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AN INTEGRAL FUNCTIONAL EQUATION
ON ABELIAN SEMIGROUPS

Ahmed Akkaoui and Mohamed El Fatini

ABSTRACT. We investigate a generalization of many functional equations. Namely,
we consider the following functional equation

/f(w+y+t)du(t)+/f(x+50(y)+t)dl/(t):f(x)+h(y), z,y €5,
s

S
where (S, +) is an abelian semigroup, ¢ is a surjective endomorphism of S,
E is a linear space over the field K € {R,C} and p,v are linear combinations
of Dirac measures. Under appropriate conditions on p and v and based on
Stetkeer’s result [9], we find and characterize solutions of the previous func-
tional equation.

1. Notations and preliminary results

In this work, we consider (S,+) an abelian semigroup, i.e., a nonempty set
equipped with an associative operation, ¢ an endomorphism of S, E a linear space
over the field K € {R,C} and p, v linear combinations of Dirac measures. We say
that the semigroup S is a topological semigroup, if S is equipped with a topology
such that the product map (x,y) — x +y from S x S to S is continuous, when
S x S is given the topological product.

A function A: S — F is said to be additive if A(z +y) = A(x) + A(y) for all
z,y € S. Amap Q(-,): S x S — E is said to be bi-additive if Q(-,z): S — E and
Q(z,-): S — E are additive for each fixed € S, and is said to be symmetric if
Q(z,y) = Q(y,x) for all z,y € S. The endomorphism o of S is said to be involutive
if 02 = id. We denote by §, the Dirac measure concentrated at z. The number
v(S) and the measure v~ (when S is a group) are respectively defined by

U(S) = [5 dv(t) and [5 o) dv (1) = / g(=t) dv(t)

S
for all function g: S — E.
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We recall that the second difference C?f: SxSxS — E of a function f: S — E
is defined by

C*f(w,y,2) = flx+y+2)— fla+y)— fly+z)— fl@+2)+ f@)+ fy) + f(2).

The functional equation C? f(z,y, z) = 0 is called Whitehead’s functional equation.
It is equivalent to

(LY) fla+y+2)+f(0)+fW)+f(z) = fl@e+y)+fly+2)+f(e+2), zyz€5.

Our main result is based on following Stetkeer’s result which can be derived in [9]
Theorems 6 and 7] as follows:

THEOREM 1.1. Let f: S — E be a function.

(1) If f is a solution of Whitehead’s functional equation (LI)), then there exists
an additive map A: S — E and a symmetric, bi-additive map Q: S x S — E
such that

(1.2) f(z) =Q(x,x) + A(x), forall z€S.

(2) Assume that S is a topological semigroup and E is a topological vector space
over R or C. If f: S — FE is a continuous solution of Whitehead’s functional

equation (II), then the components A and Q in decomposition ([L2)) are con-
tinuous.

2. Introduction

The following functional equation

(2.1) /fx+y+t du(t) /fz+o y)+t)dv(t) = f(x)+ fly), =z,y€S,

was solved by Akkaoui et al. in [1], where f: S — E is the unknown function and
o is an involution of S.
Our aim is to generalize (Z)), by solving the following functional equation

(2.2) /f:z:—i—y-i—t du(t) /fx-i—go y)+t)dv(t) = f(z) + h(y), z,y€S,

where ¢ is a surjective endomorphism of S. Equation ([22]) generalizes several equa-
tions which are studied in the literature such as Jensen’s, Drygas’ or the quadratic
equations on abelian monoids. In [4], with ¢ = —id, the functional equation ([2:2))
was studied in the case where 4 = v~ and v is a regular compactly supported
the complex-valued Borel measure on a locally compact abelian Hausdorff group G
such that ¥(G) = 3 and f: G — C is continuous. If (S, +) is a monoid with a neu-
tral element 0 and u = v = %(50, equation (Z2) becomes respectively in the cases
where h = f and h = 0 the following generalized Jensen and quadratic functional
equations:

flx+y)+ fl@+e(y) =2f(x), z,y€S,
flx+y)+flx+ey) =2f(x) +2f(y), =zyeS,

which are solved on an abelian semigroup (see [7]) in the case where ¢ is involutive
and in the case where ¢ is an arbitrary endomorphism of S (see [6]).
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Using our main result Theorem B} we solve in the last section the following
special cases of functional equation (2.2)):

(2.3)
/f:c+a y) + ) dp(t) /f:E+T Y) + 1) duv(t) = f(z) + h(y), zy€S,
(2.4) af(r+y+a)+Bf(x+ey) +b) = f(x) +hly), =yes,

(2.5) af(z+o(y) +a)+B8f(x+7(y)+b) = f(z) +h(y), x,y€S,

where o, 7 are two involutions of S, a,b are two arbitrary elements of S, and «,
are two arbitrary elements of K. Equation ([23) is an important generalization of
(1)) because we use here two involutions instead of one. If (S, +) is a monoid with
a neutral element 0, a =b=0,a = = % and h = f, then equation (2.35]) becomes

flx+a() + fla+7(y) =2f(x) +2f(y), xyeSs,

which is solved on abelian semigroup in [5]. In the case where ¢ is involutive and
o = 3 = 1, equation (Z4) is solved on monoid (see [2]) and on a locally compact
abelian Hausdorff group [3] (only the complex-valued continuous solutions).

Our main contribution is to consider ¢ to be surjective in (Z2) and (Z4)
(not necessarily involutive). Also in equations ([Z3) and (ZX) o and 7 are two
involutions, and also equations (Z.4) and (Z3]) are studied with respect to an abelian

semigroup (are not necessarily on a group or a monoid).
3. Main results
To establish our Theorem BT we present these two important lemmas.
LEMMA 3.1. Let f,F : S — E be two functions such that for all x,y,z € S

(B.1) Fl+ty+z)=fl+ty +fla+t)+fly+2)—fl@)-fly) - f2),

then there exists an element ¢ € E such that the function f—c satisfies Whitehead’s
functional equation (L)), i.e., C*(f —c) = 0.

PROOF. Let f, F': S — E be two functions satisfying (3.1) and let z,y, z,r € S.
Making the substitutions (x + y, 7, z) and (z + r,y, z) in BI), we obtain

(3.2) Fa+y+r+2)=fle+y+r)+flz+y+2)+ fr+2)
—fl@+y) = f(r)— f(2)
(3.3) F(z+r+y+z):f(x+r+y)+f(z+r+z)+f(y+z)

—fle+r)=fly) - f(2).
Subtracting B3) from [B.2)), we get
flaty+2)+flr+z)—flaty) = flr) = flat+z+r)+ fly+2) - fla+r) = fy).
Then for all z,y, z,r € S, we have
flaty+2)—fla+y) = fly+2)+fy) = Flatr+z)— fla+r) = fr+2)+ f(r)
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We can deduce that the expression f(z+y+2)— f(x+y)— f(y+2)+ f(y) depends
only on x and z. Let

(3.4) g(x,2) = flx+y+2)—flx+y) - fly+2)+fly), x2€S8,

fory e S.
Interchanging y and z in (34) and subtracting the new equation from (3.4,
we get for all z,y,z € §

9(z,2) = flx+2) + f(2) = g(z,y) — flz+y) + f(y).
Again the expression g(z,y) — f(z + y) + f(y) depends only on x. Let
(3.5) k(z) :=g(z,y) = flx+y) + fly), z€b,

for y € S. Changing the role of z and y in (8) and subtracting the new equation
from ([BH), we get for all z,y € S

k(z) + f(z) = k(y) + f(),

because g is symmetric.
Then the function k+ f is a constant. Let ¢ € E such that k4 f = ¢. According
to (B8], we have for all z,y € S

g(x,y) = f(x+y)— flz) - fly) +c
Then [B.4) gives
f+y+z2)—c=fla+y) +fla+2)+ fly+2)— fl@)— fl) - f(2),

for all z,y,z € S. So the function V := f — c satisfies Whitehead’s functional
equation (L)), i.e., C%(f —¢c) = 0. O

REMARK 3.1. In Lemma[31] we can replace the space E by an arbitrary abelian
group.

LEMMA 3.2. Let f,h: S — E be a solution of ([Z2). Then there exists an
element ¢’ € E such that for all x,y,z € S we have

/Sf(w(w+y+2:)+t)d(u+l/)(t)=f0<p(w+y)+f090(:v+z)+f0<p(y+Z)
—fop(@)—fop(y) — fop(z)+c.

PROOF. Let f,h: S — E be a solution of ([Z2]) and let z,y,z € S. Making the
substitutions (z + vy, 2), (xz,y + z) and (z + ¢(z),y) in Z2)), we get respectively

/Sf(x-i-y—i—z—l—t)d,u(t)+/Sf(:n+y+cp(z)+t)du(t):f(:zz—i-y)-i-h(z),
/Sf(x+y+z+t)du(t)+/Sf(z+<p(y+z)+t)dy(t)f(z)+h(y+z),

/Sf(w+y+s0(2)+t)du(t)+/Sf(w+¢(y+2)+t)dl/(t)f(w+sﬁ(2))+h(y)-
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Subtracting the middle identity from the sum of the other two we obtain

/Sf(w+y+<p(2)+t) d(p+v)(t) = fla+y)+fa+e(2) = f (@) +h(y)+h(z) —h(y+2).

Replacing x and y by ¢(x) and ¢(y) respectively in the last equation, we get
39) [ fplaty+2)+0dut)t) = Foule )+ ol +2) = o)

+hop(y) + h(z) — h(p(y) + 2).

Now, changing the role of x and z in the last equation and subtracting the new one
from it, we get for all x,y,z € S

fop(zty)—foo(z)+h(e(y)+x)—h(z) = fop(z+y)—fow(z)+h(p(y)+2)—h(2).
Hence we can deduce that the expression
fow(z+y) = fop(z) +hlely) +2) — h(z)
depends only on y. Let
H(y) :=fop(z+y) = fop(z) +hle(y) +2) —h(z) yebS,
for z € S. Then for all i,z € S we have

h(z) = h(p(y) +2) = fop(z+y) — fop(z) — H(y).
Identity (B.6]) becomes
(3.7) /f(w(x+y+2)+t)d(u+l/)(t) — Foplety)+foplet )t foplytz)
S

—fop(@) = fow(z)+hop(y) - H(y).
Interchanging the role of y and z in ([B7) and subtracting the new equation from
it, we get for all x,y € S

fow(z)+hop(z) = H(z) = fop(y)+hoely) — H(y).
Then the function fop+hoy— H is constant, say ¢’. Hence identity (8.7) becomes
[ 1o+ y+ 2 40 dpt )0 = Fople+9) + Togla+2) +oely+2)
—fooplx)—fop(y) = foplz)+,
which yields the result of Lemma O

PROPOSITION 3.1. If f,h: S — E is a solution of [22), then there exists an
element ¢ € E such that f o ¢ — ¢ satisfies Whitehead’s functional equation (I,
i.e., C?(fop—c)=0.

PROOF. Let f,h: S — E be a solution of (2.2). According to Lemma [3.2]
there exists an element ¢’ € E such that

téfw@+y+ZHtﬁMHLMﬂfOﬂx+m+fOﬂw+d+fOﬂy+d

—fop(x)—fop(y) — fop(z)+c.
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Putting F(z) := [ f(e(x) + 1) d(p+ v)(t) — ¢, then
(3.8) F(z+y+z) = fop(z+y)+fop(r+z)+ fop(y+z)—fop(x)—for(y)—fop(z).

Applying Lemma Bl to identity (3.8]), then there exists an element ¢ € F such that
C?*(foyp—c)=0. O

The following main theorem solves functional equation (2:2) on an arbitrary
abelian semigroup.

THEOREM 3.1. Suppose that o is surjective and let (o, B) == (u(S),v(S)) € K2.
Then the pair f,h: S — E is a solution of [Z2) if and only if we have the following
possibilities:

(1) If a+ B #1, then f = ¢, h = (a+  — 1)c, where ¢ is a constant belonging

to E.

(2) Ifa+ B =1, then
(a) Ifa=1and § =0, then f = A+c, h= A+ [, A(t)d(p + v)(t), where
A: S — X is an additive map and c is a constant belonging to E.
(b) Ifa=0and f =1, then f = A4c, h=Aop+ [¢ A(t) d(p+v)(t), where
A: S — FE is an additive map and c is a constant belonging to E.
(¢) If « £ 0 and 8 # 0, then

(3.9) f(@) = Q(z, ) + Alx) + ¢,

) = 5Q.2) + 0d(@) + BA(e@) +2 | Qant) (= 50) )

+ / {Qt. 1) + AL }d(u + v)(1),
S

where A: S — E is an additive map, Q: S x S — E is a symmetric,
bi-additive map such that for oll z,y € S

(i) Qz,¢(y)) = —5Q(z,y), (i) [¢Q(zt)d(u+v)(t) =0,
and c is a constant belonging to E.

Moreover, if S is a topological semigroup, E is a topological vector
space over R or C, and f: S — E is continuous, then the components A
and @ in decomposition BH) are continuous and if ¢ is continuous, then
h is continuous.

PROOF. It is easy to check that the functions f,h : S — E presented in cases
(1) and (2) are solutions of (Z2]). Conversely, let f,h: S — E be a solution of (2.2)).
According to Proposition Bl there exists an element ¢ € E such that foy — ¢
satisfies Whitehead’s functional equation (L)), i.e., C?(f o ¢ — ¢) = 0. Since ¢ is
surjective, we get C%(f —c¢) = 0.

According to Theorem [[L1] there exists an additive map A: S — FE and a
symmetric, bi-additive map Q: S x S — FE such that f(z) = Q(z,z) + A(z) + c.
Substituting f in (22) and using the fact that ©(S) = « and v(S) = 3, we get after
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calculation

(3.10)  A(y) = (a+ B - D[Q(z,2) + A(x) + ] + aQ(y,y) + BR(»(v), »(v))
+ aA(y) + BA o p(y) +20Q(x,y)

+25Q(.¢l0) +2 [ Qa.0)d(u+1)(0)
+2 [ Qb dutt) + 2 [ Qelw).tydu(t) + 6
S S
where 0 := [({Q(t,t) + A(t)}d(u + v)(2).
For a fixed y € S, the right-hand side of (BI0) is a function of € S. Then

using the observation that was used in the proof of [I, Proposition 3.10], we see
that

(3.11) 0=(a+p-1)Q(z,x),
(312) 0= (a+ B — 1)A(x) +20Q(x,y) + 26Q(x, p(y)) + 2 /S Q. t) d(p + v)(0).

B.13) h(y) = (a+f—-1ec+0+aQ(y,y) + LQ>(y)

+ aA(y) + BA(p +2/Qy, du(t +2/Q v(t).
By applying the same observation to ([BI2) for the variable y by fixing z, we get
(3.14) (a+f—-1)A +2/th (11 +v)(t) = 0,
(3.15) aQ(z,y) + BQ(x, ¢(y)) = 0.

(1) fa+ f —1#0, then we derive from BII]), that Q(z,z) = 0, which implies

Q = 0 (because 2Q(z, y) = Q(a +y, 7+3) — Q(, 1)~ Q(y, y)) and from ELII),

we have A = 0. Then f = ¢ and from BI3), h = (o + S — 1)c.

So we deduce the result (1) of Theorem.
(2) Ta+ 5 —1=0, then

(a) If « = 1 and § = 0, then equality (BI5) implies that @ = 0, hence
f = A+cand from BI3), we get h = A+ [g A(t)d(p + v)(t). So we
deduce (2)(a).

(b) If « = 0 and 8 = 1, from equality B.I5) we have Q(z, ¢(y)) = 0 for
all z,y € S, which implies that ) = 0, because ¢ is surjective. Then
f=A+cand h=Aoyp+ [;A(t)d(p+ v)(t). So we conclude (2)(b).

(c) If a # 0 and B # 0, equality BI5) gives Q(z, p(y)) = —FQ(z,y) for all
x,y € S and we get from B.I3))

h(x):%Q(x,x)JraA( x) + BA(p +2/Q:c t)d u—ﬁy)(t)

+ / {QE. 1) + At }d(u + ).
S
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From (314), we have [ Q(z,t) d(u+v)(t) = 0. So we obtain (c)(ii). The continuity
statements follow from Theorem [IT] (ii). O

REMARK 3.2. In Theorem [3.1] we have considered linear combinations of Dirac
measures because, quite simply, the unknowns are defined on a semigroup. This
result remains valid provided that the integral that defines equation (2.2)) exists.

As an application of Theorem [B] we present the following example.

EXAMPLE 3.1. Let S := (R?,+), E:= (C,+), a = (1,1), b = (2,2), p = 30a,
v = —36, and let ¢ be the endomorphism of S defined by ¢(z) = (4x1,4a;) for
all x := (z1,22) € S. Note that ¢ is not involutive but it is surjective.

Functional equation (Z2) becomes

Af(zr+y1+ 1, zo+ye+1) — f(z1 +4y1 + 2,22+ 4ya + 2) = 3f(x1, 22) + 3h(y1,y2),

for all (.Tl,l'g), (yl, y2) eSs.
The continuous symmetric and bi-additive map @Q: S x S — C, as known in
the literature (e.g., [8] Lemma 2.14]), takes the following form

Q(z,y) = pr1y1 + qray2 + s(x1y2 + T291),

for all  := (x1,22),y := (y1,y2) € S, where p, ¢, s € C. The function Q verifies the
condition Q(z, p(y)) = —%Q(m,y) forallz,y € S (a = %, B = —1) and also verifies
the condition [¢ Q(x,t)d(p + v)(t) =0 for all z € S if and only if p = ¢ = —s.

The continuous additive map A: S — C, as known in the literature (e.g., [8]
Corollary 2.4]), takes the following form A(z) := wxy+nzs, for all x := (21, 22) € S,
where w,n € C.

According to Theorem 31} the continuous solutions f, h: R? — C of the above
functional equation are

f(z1,22) = p(z1 — 22)* + way + Nz +c,
h(zy,x0) = —4p(zy — 29)? + %(w +7),
where p,w,n,c € C.

4. Applications

As immediate consequences of Theorem B.I], we have the following corollaries.
The first one solves equation (Z3).

COROLLARY 4.1. Let (o, 8) := (u(S),v(9)) € K. The pair f,h: S — E is a
solution of [23)) if and only if we have the following possibilities:
(1) If a+ B #1, then f =c¢, h = (a+  — 1)c, where ¢ is a constant belonging
to I.
(2) Ifa+ B =1, then
(a) Ifa=1and 3 =0, then f = A+c, h=Aoo+ [ A(t)d(u+v)(t), where
A: S — FE is an additive map and c is a constant belonging to E.
(b) Ifa=0and =1, then f = A+¢, h= Aot + [ A(t) d(u+v)(t), where
A: S — FE is an additive map and c is a constant belonging to E.
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(¢) If « #0 and B # 0, then
(4.1) f(@) = Qz,2) + Az) +c,

hz) = 2Q(o(x), o(z)) + aA(o(z)) + BA(T(x))

(0%

g
+2 [ Q@ d(n=50)0 + [ 100 + A®}G+ )0,

where A: S — E is an additive map, Q: S x S — E is a symmeltric,
bi-additive map such that for oll x,y € S we have
. «@ .

(1) Q(m,T(y)) = _BQ('T’ 0(9)); (11) fs Q(mat) d(u + V)(t) =0,
and c is a constant belonging to E.

Moreover, if S is a topological semigroup, E is a topological vector
space over R or C, and f: S — E is continuous, then the components A
and Q in decomposition [&1)) are continuous and if o and T are continu-
ous, then h is continuous.

PRrROOF. By putting ¢ = 700 and replacing h by h oo in Theorem Bl we get
the desired result. O

Let «, 8 be two elements of K, and let a,b be two arbitrary fixed elements of
the semigroup S. We have the following corollaries.

COROLLARY 4.2. Suppose that ¢ is surjective. The pair fih : S — E is a
solution of 24 if and only if we have the following possibilities:
(1) Ifa+ B #1, then f =¢, h = (a+ 8 — 1)e, where ¢ is a constant belonging
to E.
(2) Ifa+ B =1, then
(a) fa=1and B =0, then f = A+c¢, h=A+ A(a), where A: S — X is
an additive map and c is a constant belonging to E.
(b) Ifa=0and B=1, then f=A+c, h=Aop+ A(b), where A: S - FE
is an additive map and c is a constant belonging to E.

(¢) If « #0 and B # 0, then
(4.2) f(x) = Q(x,z) + A(z) +c,
h#) = SQ( + a4 a) + aA(r +a) + FA(p(x) +b).

where A: S — E is an additive map, Q: S x S — E is a symmetric,
bi-additive map such that for all x,y € S

(i) Q. () = —2Qx,y), (i) Qw,b) = —3Q(z,0),
and c is a constant belonging to E.

Moreover, if S is a topological semigroup, E is a topological vector
space over R or C, and f: S — E is continuous, then the components A
and @Q in decomposition [E2) are continuous and if ¢ is continuous, then
h is continuous.
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PROOF. By putting g = ad,, v = (0, in Theorem Bl we get the desired
result. O

COROLLARY 4.3. The pair f,h: S — E is a solution of (Z1) if and only if we
have the following possibilities:
(1) If a+ B # 1, then f = ¢, h = (a+  — 1)c, where ¢ is a constant belonging
to E.
(2) Ifa+ B =1, then
(a) Ifa=1and =0, then f = A+c, h=Aoo+ A(a), where A: S — E
is an additive map and c is a constant belonging to E.
(b) Ifa=0and =1, then f = A+c, h=AoT1+ A(b), where A: S — FE
is an additive map and c is a constant belonging to E.

(¢) If « #0 and B # 0, then
(4.3) f(@) =Q(z,x) + Az) + ¢,

h(z) = %Q(U(fﬂ) +a,0(z) +a) + aA(o(z) + a) + SA(T(z) + ),

where A : S — E is an additive map, Q: S x S — FE is a symmetric,
bi-additive map such that for all x,y € S

(i) Qz,7(y)) = *%Q(SE,O’(ZJ)), (i) Q(z,b) = 7%@(:670’);
and c is a constant belonging to E.

Moreover, if S is a topological semigroup, E is a topological vector
space over R or C, and f: S — E is continuous, then the components A
and Q in decomposition [@3) are continuous and if o and T are continu-
ous, then h is continuous.

PROOF. By putting p = ad,, v = B, in Corollary 1] we get the desired
result. O

In the following example, we consider a surjective endomorphism which is not
bijective.

ExXAMPLE 4.1. Let E be the vector space, over R, of sequences of real numbers.
Let ¢ be the endomorphism of the group (E, +) defined by ¢((un)n) = (vn)n such
that for alln € N, v, = up41 — Un.

Note that ¢ is surjective but not bijective: for (vy), € F, the sequence (up )
defined by u,, = Z;:Ol v; for all n > 1 and wug is an arbitrary element of R satisfies
‘P((un)n) = (Un)n

We want to determine the solutions f,h: E — E of the functional equation
(4.4)
f((un)n + (0n)n + (an)n) + f((un)n +@((0n)n) + (bn)n) = 2f((un)n) + 2k((vn)n),
for all (un)n, (Un)n € E, where (ap)n, (bn)n € E are two arbitrary constants. The
only symmetric, bi-additive map Q: E x E — E satisfying Q((un)n, ©((vn)n)) =
—Q((tun)n, (Vn)n) for all (uy)n, (Vn)n € E is the null map. Indeed, let (un)n, (Vn)n €
E. We have

Q((un)n, p((vn)n)) = =Q((un)n, (vn)n) & Q(Uun)n;s (Vnt1)n) = 0.
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Then @ = 0, because the map (vy,)n — (Vn41)n IS surjective.

According to Corollary 2] the solutions f,h: E — E of {4 are

1

f((un)n) = A((un)n) + (en)n,  h((un)n) = §A((un+l)n + (an)n + (bn)n),

where A: E — FE is an additive map and (¢, ), is a constant belonging to E.

C

oo
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