defined by

W [k,s]
n (a) =

(

ω[k,s]
n (a)

)1/k
=

(

t
[k,s]
n (a)
(

k
ns

)

)1/k

,

where s > 0.
Inequalities for s-th means and functions of order k are interesting and valuable

inequalities. For now, these inequalities have attracted extensive attention and
research (see [1, 3–11, 13, 15–18, 21, 22]. The first aim of this paper is to give a
new inequality for the s-th functions of order k.

(1.1)
(

ω[k,s]
n (a) − ω[k,s]

n (b)
)2

>
(

ω[k−1,s]
n (a) − ω[k−1,s]

n (b)
)(

ω[k+1,s]
n (a) − ω[k+1,s]

n (b)
)

,

with equality if and only if a1 = · · · = an, where a, b are non-negative n-tuples
such that a > b and br are equal, and s > 0, k (1 6 k < s) is an integer, when s
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is not an integer, or 1 6 k < ns if s is an integer. The following inequality was
established by Mitrinović, Bullen and Vasić [13] (see also [14, p. 166]).

(1.2)
(

ω[k,s]
n (a)

)2
> ω[k−1,s]

n (a)ω[k+1,s]
n (a),

with equality if and only if a1 = · · · = an.
Obviously, (1.1) is a generalization of (1.2). (1.1) is a special case of (2.1) in

Theorem 2.1.
The next inequality has provoked the great interest of mathematicians in [13]

(also see [2, p. 167]). For s > 0, k is an integer, k < s + 1, if k is not an integer,
and a > 0 and b > 0

(1.3) W [k,s]
n (a + b) > W [k,s]

n (a) + W [k,s]
n (b),

with equality if and only if a and b are proportional or k = 1. The another aim
of this paper is to give a new inequality for the s-th mean of order k by using the
Bellman’s inequality.

[(

W [k,s]
n (a + b)

)k
−

(

W [k,s]
n (c + d)

)k]1/k
>

((

W [k,s]
n (a)

)k
−

(

W [k,s]
n (c)

)k)1/k
(1.4)

+
((

W [k,s]
n (b)

)k
−

(

W [k,s]
n (d)

)k)1/k
,

with equality if and only if a and b are proportional or k = 1. Here a > 0, b > 0,
and c > 0 and d > 0 such as a > c and b > d, and c and d be proportional, and
s > 0, k is an integer, k < s + 1 if s is not an integer.

Obviously, for c = d = 0, (1.4) reduces to (1.3). (1.4) is a special case of (2.5)
in Theorem 2.2.

Suppose that a is a nonnegative n-tuple, θ > 0, λi,j(1 6 i 6 n, j = 1, 2, . . . ) is
a sequence of positive numbers and define νi,j (1 6 i 6 n, j = 1, 2, . . . ) with

λi,r =
1

r!

r
∏

j=1

νi,j .

Define, as it was done by Whiteley [21] and Bullen [4], the function a → G
[k]
n (a) of

order k by

(1.5)

+∞
∑

k=0

G[k]
n (a)xk = θ

n
∏

i=0

(

1 +

+∞
∑

r=1

λi,r(aix)r

)

.

Note that the function t
[k,s]
n is a particular case of G

[k]
n . It is enough to take

νi,j = s − j + 1 (s > 0). What’s interesting is that an inequality about G
[k]
n (a) was

established by Menon [11] (also see [14, p.168]).

(1.6)
(

G[k]
n (a + b)

)1/k
>

(

G[k]
n (a)

)1/k
+

(

G[k]
n (b)

)1/k
, k > 1,

with equality if and only if a and b are proportional or k = 1, where a and b are
nonnegative n-tuple and if λi,r (r = 1, 2, . . . ) is strictly log-concave for every i

(1 6 i 6 n). The final aim of this paper is to give a new interesting inequality for

the function G
[k]
n (a).

(1.7)
(

G[k]
n (a+b)−G[k]

n (c+d)
)1/k

>
(

G[k]
n (a)−G[k]

n (c)
)1/k

+
(

G[k]
n (b)−G[k]

n (d)
)1/k

,
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with equality if and only if a and b are proportional or k = 1. Here a, b and k are
as in (1.5), and λi,r (r = 1, 2, . . . ) is strictly log-concave for every i (1 6 1 6 n),
and c and d are nonnegative n-tuples such as c and d are proportional, and a > c

and b > d.
When c = d = 0, (1.7) becomes (1.6). (1.7) is a special case of (2.9) in

Theorem 2.3.
Moreover, recent studies related to this content can be found in references

[19,20].

2. Main Results

We need the following Lemmas to prove our main results.

Lemma 2.1. [12, p. 58] Let p > 0, q > 0, 1
p + 1

q = 1, and a = {a1, . . . , an} and

b = {b1, . . . , bn} be two series of positive real numbers and such that a
p
1 −

∑n
i=2 a

p
i >

0 and b
q
1 −

∑n
i=2 b

q
i > 0. Then

(

a
p
1 −

n
∑

i=2

a
p
i

)1/p(

b
q
1 −

n
∑

i=2

b
q
i

)1/q

6 a1b1 −

n
∑

i=2

aibi,

with equality if and only if a = µb, where µ is a constant.

Here, we call this inequality Popoviciu’s inequality.

Lemma 2.2. [2, p. 38] Let a = {a1, . . . , an} and b = {b1, . . . , bn} be two series

of positive real numbers and p > 1 such that a
p
1 −

∑n
i=2 a

p
i > 0 and b

p
1 −

∑n
i=2 b

p
i > 0,

then
(

a
p
1 −

n
∑

i=2

a
p
i

)1/p

+

(

b
p
1 −

n
∑

i=2

b
p
i

)1/p

6

(

(a1 + b1)p −

n
∑

i=2

(ai + bi)
p

)1/p

,

with equality if and only if a = υb where υ is a constant.

Here, we call this inequality Bellman’s inequality. Our main results are given
in the following theorems.

Theorem 2.1. Let m ∈ N
+, p > 0, q > 0, 1

p + 1
q = 1. If a, b be non-

negative n-tuples such that ω
[k−1,s]
n (a) > mω

[k−1,s]
n (b), ω

[k+1,s]
n (a) > mω

[k+1,s]
n (b)

and b1 = · · · = bn. If s > 0, k (1 6 k < s) is an integer, when s is not an integer,

or 1 6 k < ns if s is an integer, then

Wn(a; k, s, p, q) − mWn(b; k, s, p, q) >
(

ω[k−1,s]
n (a) − mω[k−1,s]

n (b)
)1/p

(2.1)

×
(

ω[k+1,s]
n (a) − mω[k+1,s]

n (b)
)1/q

,

with equality if and only if a1 = · · · = an, and where

Wn(x; k, s, p, q) =
(

ω[k,s]
n (x)

)2(

ω[k−1,s]
n (x)

)(1−p)/p(

ω[k+1,s]
n (x)

)(1−q)/q
.

Proof. Let’s prove this theorem by mathematical induction for m. First, we
prove that (2.1) holds for m = 1. From (1.2), we obtain

(2.2) Wn(a; k, s, p, q) >
(

ω[k−1,s]
n (a)

)1/p(

ω[k+1,s]
n (a)

)1/q
,
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with equality if and only if a1 = · · · = an, and

(2.3) Wn(b; k, s, p, q) =
(

ω[k−1,s]
n (b)

)1/p(

ω[k+1,s]
n (b)

)1/q
,

From (2.2), (2.3) and in view of the Popoviciu’s inequality, we have

Wn(a; k, s, p, q) − Wn(b; k, s, p, q) >
(

ω[k−1,s]
n (a)

)1/p(

ω[k+1,s]
n (a)

)1/q

−
(

ω[k−1,s]
n (b)

)1/p(

ω[k+1,s]
n (b)

)1/q

>
(

ω[k−1,s]
n (a) − ω[k−1,s]

n (b)
)1/p

×
(

ω[k+1,s]
n (a) − ω[k+1,s]

n (b)
)1/q

.

From the equality conditions of (1.2) and Popoviciu’s inequality, it follows that the
equality in (2.1) holds if and only if a1 = · · · = an.

This shows (2.1) right for m = 1.
Suppose that (2.1) holds when m = r − 1, we have

(2.4) Wn(a; k, s, p, q) − (r − 1)Wn(b; k, s, p, q)

>
(

ω[k−1,s]
n (a) − (r − 1)ω[k−1,s]

n (b)
)1/p(

ω[k+1,s]
n (a) − (r − 1)ω[k+1,s]

n (b)
)1/q

,

with equality if and only if a1 = · · · = an.
From (2.3), (2.4) and by using the Popoviciu’s inequality again, we obtain

Wn(a; k, s, p, q) − rWn(b; k, s, p, q)

>
(

ω[k−1,s]
n (a) − (r − 1)ω[k−1,s]

n (b)
)1/p(

ω[k+1,s]
n (a) − (r − 1)ω[k+1,s]

n (a)
)1/q

−
(

ω[k−1,s]
n (b)

)1/p(

ω[k+1,s]
n (b)

)1/q

>
(

ω[k−1,s]
n (a) − rω[k−1,s]

n (b)
)1/p(

ω[k+1,s]
n (a) − rω[k+1,s]

n (a)
)1/q

,

with equality if and only if a1 = · · · = an.
This shows that (2.1) is correct if m = r − 1, then m = r is also correct. Hence

(2.1) is right for any m ∈ N
+. �

Corollary 2.1. If a, b, k and s are as in Theorem 2.1, then
(

ω[k,s]
n (a) − ω[k,s]

n (b)
)2

>
(

ω[k−1,s]
n (a) − ω[k−1,s]

n (b)
)(

ω[k+1,s]
n (a) − ω[k+1,s]

n (b)
)

,

with equality if and only if a1 = · · · = an.

Proof. This follows immediately from the proof of Theorem 2.1. �

Theorem 2.2. Let m ∈ N
+, a > 0, b > 0, and c > 0 and d > 0 such as

W
[k,s]
n (a) > m1/kW

[k,s]
n (c) and W

[k,s]
n (b) > m1/kW

[k,s]
n (d), and c and d be propor-

tional. If s > 0, k is an integer, k < s + 1 if s is not an integer, then

(2.5)
[(

W [k,s]
n (a + b)

)k
− m

(

W [k,s]
n (c + d)

)k]1/k

>
((

W [k,s]
n (a)

)k
− m

(

W [k,s]
n (c)

)k)1/k

+
((

W [k,s]
n (b)

)k
− m

(

W [k,s]
n (d)

)k)1/k
,
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with equality if and only if a and b are proportional or k = 1.

Proof. First, we prove that (2.5) holds for m = 1. From (1.2) and (1.3), we
obtain

(2.6)

(

t
[k,s]
n (a + b)

(

k
ns

)

)1/k

>

(

t
[k,s]
n (a)
(

k
ns

)

)1/k

+

(

t
[k,s]
n (b)
(

k
ns

)

)1/k

,

with equality if and only if a and b are proportional or k = 1, and

(2.7)

(

t
[k,s]
n (c + d)

(

k
ns

)

)1/k

=

(

t
[k,s]
n (c)
(

k
ns

)

)1/k

+

(

t
[k,s]
n (d)
(

k
ns

)

)1/k

,

From (2.6), (2.7) and in view of the Bellman’s inequality, we have

[(

W [k,s]
n (a + b)

)k
−

(

W [k,s]
n (c + d)

)k]1/k

>

[((

t
[k,s]
n (a)
(

k
ns

)

)1/k

+

(

t
[k,s]
n (b)
(

k
ns

)

)1/k)k

−

((

t
[k,s]
n (c)
(

k
ns

)

)1/k

+

(

t
[k,s]
n (d)

(ns
k )

)1/k)k]1/k

>
((

W [k,s]
n (a)

)k
−

(

W [k,s]
n (c)

)k)1/k
+

((

W [k,s]
n (b)

)k
−

(

W [k,s]
n (d)

)k)1/k
.

From the equality conditions of (1.3) and Bellman’s inequality, it follows that the
equality in (2.4) holds if and only if a and b are proportional or r = 1.

This shows (2.5) right for m = 1.
Suppose that (2.5) holds when m = r − 1, we have

(2.8)
[(

W [k,s]
n (a + b)

)k
− (r − 1)

(

W [k,s]
n (c + d)

)k]1/k

>
((

W [k,s]
n (a)

)k
− (r − 1)

(

W [k,s]
n (c)

)k)1/k

+
((

W [k,s]
n (b)

)k
− (r − 1)

(

W [k,s]
n (d)

)k)1/k
,

with equality if and only if a and b are proportional or k = 1.
From (2.7), (2.8) and by using the Bellman’s inequality, we obtain

[(

W [k,s]
n (a + b)

)k
− r

(

W [k,s]
n (c + d)

)k]1/k

>

{

[

((

W [k,s]
n (a)

)k
− (r − 1)

(

W [k,s]
n (c)

)k)1/k

+
((

W [k,s]
n (b)

)k
− (r − 1)

(

W [k,s]
n (d)

)k)1/k
]k

−

[(

t
[k,s]
n (c)
(

k
ns

)

)1/k

+

(

t
[k,s]
n (d)
(

k
ns

)

)1/k]k}1/k

>
((

W [k,s]
n (a)

)k
− r

(

W [k,s]
n (c)

)k)1/k

+
((

W [k,s]
n (b)

)k
− r

(

W [k,s]
n (d)

)k)1/k
,

with equality if and only if a and b are proportional or k = 1.
This shows that (2.5) is correct if m = r − 1, then m = r is also correct. Hence

(2.5) is right for any m ∈ N
+. �
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Theorem 2.3. Let m ∈ N
+, a, b, c and d be nonnegative n-tuples such as c

and d are proportional, and G
[k]
n (a) > mG

[k]
n (c) and G

[k]
n (b) > mG

[k]
n (d). If λi,r

(r = 1, 2, . . . ) is strictly log-concave for every i (1 6 i 6 n), then

(

G[k]
n (a + b) − mG[k]

n (c + d)
)1/k

>
(

G[k]
n (a) − mG[k]

n (c)
)1/k

(2.9)

+
(

G[k]
n (b) − mG[k]

n (d)
)1/k

,

with equality if and only if a and b are proportional or k = 1.

Proof. First, we prove that (2.9) holds for m = 1. From (1.6), it is easy to
obtain

(2.10)
(

G[k]
n (a + b)

)1/k
>

(

G[k]
n (a)

)1/k
+

(

G[k]
n (b)

)1/k
,

with equality if and only if a and b are proportional or k = 1, and

(2.11)
(

G[k]
n (c + d)

)1/k
=

(

G[k]
n (c)

)1/k
+

(

G[k]
n (d)

)1/k
,

From (2.10), (2.11) and the Bellman’s inequality, we have

(

G[k]
n (a + b) − G[k]

n (c + d)
)1/k

>
{[(

G[k]
n (a)

)1/k
+

(

G[k]
n (b)

)1/k]k
−

[(

G[k]
n (c)

)1/k
+

(

G[k]
n (d)

)1/k]k}1/k

>
(

G[k]
n (a) − G[k]

n (c)
)1/k

+
(

G[k]
n (b) − G[k]

n (d)
)1/k

.

From the equality conditions of (1.6) and Bellman’s inequality, it follows that the
equality in (2.9) holds if and only if a and b are proportional or k = 1.

This shows (2.9) right for m = 1.
Suppose that (2.9) holds when m = r − 1, we have

(2.12)
(

G[k]
n (a + b) − (r − 1)G[k]

n (c + d)
)1/k

>
(

G[k]
n (a) − (r − 1)G[k]

n (c)
)1/k

+
(

G[k]
n (b) − (r − 1)G[k]

n (d)
)1/k

,

with equality if and only if a and b are proportional or k = 1.
From (2.11), (2.12) and by using the Bellman’s inequality again, we obtain

(

G[k]
n (a + b) − rG[k]

n (c + d)
)1/k

>
{[(

G[k]
n (a) − (r − 1)G[k]

n (c)
)1/k

+
(

G[k]
n (b) − (r − 1)G[k]

n (d)
)1/k]k

−
((

G[k]
n (c)

)1/k
+

(

G[k]
n (d)

)1/k)k}1/k

>
(

G[k]
n (a) − rG[k]

n (c)
)1/k

+
(

G[k]
n (b) − rG[k]

n (d)
)1/k

,

with equality if and only if a and b are proportional or k = 1.
This shows that (2.9) is correct if m = r − 1, then m = r is also correct. Hence

(2.9) is right for any m ∈ N
+. �
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