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TABLEAU FOR THE LOGIC ILP

Zoran Ognjanović, Aleksandar Perović, and

Angelina Ilić-Stepić

Abstract. A tableau system for a logic suitable for intuitionistic reasoning
about probabilities is presented. Soundness and completeness of the system
are proved. A decision procedure based on the tableau system is given.

1. Introduction

The formal system called (semantic, analytic) tableau arose from the works of
Beth, Hintikka and Smullyan [1,5,11]. It is particularly popular in the framework
of modal and intuitionistic logics thanks to Fitting’s papers [3, 4], where a proof
procedure closely related to Kripke models [6, 7] for those logics is prsented. A
tableau for a formula is a tree whose nodes are labeled by subformulas of the
considered formula, constructed by rules that reflect semantic properties of logical
operators. The tableau proof procedure is a refutation method which specifies the
order of applications of rules which modify a tableau to try to construct a counter
model of the considered formula. If the refutation does not succeed, the formula
should be valid.

In this paper we adapt the prefixed tableau system for intuitionistic logic [3,4]
and propose a system for the logic ILP which formalizes intuitionistic reasoning
about probabilities. The paper [2] presents an intuitionistic logic with probabilistic
operators and a complete axiom system for intuitionistic Kripke models in which
each possible world is equipped with two partial functions representing inner and
outer probability measures with a finite range. Probabilistic logics based on in-
tuitionistic logic, but with probabilistic operators obeying laws of classical logic
(e.g., the probability of an uncertain proposition should be either greater or equal
to some r or less than r) are proposed in [8–10]. In ILP atomic formulas are of
the form P∗rα, where ∗ ∈ {>,6, >,<} and α is a classical formula. The intended
meaning of the probabilistic operators P>r is “It is proven that the probability is
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at least r", and similarly for P6r, P>r and P<r. The associated semantics con-
sists of intuitionistic Kripke models equipped with partial probabilistic measures
of classical formulas. Furthermore, in ILP:

• in contrast to [2] probability measures (and not inner and outer proba-
bilities) are considered, and the range of probability measures is the unit
interval of rational numbers (and not a finite subset of that interval), and

• probabilistic operators, in contrast to [8–10], follow the laws of intuition-
istic logic.

To the best of our knowledge this is the first paper discussing tableau system for
logics with probabilistic operators. The presence of these operators in the formal
language requires that new rules relating to probabilistic operators be added to the
set of tableau rules, as well as that the new (in comparison with [3, 4]) criterion
for closing of branches be defined. These are the main novelties from the point of
view of the development of the tableau method.

The paper is organized as follows. In Section 2 we provide basic definitions
about syntax and semantics of ILP, while Section 3 presents our tableau system. In
Sections 4 and 5 soundness and completeness are proved. A proof of decidability of
satisfiability for ILP is sketched in Section 6 relying on the tableau proof procedure.

2. The logic ILP

2.1. Syntax. Let Var be a countably infinite set of propositional letters. Vari-
ables for Var are p and q. ForC denotes the set of classical formulas inductively
defined in the following way:

p | ¬α | α ∧ β | α ∨ β.

Variables for ForC are α, β, γ and δ, indexed if necessary. We abbreviate ¬(α → α)
by ⊥ and α → α by ⊤.

Let [0, 1]Q denote the set all rational numbers from the unit interval. The set
of probabilistic formulas ForP is inductively defined as follows:

P∗rα | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ.

Here ∗ ∈ {>,6, >,<} and r ∈ [0, 1]Q. Formulas of the form P∗rα are called atomic
probabilistic formulas. Variables for ForP are φ and ψ, indexed if necessary. We
abbreviate: P>rα ∧ P6rα by P=rα.

Definition 2.1. A prefixed signed formula is an expression of the form:

• σ T φ, or
• σ F φ,

where σ is a nonempty finite sequence of positive integers (called prefix) and φ ∈
ForP .

A prefixed signed atomic probabilistic formula is an expression of the form
σ T P∗rα, or σ F P∗rα, where ∗ ∈ {>,6, >,<} and σ is a prefix. �
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2.2. Semantics. We consider a class of Kripke models to give semantics to
ForP -formulas.

Definition 2.2. A model is a structure M = 〈W, {Hw : w ∈ W}, {µw : w ∈
W},6〉 with the following properties:

• W is a non-empty set of possible worlds,
• 〈W,6〉 is a partially ordered set (poset) called a frame;
• every Hw is a subset of ForC which satisfies:

– ⊥ ∈ Hw, ⊤ ∈ Hw;
– If α ∈ Hw and α is equivalent to β

(i.e. α ↔ β is a classical tautology), then β ∈ Hw;
– α ∈ Hw iff ¬α ∈ Hw;

• For all w1, w2 ∈ W , if w1 6 w2, then Hw1
⊆ Hw2

;
• every µw is a mapping from Hw to [0, 1]Q which satisfies:

– µw(⊥) = 0, µw(⊤) = 1;
– If w1 6 w2, then µw1

is a restriction of µw2
on Hw1

;
– If α, α ∨ β ∈ Hw, then µw(α) 6 µw(α ∨ β);
– If α, β, α ∧ β, α ∨ β ∈ Hw and µw(α ∧ β) = 0,

then µw(α ∨ β) = µw(α) + µw(β). �

Note that µw’s are (partially defined) probabilistic measures, and that it might
be that some formulas are not measurable in some of the possible worlds from a
model. However, if w1 and w2 are possible worlds from a model M, such that
w1 6 w2, and µw1

(α) is defined, then it must be that µw2
(α) is also defined such

that µw2
(α) = µw1

(α).
The forcing (i.e., intuitionistic satisfiability) relation is recursively defined as

follows:

Definition 2.3. Let M = 〈W, {Hw : w ∈ W}, {µw : w ∈ W},6〉 be a model
and w ∈ W . The forcing relation 
M between possible worlds and ForP -formulas
satisfies:

• w 
 P>rα iff α ∈ Hw and µw(α) > r;
• w 
 P6rα iff α ∈ Hw and µw(α) 6 r;
• w 
 P>rα iff α ∈ Hw and µw(α) > r;
• w 
 P<rα iff r > 0, α ∈ Hw and µw(α) < r;
• w 
 P<0α iff α 6∈ Hw;
• w 
 ¬φ iff, for all v > w, v 6
 φ;
• w 
 φ ∧ ψ iff w 
 φ and w 
 ψ;
• w 
 φ ∨ ψ iff w 
 φ or w 
 ψ;
• w 
 φ → ψ iff, for all v > w, either v 6
 φ, or v 
 φ ∧ ψ. �

Note the particular case w 
 P<0α which we use to denote that α is not
measurable (α 6∈ Hw).

Definition 2.4. A formula φ is ILP–valid iff for all M = 〈W, . . . 〉, and all
w ∈ W , w 
 φ.

A formula φ is ILP–satisfiable iff there are a model M = 〈W, . . . 〉, and a possible
world w ∈ W such that w 
 φ. �
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Definition 2.5. A set S of prefixed signed formulas is satisfiable if there is a
model M = 〈W, {Hw : w ∈ W}, {µw : w ∈ W},6〉 and a mapping π from the set
of prefixes occurring in S to the set W of possible worlds such that:

• if σ and σ.n are prefixes of formulas that occur in S, then π(σ) 6 π(σ.n),
• if σ T φ ∈ S, then π(σ) 
 φ, and
• if σ F φ ∈ S, then π(σ) 6
 φ. �

3. Tableau

A tableau is a tree. Every node of a tableau is labeled with a prefixed signed
formula. The tableau system is a set of rules for constructing a tableau. There are
the following groups of rules:

• the branch extending rules,
• the prefixes handling rules, and
• the atomic probabilistic formulas handling rules.

The former two groups are from [4], while the latter group is the new one. The
need for those new rules emerges because of probabilistic formulas that are not
present in intuitionistic logic. Similarly, the standard notion of a closed tableau
branch must be changed to represent semantics of (probabilistic) atomic formulas.

3.1. Tableau rules. The tableau construction rules are as follows:
3.1.1. The branch extending rules.

T ∧
σ T φ ∧ ψ
σ T φ

σ T ψ

F ∨
σ F φ ∨ ψ

σ F φ

σ F ψ

F ∧
σ F φ ∧ ψ

σ F φ | σ F ψ
T ∨

σ T φ ∨ ψ
σ T φ | σ T ψ

T →
σ T φ → ψ

σ F φ | σ T ψ
T¬

σ T ¬φ
σ F φ

3.1.2. The prefixes handling rules. A prefix is new on a branch if it does not
occur as an initial segment of any prefix on the branch where the rule is being
applied, while a prefix is already introduced on a branch if it occurs on the branch.

The rules for introducing a new prefix σ.n:

F¬
σ F ¬φ
σ.n T φ

F →
σ F φ → ψ

σ.n T φ

σ.n F ψ

The rule for adding prefixed signed formulas with prefixes already introduced
on the branch:

Lower
σ T φ

σ.n T φ
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3.1.3. The atomic probabilistic formulas handling rules.

F P>r

σ F P>rα

σ T P>0α | σ T P<0α

σ T P<rα |
F P6r

σ F P6rα

σ T P>0α | σ T P<0α

σ T P>rα |

F P>r

σ F P>rα

σ T P>0α | σ T P<0α

σ T P6rα |
F P<r

σ F P<rα

σ T P>0α | σ T P<0α

σ T P>rα |

3.2. Intuition behind the rules. Fitting proposes to think of σ T φ as
saying that φ is forced in the possible world denoted by σ, and to think of σ F φ

as saying that φ is not forced in σ. Having this in mind, the above rules are easy
to understand. For example, if a node is labeled by σ T φ ∧ ψ, then following
Definition 2.3 both T φ and Tψ are forced in σ, which is obtained by Rule T∧. The
prefixes handling rules are related to two situations: introducing a new prefix and
adding prefixed signed formulas with already introduced prefixes. Consider Rule
F → and suppose that a node is labeled by σ F φ → ψ. Then there must be a
world accessible from σ in which T φ and F ψ are forced. On the other hand, if a
node is labeled by σ T φ → ψ, then in each possible world accessible from σ, if T φ

is forced, so must be T ψ. Finally, concerning the atomic probabilistic formulas
handling rules, recall that σ F P>rα means that σ 6
 P>rα, which in turn can
happen because:

• either the measure of α in w, µw(α), is lesser than r, or
• α is not measurable in w, i.e., α 6∈ Hw.

This is formally expressed by the F P>r-rule. Similar explanations hold for σ F P6rα,
σ F P>rα and σ F P<rα.

3.3. Tableau proof. In [3,4] the notion of a closed tableau branch is rather
simple: a branch is closed if it contains both σ T ψ and σ F ψ for some atomic ψ.
Here, since atomic formulas are probabilistic with more complicated semantics, the
notion of a closed branch should be more elaborated.

Let us consider a branch and let

Λ(σ) = {P>ri
αi : i = 1, . . . ,m0}

∪ {P<sj
βj : j = 1, . . . ,m1}

∪ {P6tk
γk : k = 1, . . . ,m2}

∪ {P>ol
δl : l = 1, . . . ,m3}.

be the set of all atomic probabilistic formulas such that σ T ψ, for ψ ∈ Λ(σ), appears
on the branch. According to Definition 2.3 of the forcing relation, if the set of
formulas Λ(σ) is satisfied in a possible world denoted by σ, then the corresponding
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system S(Λ(σ)) of linear (in)equalities:
m0∧

i=1

xσ
αi

> ri ∧

m0∧

i=1

0 6 xσ
αi

6 1(3.1)

∧

m1∧

j=1

xσ
βj
< sj ∧

m1∧

j=1

0 6 xσ
βj

6 1(3.2)

∧

m2∧

k=1

xσ
γk

6 tk ∧

m2∧

k=1

0 6 xσ
γk

6 1(3.3)

∧

m3∧

l=1

xσ
δl
> ol ∧

m3∧

l=1

0 6 xσ
δl
6 1(3.4)

∧
∧

y

xσ
y + xσ

¬y = 1(3.5)

∧
∧

|=y→z

xσ
y 6 xσ

z(3.6)

∧
∧

|= f ↔ y ∧ z

|= g ↔ y ∨ z

xσ
g = xσ

y + xσ
z − xσ

f(3.7)

has a solution. Here the variables

• xσ
αi

, xσ
¬αi

for i = 1, . . . ,m0,
• xσ

βj
, xσ

¬βj
for j = 1, . . . ,m1,

• xσ
γk

, xσ
¬γk

for k = 1, . . . ,m2, and
• xσ

δl
, xσ

¬δl
for l = 1, . . . ,m3

represent the measures µσ(α1), µσ(¬α1), . . . , µσ(δm3
), µσ(¬δm3

) in the possible
world labeled by σ. The inequalities 3.1 – 3.4 correspond to the atomic probabilistic
formulas from the set Λ(σ). The equalities 3.5 mean that if a formula is measurable,
so is its negation, and the sum of their measures is 1. The inequalities 3.6 express
monotonicity, while the equalities 3.7 correspond to additivity, where

y, z, f, g ∈ {αi,¬αi, βj,¬βj , γk,¬γk, δl,¬δl : i = 1, . . . ,m0, j = 1, . . . ,m1,

k = 1, . . . ,m2, l = 1, . . . ,m3}.

Note that, since coefficients in S(Λ(σ)) are rational numbers, the system is
solvable iff it has rational solutions.

On the other hand, solvability of the above system S(Λ(σ)) does not imply
satisfiability of Λ(σ) in the possible world labeled by σ, since measures of formulas
must also satisfy the condition from Definition 2.2 of models that:

• If σ and σ.n appear on a branch, the measure µσ is a restriction of the
measure µσ.n on Hσ.

Note that this prevents that the set of prefixed signed atomic formulas

{1 T P> 1

3

α, 1.1 T P> 1

3

α, 1.1 T P< 2

3

α, 1.2 T P> 1

3

α, 1.2 T P> 2

3

α}

from a branch is satisfiable since:
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• µ1(α) ∈ [ 1
3 , 1],

• µ1.1(α) ∈ [ 1
3 ,

2
3 ), and

• µ1.2(α) ∈ (2
3 , 1].

Construction of a tableau of φ begins with a single node tree. That node, the
root, is labeled by 1 F φ. Next, we apply the above tableau rules so that no rule for
introducing a new prefix (F¬, F →) is applied more than once to an occurrence of
a prefixed signed formula on a tableau branch.

Definition 3.1. Let σ1, . . . , σn be all prefixes on a tableau branch B. B is
open if the following is fulfilled:

• all systems S(Λ(σ)), for σ ∈ {σ1, . . . , σn}, are solvable, and
• for all σ and σ.n appearing on B, µσ is a restriction of µσ.n on the set of for-

mulas {αi,¬αi, βj ,¬βj , γk,¬γk, δl,¬δl : i = 1, . . . ,m0, j = 1, . . . ,m1, k =
1, . . . ,m2, l = 1, . . . ,m3}.

Otherwise, B is closed.
The set of all prefixed signed formulas from a tableau branch B is open (closed)

if B is open (closed).
A tableau is closed if each of its branches is closed. Otherwise, the tableau is

open.
A closed tableau with the root labeled by 1 F φ is a proof of φ. φ is a theorem,

denoted ⊢ φ, if it has a proof. �

The following example illustrates that there are infinite tableaux.

Example 3.1. This is a tableau for ¬¬¬φ:

1 F ¬¬¬φ (1)
|

1.1 T ¬¬φ (2)
|

1.1 F ¬φ (3)
|

1.1.1 T φ (4)
|

1.1.1 T ¬¬φ (5)
|
. . .

The node (2) is obtained from (1) by F¬, (3) is from (2) by T¬, (4) is from (3) by
F¬, and (5) is from (2) by Lower. �

4. Soundness

A tableau branch B is satisfiable if the set of all prefixed signed formula on it
is satisfiable (according to Definition 2.5). A tableau is satisfiable if at least one of
its branches is satisfiable.

The above tableau rules are defined so that, applied to a satisfiable tableau,
produce a new satisfiable tableau. For the rules T∧, F∨, F∧, T∨, T →, T¬, F¬,
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F → and Lower that is proved in [3,4], while to analyze the rules F P>r, F P6r,
F P>r and F P<r we can consider F P>r and the other cases follow similarly.

So, let us consider a branch B, the corresponding set S(B) of all prefixed signed
formula on B, and the formula σ F P>rα ∈ S(B). Assume that S(B) is satisfiable
under a mapping π, which maps prefixes occurring in S to the set W of possible
worlds from the model M = 〈W, {Hw : w ∈ W}, {µw : w ∈ W},6〉. It means that

• π(σ) 6
 P>rα.

According to Definition 2.3:

• either α ∈ Hw (i.e., π(σ) 
 P>0α) and π(σ) 
 P<rα, or
• α 6∈ Hw, i.e., π(σ) 
 P<0α.

It follows that, after the rule F P>r is applied on σ F P>rα ∈ S(B), one of the
enlarged branches B, {σ T P>0α, σ T P<rα} or B, {σ T P<0α} is satisfiable.

Thus, the following hold:

• if a rule is applied on a satisfiable tableau, then the resulting tableau is
also satisfiable, and

• since satisfiable tableaux are not closed, every satisfiable formula has only
not closed tableaux,

so we have:

Theorem 4.1 (Soundness). Every theorem is a valid formula.

5. Completeness

The paper [3] presents an approach to proving completeness of the prefixed
tableau systems for modal logics which is based on a systematic proof procedure
and uses König’s lemma. Here we uses the same idea for ILP. The systematic proof
procedure essentially guarantees:

• that rules are applied on all formulas in a tableau, and
• that a tableau proof must be produced for valid formulas.

While constructing a tableau, there are situations that some formulas must be
considered more than once. For example, Rule Lower might be applied to σ T φ

many times, i.e., for every accessible σ.n appearing on the same branch. It is
necessary to keep information about such formulas. This can be performed using
the following inessential extension of rules:

• rules are applied on each occurrence of a formula only once,
• after the application of a rule the corresponding node becomes finished,

and
• whenever Rule Lower is applied on a node on a branch, a new copy of the

node is added at the end of the branch.

Having this modification, the systematic procedure starts with the root 1 F φ and
then in a loop:

• uses the breadth-first strategy and applies the corresponding rule on the
leftmost not yet finished node as close to the root as possible, and
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• declares that node finished (and adds a copy of the node if Rule Lower is
applied).

The procedure stops:

• if the tableau is closed, or
• if every occurrence of a prefixed formula is finished, except possibly some

nodes of the form σ T ψ but without prefixes accessible from σ for which
Rule Lower might be applied.

Now, to prove completeness of the prefixed tableau system for ILP, it is showed
that if the systematic procedure does not produce a proof for φ, it generates enough
information to construct a counter-model for φ.

First we introduce the notion of downward saturated sets of prefixed signed
formulas and show that each such set is satisfiable. Then, it is proved that the
set of all of prefixed signed formulas from a finished open branch is downward
saturated, which implies completeness.

Definition 5.1. A set S of prefixed signed formulas is downward saturated if
the following holds:

• S is open,
• if σ T φ ∧ ψ ∈ S, then σ T φ ∈ S, and σ T ψ ∈ S,
• if σ F φ ∨ ψ ∈ S, then σ F φ ∈ S, and σ F ψ ∈ S,
• if σ F φ ∧ ψ ∈ S, then σ F φ ∈ S, or σ F ψ ∈ S,
• if σ T φ ∨ ψ ∈ S, then σ T φ ∈ S, or σ T ψ ∈ S,
• if σ T φ → ψ ∈ S, then σ F φ ∈ S, or σ T ψ ∈ S,
• if σ T ¬φ ∈ S, then σ F φ ∈ S,
• if σ F ¬φ ∈ S, then σ.n T φ ∈ S for some n,
• if σ F φ → ψ ∈ S, then σ.n T φ ∈ S and σ.n F ψ ∈ S for some σ.n,
• if σ T φ ∈ S, then σ.n T φ ∈ S for every σ.n which occurs in S,
• if σ F P>rα ∈ S, then σ T P>0α, σ T P<rα ∈ S, or σ T P<0α ∈ S,
• if σ F P6rα ∈ S, then σ T P>0α, σ T P>rα ∈ S, or σ T P<0α ∈ S,
• if σ F P>rα ∈ S, then σ T P>0α, σ T P6rα ∈ S, or σ T P<0α ∈ S, and
• if σ F P<rα ∈ S, then σ T P>0α, σ T P>rα ∈ S, or σ T P<0α ∈ S.

�

Lemma 5.1. Every downward saturated set S is satisfiable in a model whose

possible worlds are prefixes occurring in S.

Proof. Let W be the set of all prefixes appearing in the set S. We assume
that σ 6 σ and σ 6 σ.n always holds and that 6 is transitive. Then, 〈W,6〉 is a
frame.

Since S is open there are measures µσ, for σ ∈ W , such that:

• Hσ consists of all ForC -formulas whose measures are obtained as solutions
of the system S(Λ(σ)) defined above, and

• if σ1 6 σ2, then µσ1
is a restriction of µσ2

on Hσ1
.

Obviously, all atomic prefixed signed probabilistic formulas with the prefix σ are
forced in σ.
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By a straightforward induction on complexity of formulas it follows that for
every signed formula φ and every prefix σ:

• if σ T φ ∈ S, then σ 
 φ, and
• if σ F φ ∈ S, then σ 6
 φ.

So, the statement follows. �

Theorem 5.1 (Completeness). Every valid formula has a tableau proof.

Proof. Let φ be not provable. Then the systematic procedure which starts
with 1 F φ does not produce a closed tableau. If the procedure stops, the resulting
tableau is finite and open and there is at least one finite open branch. If the
procedure does not stop, the resulting tableau is infinite. By König’s lemma the
tableau has an infinite open branch. Whether the open branch is finite or not, the
set S of all prefixed signed formulas from the branch is downward saturated. By
Lemma 5.1, S is satisfiable and since 1 F φ ∈ S, it follows that

1 6
 φ.

Thus, φ is not valid. �

6. Decidability

Since there are infinite tableaux (e.g., in Example 3.1) we have to show that
we can modify the systematic procedure such that it becomes a decision procedure.
This can be done as in [3] for transitive modal logics. Here we just sketch the
main ideas that guarantees that tableau construction must terminate which gives
decidability:

• Let B be a branch of a tableau and σ a prefix which appears on B; then
S(B, σ) denotes the set of all signed formulas Z such that σ Z appears
on B. Let as call S(B, σ) the set of signed formulas associated with σ.

• Since there are only finitely many signed formulas (without prefixes) that
appear in any tableau for φ, for every branch B there are only finitely
many different sets of the form S(B, σ).

• On any infinite branch B there must be two prefixes with the same set of
associated signed formulas. Let σ and ρ (σ 6 ρ) be the first two prefixes
such that S(B, σ) = S(B, ρ).

• Obviously, after ρ there a periodic behavior is repeated and the corre-
sponding successors of σ and ρ (e.g. σ.1 and ρ.1) have the same sets of
associated signed formulas. It means that no essentially new information
will appear after ρ.

So, even on an infinite brunch when such σ and ρ are detected the construction
can be stopped without affecting possibility to construct a counter-model for the
considered formula. It means that the procedure is finite which implies decidability.
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