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AN INTEGRAL FUNCTIONAL EQUATION

ON ABELIAN SEMIGROUPS

Ahmed Akkaoui and Mohamed El Fatini

Abstract. We investigate a generalization of many functional equations. Namely,
we consider the following functional equation

∫

S

f(x + y + t) dµ(t) +

∫

S

f(x + ϕ(y) + t) dν(t) = f(x) + h(y), x, y ∈ S,

where (S, +) is an abelian semigroup, ϕ is a surjective endomorphism of S,
E is a linear space over the field K ∈ {R,C} and µ,ν are linear combinations
of Dirac measures. Under appropriate conditions on µ and ν and based on
Stetkær’s result [9], we find and characterize solutions of the previous func-
tional equation.

1. Notations and preliminary results

In this work, we consider (S, +) an abelian semigroup, i.e., a nonempty set
equipped with an associative operation, ϕ an endomorphism of S, E a linear space
over the field K ∈ {R,C} and µ, ν linear combinations of Dirac measures. We say
that the semigroup S is a topological semigroup, if S is equipped with a topology
such that the product map (x, y) 7→ x + y from S × S to S is continuous, when
S × S is given the topological product.

A function A : S → E is said to be additive if A(x + y) = A(x) + A(y) for all
x, y ∈ S. A map Q(·, ·) : S × S → E is said to be bi-additive if Q(·, x) : S → E and
Q(x, ·) : S → E are additive for each fixed x ∈ S, and is said to be symmetric if
Q(x, y) = Q(y, x) for all x, y ∈ S. The endomorphism σ of S is said to be involutive
if σ2 = id. We denote by δz the Dirac measure concentrated at z. The number
ν(S) and the measure ν− (when S is a group) are respectively defined by

ν(S) :=

∫

S

dν(t) and

∫

S

g(t) dν−(t) :=

∫

S

g(−t) dν(t)

for all function g : S → E.
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We recall that the second difference C2f : S×S×S → E of a function f : S → E

is defined by

C2f(x, y, z) := f(x + y + z) − f(x + y) − f(y + z) − f(x + z) + f(x) + f(y) + f(z).

The functional equation C2f(x, y, z) = 0 is called Whitehead’s functional equation.
It is equivalent to

(1.1) f(x+y+z)+f(x)+f(y)+f(z) = f(x+y)+f(y+z)+f(x+z), x, y, z ∈ S.

Our main result is based on following Stetkær’s result which can be derived in [9,
Theorems 6 and 7] as follows:

Theorem 1.1. Let f : S → E be a function.

(1) If f is a solution of Whitehead’s functional equation (1.1), then there exists

an additive map A : S → E and a symmetric, bi-additive map Q : S × S → E

such that

(1.2) f(x) = Q(x, x) + A(x), for all x ∈ S.

(2) Assume that S is a topological semigroup and E is a topological vector space

over R or C. If f : S → E is a continuous solution of Whitehead’s functional

equation (1.1), then the components A and Q in decomposition (1.2) are con-

tinuous.

2. Introduction

The following functional equation

(2.1)

∫

S

f(x + y + t) dµ(t) +

∫

S

f(x + σ(y) + t) dν(t) = f(x) + f(y), x, y ∈ S,

was solved by Akkaoui et al. in [1], where f : S → E is the unknown function and
σ is an involution of S.

Our aim is to generalize (2.1), by solving the following functional equation

(2.2)

∫

S

f(x + y + t) dµ(t) +

∫

S

f(x + ϕ(y) + t) dν(t) = f(x) + h(y), x, y ∈ S,

where ϕ is a surjective endomorphism of S. Equation (2.2) generalizes several equa-
tions which are studied in the literature such as Jensen’s, Drygas’ or the quadratic
equations on abelian monoids. In [4], with ϕ = − id, the functional equation (2.2)
was studied in the case where µ = ν− and ν is a regular compactly supported
the complex-valued Borel measure on a locally compact abelian Hausdorff group G

such that ν(G) = 1
2 and f : G → C is continuous. If (S, +) is a monoid with a neu-

tral element 0 and µ = ν = 1
2 δ0, equation (2.2) becomes respectively in the cases

where h = f and h = 0 the following generalized Jensen and quadratic functional
equations:

f(x + y) + f(x + ϕ(y)) = 2f(x), x, y ∈ S,

f(x + y) + f(x + ϕ(y)) = 2f(x) + 2f(y), x, y ∈ S,

which are solved on an abelian semigroup (see [7]) in the case where ϕ is involutive
and in the case where ϕ is an arbitrary endomorphism of S (see [6]).
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Using our main result Theorem 3.1, we solve in the last section the following
special cases of functional equation (2.2):

∫

S

f(x + σ(y) + t) dµ(t) +

∫

S

f(x + τ(y) + t) dν(t) = f(x) + h(y), x, y ∈ S,

(2.3)

αf(x + y + a) + βf(x + ϕ(y) + b) = f(x) + h(y), x, y ∈ S,(2.4)

αf(x + σ(y) + a) + βf(x + τ(y) + b) = f(x) + h(y), x, y ∈ S,(2.5)

where σ, τ are two involutions of S, a, b are two arbitrary elements of S, and α, β

are two arbitrary elements of K. Equation (2.3) is an important generalization of
(2.1) because we use here two involutions instead of one. If (S, +) is a monoid with
a neutral element 0, a = b = 0, α = β = 1

2 and h = f , then equation (2.5) becomes

f(x + σ(y)) + f(x + τ(y)) = 2f(x) + 2f(y), x, y ∈ S,

which is solved on abelian semigroup in [5]. In the case where ϕ is involutive and
α = β = 1

2 , equation (2.4) is solved on monoid (see [2]) and on a locally compact
abelian Hausdorff group [3] (only the complex-valued continuous solutions).

Our main contribution is to consider ϕ to be surjective in (2.2) and (2.4)
(not necessarily involutive). Also in equations (2.3) and (2.5) σ and τ are two
involutions, and also equations (2.4) and (2.5) are studied with respect to an abelian
semigroup (are not necessarily on a group or a monoid).

3. Main results

To establish our Theorem 3.1, we present these two important lemmas.

Lemma 3.1. Let f, F : S → E be two functions such that for all x, y, z ∈ S

(3.1) F (x + y + z) = f(x + y) + f(x + z) + f(y + z) − f(x) − f(y) − f(z),

then there exists an element c ∈ E such that the function f −c satisfies Whitehead’s

functional equation (1.1), i.e., C2(f − c) = 0.

Proof. Let f, F : S → E be two functions satisfying (3.1) and let x, y, z, r ∈ S.
Making the substitutions (x + y, r, z) and (x + r, y, z) in (3.1), we obtain

F (x + y + r + z) = f(x + y + r) + f(x + y + z) + f(r + z)(3.2)

− f(x + y) − f(r) − f(z),

F (x + r + y + z) = f(x + r + y) + f(x + r + z) + f(y + z)(3.3)

− f(x + r) − f(y) − f(z).

Subtracting (3.3) from (3.2), we get

f(x+ y + z) + f(r + z) − f(x+ y) − f(r) = f(x+ z + r) + f(y + z) − f(x+ r) − f(y).

Then for all x, y, z, r ∈ S, we have

f(x+ y + z) − f(x+ y) − f(y + z) + f(y) = f(x+ r + z) − f(x+ r) − f(r + z) + f(r).
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We can deduce that the expression f(x+y +z)−f(x+y)−f(y +z)+f(y) depends
only on x and z. Let

(3.4) g(x, z) := f(x + y + z) − f(x + y) − f(y + z) + f(y), x, z ∈ S,

for y ∈ S.
Interchanging y and z in (3.4) and subtracting the new equation from (3.4),

we get for all x, y, z ∈ S

g(x, z) − f(x + z) + f(z) = g(x, y) − f(x + y) + f(y).

Again the expression g(x, y) − f(x + y) + f(y) depends only on x. Let

(3.5) k(x) := g(x, y) − f(x + y) + f(y), x ∈ S,

for y ∈ S. Changing the role of x and y in (3.5) and subtracting the new equation
from (3.5), we get for all x, y ∈ S

k(x) + f(x) = k(y) + f(y),

because g is symmetric.
Then the function k+f is a constant. Let c ∈ E such that k+f = c. According

to (3.5), we have for all x, y ∈ S

g(x, y) = f(x + y) − f(x) − f(y) + c.

Then (3.4) gives

f(x + y + z) − c = f(x + y) + f(x + z) + f(y + z) − f(x) − f(y) − f(z),

for all x, y, z ∈ S. So the function V := f − c satisfies Whitehead’s functional
equation (1.1), i.e., C2(f − c) = 0. �

Remark 3.1. In Lemma 3.1, we can replace the space E by an arbitrary abelian
group.

Lemma 3.2. Let f, h : S → E be a solution of (2.2). Then there exists an

element c′ ∈ E such that for all x, y, z ∈ S we have
∫

S

f(ϕ(x + y + z) + t) d(µ + ν)(t) = f ◦ ϕ(x + y) + f ◦ ϕ(x + z) + f ◦ ϕ(y + z)

− f ◦ ϕ(x) − f ◦ ϕ(y) − f ◦ ϕ(z) + c′.

Proof. Let f, h : S → E be a solution of (2.2) and let x, y, z ∈ S. Making the
substitutions (x + y, z), (x, y + z) and (x + ϕ(z), y) in (2.2), we get respectively

∫

S

f(x + y + z + t) dµ(t) +

∫

S

f(x + y + ϕ(z) + t) dν(t) = f(x + y) + h(z),

∫

S

f(x + y + z + t) dµ(t) +

∫

S

f(x + ϕ(y + z) + t) dν(t) = f(x) + h(y + z),

∫

S

f(x + y + ϕ(z) + t) dµ(t) +

∫

S

f(x + ϕ(y + z) + t) dν(t) = f(x + ϕ(z)) + h(y).
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Subtracting the middle identity from the sum of the other two we obtain
∫

S

f(x+y+ϕ(z)+t) d(µ+ν)(t) = f(x+y)+f(x+ϕ(z))−f(x)+h(y)+h(z)−h(y+z).

Replacing x and y by ϕ(x) and ϕ(y) respectively in the last equation, we get
∫

S

f(ϕ(x + y + z) + t) d(µ + ν)(t) = f ◦ ϕ(x + y) + f ◦ ϕ(x + z) − f ◦ ϕ(x)(3.6)

+ h ◦ ϕ(y) + h(z) − h(ϕ(y) + z).

Now, changing the role of x and z in the last equation and subtracting the new one
from it, we get for all x, y, z ∈ S

f ◦ϕ(x+y)−f ◦ϕ(x)+h(ϕ(y)+x)−h(x) = f ◦ϕ(z+y)−f ◦ϕ(z)+h(ϕ(y)+z)−h(z).

Hence we can deduce that the expression

f ◦ ϕ(z + y) − f ◦ ϕ(z) + h(ϕ(y) + z) − h(z)

depends only on y. Let

H(y) := f ◦ ϕ(z + y) − f ◦ ϕ(z) + h(ϕ(y) + z) − h(z) y ∈ S,

for z ∈ S. Then for all y, z ∈ S we have

h(z) − h(ϕ(y) + z) = f ◦ ϕ(z + y) − f ◦ ϕ(z) − H(y).

Identity (3.6) becomes
∫

S

f(ϕ(x + y + z) + t) d(µ + ν)(t) = f ◦ ϕ(x + y) + f ◦ ϕ(x + z) + f ◦ ϕ(y + z)(3.7)

− f ◦ ϕ(x) − f ◦ ϕ(z) + h ◦ ϕ(y) − H(y).

Interchanging the role of y and z in (3.7) and subtracting the new equation from
it, we get for all x, y ∈ S

f ◦ ϕ(z) + h ◦ ϕ(z) − H(z) = f ◦ ϕ(y) + h ◦ ϕ(y) − H(y).

Then the function f ◦ϕ+h◦ϕ−H is constant, say c′. Hence identity (3.7) becomes
∫

S

f(ϕ(x + y + z) + t) d(µ + ν)(t) = f ◦ ϕ(x + y) + f ◦ ϕ(x + z) + f ◦ ϕ(y + z)

− f ◦ ϕ(x) − f ◦ ϕ(y) − f ◦ ϕ(z) + c′,

which yields the result of Lemma 3.2. �

Proposition 3.1. If f, h : S → E is a solution of (2.2), then there exists an

element c ∈ E such that f ◦ ϕ − c satisfies Whitehead’s functional equation (1.1),
i.e., C2(f ◦ ϕ − c) = 0.

Proof. Let f, h : S → E be a solution of (2.2). According to Lemma 3.2,
there exists an element c′ ∈ E such that

∫

S

f(ϕ(x + y + z) + t) d(µ + ν)(t) = f ◦ ϕ(x + y) + f ◦ ϕ(x + z) + f ◦ ϕ(y + z)

− f ◦ ϕ(x) − f ◦ ϕ(y) − f ◦ ϕ(z) + c′.
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Putting F (x) :=
∫

S
f(ϕ(x) + t) d(µ + ν)(t) − c′, then

(3.8) F (x+y+z) = f◦ϕ(x+y)+f◦ϕ(x+z)+f◦ϕ(y+z)−f◦ϕ(x)−f◦ϕ(y)−f◦ϕ(z).

Applying Lemma 3.1 to identity (3.8), then there exists an element c ∈ E such that
C2(f ◦ ϕ − c) = 0. �

The following main theorem solves functional equation (2.2) on an arbitrary
abelian semigroup.

Theorem 3.1. Suppose that ϕ is surjective and let (α, β) := (µ(S), ν(S)) ∈ K2.

Then the pair f, h : S → E is a solution of (2.2) if and only if we have the following

possibilities:

(1) If α + β 6= 1, then f = c, h = (α + β − 1)c, where c is a constant belonging

to E.

(2) If α + β = 1, then

(a) If α = 1 and β = 0, then f = A + c, h = A +
∫

S
A(t) d(µ + ν)(t), where

A : S → X is an additive map and c is a constant belonging to E.

(b) If α = 0 and β = 1, then f = A+ c, h = A◦ϕ+
∫

S
A(t) d(µ+ν)(t), where

A : S → E is an additive map and c is a constant belonging to E.

(c) If α 6= 0 and β 6= 0, then

(3.9) f(x) = Q(x, x) + A(x) + c,

h(x) =
α

β
Q(x, x) + αA(x) + βA(ϕ(x)) + 2

∫

S

Q(x, t) d
(

µ −
α

β
ν
)

(t)

+

∫

S

{Q(t, t) + A(t)}d(µ + ν)(t),

where A : S → E is an additive map, Q : S × S → E is a symmetric,

bi-additive map such that for all x, y ∈ S

(i) Q(x, ϕ(y)) = − α
β

Q(x, y), (ii)
∫

S
Q(x, t) d(µ + ν)(t) = 0,

and c is a constant belonging to E.

Moreover, if S is a topological semigroup, E is a topological vector

space over R or C, and f : S → E is continuous, then the components A

and Q in decomposition (3.9) are continuous and if ϕ is continuous, then

h is continuous.

Proof. It is easy to check that the functions f, h : S → E presented in cases
(1) and (2) are solutions of (2.2). Conversely, let f, h : S → E be a solution of (2.2).
According to Proposition 3.1, there exists an element c ∈ E such that f ◦ ϕ − c

satisfies Whitehead’s functional equation (1.1), i.e., C2(f ◦ ϕ − c) = 0. Since ϕ is
surjective, we get C2(f − c) = 0.

According to Theorem 1.1, there exists an additive map A : S → E and a
symmetric, bi-additive map Q : S × S → E such that f(x) = Q(x, x) + A(x) + c.

Substituting f in (2.2) and using the fact that µ(S) = α and ν(S) = β, we get after
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calculation

h(y) = (α + β − 1)[Q(x, x) + A(x) + c] + αQ(y, y) + βQ(ϕ(y), ϕ(y))(3.10)

+ αA(y) + βA ◦ ϕ(y) + 2αQ(x, y)

+ 2βQ(x, ϕ(y)) + 2

∫

S

Q(x, t) d(µ + ν)(t)

+ 2

∫

S

Q(y, t) dµ(t) + 2

∫

S

Q(ϕ(y), t) dν(t) + θ,

where θ :=
∫

S
{Q(t, t) + A(t)}d(µ + ν)(t).

For a fixed y ∈ S, the right-hand side of (3.10) is a function of x ∈ S. Then
using the observation that was used in the proof of [1, Proposition 3.10], we see
that

(3.11) 0 = (α + β − 1)Q(x, x),

(3.12) 0 = (α + β − 1)A(x) + 2αQ(x, y) + 2βQ(x, ϕ(y)) + 2

∫

S

Q(x, t) d(µ + ν)(t),

h(y) = (α + β − 1)c + θ + αQ(y, y) + βQ(ϕ(y), ϕ(y))(3.13)

+ αA(y) + βA(ϕ(y)) + 2

∫

S

Q(y, t) dµ(t) + 2

∫

S

Q(ϕ(y), t) dν(t).

By applying the same observation to (3.12) for the variable y by fixing x, we get

(α + β − 1)A(x) + 2

∫

S

Q(x, t) d(µ + ν)(t) = 0,(3.14)

αQ(x, y) + βQ(x, ϕ(y)) = 0.(3.15)

(1) If α + β − 1 6= 0, then we derive from (3.11), that Q(x, x) = 0, which implies
Q = 0 (because 2Q(x, y) = Q(x+y, x+y)−Q(x, x)−Q(y, y)) and from (3.14),
we have A = 0. Then f = c and from (3.13), h = (α + β − 1)c.

So we deduce the result (1) of Theorem.
(2) If α + β − 1 = 0, then

(a) If α = 1 and β = 0, then equality (3.15) implies that Q = 0, hence
f = A + c and from (3.13), we get h = A +

∫

S
A(t) d(µ + ν)(t). So we

deduce (2)(a).
(b) If α = 0 and β = 1, from equality (3.15) we have Q(x, ϕ(y)) = 0 for

all x, y ∈ S, which implies that Q = 0, because ϕ is surjective. Then
f = A + c and h = A ◦ ϕ +

∫

S
A(t) d(µ + ν)(t). So we conclude (2)(b).

(c) If α 6= 0 and β 6= 0, equality (3.15) gives Q(x, ϕ(y)) = − α
β

Q(x, y) for all

x, y ∈ S and we get from (3.13)

h(x) =
α

β
Q(x, x) + αA(x) + βA(ϕ(x)) + 2

∫

S

Q(x, t) d
(

µ −
α

β
ν
)

(t)

+

∫

S

{Q(t, t) + A(t)}d(µ + ν)(t).



118 AKKAOUI AND EL FATINI

From (3.14), we have
∫

S
Q(x, t) d(µ+ν)(t) = 0. So we obtain (c)(ii). The continuity

statements follow from Theorem 1.1 (ii). �

Remark 3.2. In Theorem 3.1, we have considered linear combinations of Dirac
measures because, quite simply, the unknowns are defined on a semigroup. This
result remains valid provided that the integral that defines equation (2.2) exists.

As an application of Theorem 3.1, we present the following example.

Example 3.1. Let S := (R2, +), E := (C, +), a = (1, 1), b = (2, 2), µ = 4
3 δa,

ν = − 1
3 δb, and let ϕ be the endomorphism of S defined by ϕ(x) = (4x1, 4x2) for

all x := (x1, x2) ∈ S. Note that ϕ is not involutive but it is surjective.
Functional equation (2.2) becomes

4f(x1 + y1 + 1, x2 + y2 + 1) − f(x1 + 4y1 + 2, x2 + 4y2 + 2) = 3f(x1, x2) + 3h(y1, y2),

for all (x1, x2), (y1, y2) ∈ S.
The continuous symmetric and bi-additive map Q : S × S → C, as known in

the literature (e.g., [8, Lemma 2.14]), takes the following form

Q(x, y) := px1y1 + qx2y2 + s(x1y2 + x2y1),

for all x := (x1, x2), y := (y1, y2) ∈ S, where p, q, s ∈ C. The function Q verifies the
condition Q(x, ϕ(y)) = − α

β
Q(x, y) for all x, y ∈ S (α = 4

3 , β = − 1
3 ) and also verifies

the condition
∫

S
Q(x, t) d(µ + ν)(t) = 0 for all x ∈ S if and only if p = q = −s.

The continuous additive map A : S → C, as known in the literature (e.g., [8,
Corollary 2.4]), takes the following form A(x) := ωx1+ηx2, for all x := (x1, x2) ∈ S,
where ω, η ∈ C.

According to Theorem 3.1, the continuous solutions f, h : R2 → C of the above
functional equation are

f(x1, x2) = p(x1 − x2)2 + ωx1 + ηx2 + c,

h(x1, x2) = −4p(x1 − x2)2 + 2
3 (ω + η),

where p, ω, η, c ∈ C.

4. Applications

As immediate consequences of Theorem 3.1, we have the following corollaries.
The first one solves equation (2.3).

Corollary 4.1. Let (α, β) := (µ(S), ν(S)) ∈ K
2. The pair f, h : S → E is a

solution of (2.3) if and only if we have the following possibilities:

(1) If α + β 6= 1, then f = c, h = (α + β − 1)c, where c is a constant belonging

to E.

(2) If α + β = 1, then

(a) If α = 1 and β = 0, then f = A+ c, h = A◦σ +
∫

S
A(t) d(µ+ν)(t), where

A : S → E is an additive map and c is a constant belonging to E.

(b) If α = 0 and β = 1, then f = A+ c, h = A◦ τ +
∫

S
A(t) d(µ+ν)(t), where

A : S → E is an additive map and c is a constant belonging to E.
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(c) If α 6= 0 and β 6= 0, then

(4.1) f(x) = Q(x, x) + A(x) + c,

h(x) =
α

β
Q(σ(x), σ(x)) + αA(σ(x)) + βA(τ(x))

+ 2

∫

S

Q(σ(x), t) d
(

µ −
α

β
ν
)

(t) +

∫

S

{Q(t, t) + A(t)}d(µ + ν)(t),

where A : S → E is an additive map, Q : S × S → E is a symmetric,

bi-additive map such that for all x, y ∈ S we have

(i) Q(x, τ(y)) = −
α

β
Q(x, σ(y)), (ii)

∫

S
Q(x, t) d(µ + ν)(t) = 0,

and c is a constant belonging to E.

Moreover, if S is a topological semigroup, E is a topological vector

space over R or C, and f : S → E is continuous, then the components A

and Q in decomposition (4.1) are continuous and if σ and τ are continu-

ous, then h is continuous.

Proof. By putting ϕ = τ ◦ σ and replacing h by h ◦ σ in Theorem 3.1, we get
the desired result. �

Let α, β be two elements of K, and let a, b be two arbitrary fixed elements of
the semigroup S. We have the following corollaries.

Corollary 4.2. Suppose that ϕ is surjective. The pair f, h : S → E is a

solution of (2.4) if and only if we have the following possibilities:

(1) If α + β 6= 1, then f = c, h = (α + β − 1)c, where c is a constant belonging

to E.

(2) If α + β = 1, then

(a) If α = 1 and β = 0, then f = A + c, h = A + A(a), where A : S → X is

an additive map and c is a constant belonging to E.

(b) If α = 0 and β = 1, then f = A + c, h = A ◦ ϕ + A(b), where A : S → E

is an additive map and c is a constant belonging to E.

(c) If α 6= 0 and β 6= 0, then

f(x) = Q(x, x) + A(x) + c,(4.2)

h(x) =
α

β
Q(x + a, x + a) + αA(x + a) + βA(ϕ(x) + b),

where A : S → E is an additive map, Q : S × S → E is a symmetric,

bi-additive map such that for all x, y ∈ S

(i) Q(x, ϕ(y)) = − α
β

Q(x, y), (ii) Q(x, b) = − α
β

Q(x, a),

and c is a constant belonging to E.

Moreover, if S is a topological semigroup, E is a topological vector

space over R or C, and f : S → E is continuous, then the components A

and Q in decomposition (4.2) are continuous and if ϕ is continuous, then

h is continuous.
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Proof. By putting µ = αδa, ν = βδb in Theorem 3.1, we get the desired
result. �

Corollary 4.3. The pair f, h : S → E is a solution of (2.5) if and only if we

have the following possibilities:

(1) If α + β 6= 1, then f = c, h = (α + β − 1)c, where c is a constant belonging

to E.

(2) If α + β = 1, then

(a) If α = 1 and β = 0, then f = A + c, h = A ◦ σ + A(a), where A : S → E

is an additive map and c is a constant belonging to E.

(b) If α = 0 and β = 1, then f = A + c, h = A ◦ τ + A(b), where A : S → E

is an additive map and c is a constant belonging to E.

(c) If α 6= 0 and β 6= 0, then

f(x) = Q(x, x) + A(x) + c,(4.3)

h(x) =
α

β
Q(σ(x) + a, σ(x) + a) + αA(σ(x) + a) + βA(τ(x) + b),

where A : S → E is an additive map, Q : S × S → E is a symmetric,

bi-additive map such that for all x, y ∈ S

(i) Q(x, τ(y)) = − α
β

Q(x, σ(y)), (ii) Q(x, b) = − α
β

Q(x, a),

and c is a constant belonging to E.

Moreover, if S is a topological semigroup, E is a topological vector

space over R or C, and f : S → E is continuous, then the components A

and Q in decomposition (4.3) are continuous and if σ and τ are continu-

ous, then h is continuous.

Proof. By putting µ = αδa, ν = βδb in Corollary 4.1 we get the desired
result. �

In the following example, we consider a surjective endomorphism which is not
bijective.

Example 4.1. Let E be the vector space, over R, of sequences of real numbers.
Let ϕ be the endomorphism of the group (E, +) defined by ϕ((un)n) = (vn)n such
that for all n ∈ N, vn = un+1 − un.

Note that ϕ is surjective but not bijective: for (vn)n ∈ E, the sequence (un)n

defined by un =
∑n−1

i=0 vi for all n > 1 and u0 is an arbitrary element of R satisfies
ϕ((un)n) = (vn)n.

We want to determine the solutions f, h : E → E of the functional equation
(4.4)
f((un)n + (vn)n + (an)n) + f((un)n + ϕ((vn)n) + (bn)n) = 2f((un)n) + 2h((vn)n),

for all (un)n, (vn)n ∈ E, where (an)n, (bn)n ∈ E are two arbitrary constants. The
only symmetric, bi-additive map Q : E × E → E satisfying Q((un)n, ϕ((vn)n)) =
−Q((un)n, (vn)n) for all (un)n, (vn)n ∈ E is the null map. Indeed, let (un)n, (vn)n ∈
E. We have

Q((un)n, ϕ((vn)n)) = −Q((un)n, (vn)n) ⇔ Q((un)n, (vn+1)n) = 0.
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Then Q = 0, because the map (vn)n → (vn+1)n is surjective.
According to Corollary 4.2, the solutions f, h : E → E of (4.4) are

f((un)n) = A((un)n) + (cn)n, h((un)n) =
1

2
A((un+1)n + (an)n + (bn)n),

where A : E → E is an additive map and (cn)n is a constant belonging to E.
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