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SUMMAND INTERSECTION PROPERTY

ON THE CLASS OF EXACT SUBMODULES

Figen Takıl Mutlu and Adnan Tercan

Abstract. A module M is said to have the SIP if intersection of each pair
of direct summands is also a direct summand of M . In this article, we define
a module M to have the SIPr if and only if intersection of each pair of ex-
act direct summands is also a direct summand of M where r is a left exact
preradical for the category of right modules. We investigate structural proper-
ties of SIP r-modules and locate the implications between the other summand
intersection properties. We deal with decomposition theory as well as direct
summands of SIP r-modules. We provide examples by looking at special left
exact preradicals.

1. Introduction

Throughout this article, all rings are associative with unity and R denotes such
a ring. All modules are unital right R-modules and MR denotes such a module.

Kaplansky [9] showed that for a free module over a principal ideal domain
intersection of two direct summands is also a direct summand. Later Fuchs [4,
Problem 9] mentioned a question which asks that characterization of Abelian groups
(i.e., Z-modules) which satisfy the aforementioned property. This property is called
SIP (Summand Intersection Property) and worked out by several authors [2,5,8,
14].

Recall that a functor r from the category of the right R-modules to itself is
called a left exact preradical if it has the following properties

(i) r(M) is a submodule of M for every right R-module M ,
(ii) r(N) = N ∩ r(M) for every submodule N of a right R-module M ,
(iii) ϕ(r(M)) ⊆ r(M ′) for every homomorphism ϕ : M → M ′ for right R-

modules M , M ′.

For example, r = zer, i.e., r(M) = 0, for all right R-modules M or r = id, i.e.,
r(M) = M , for all right R-modules M are trivial left exact preradicals. Moreover, r
is called radical if r(M/r(M)) = 0 for every right R-module M . It is clear that the
singular submodule and the socle are left exact preradicals and the second singular
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submodule (or Goldie torsion submodule) is a radical. For an excellent treatment of
the left exact preradicals, please consult [11]. A submodule N of M is called exact
provided that r(M/N) = 0. In this paper, we focus on modules with the SIP in
terms of exact direct summands. We call a module have the SIPr if the intersection
of every pair of exact direct summands of M is a direct summand of M .

Let M be a module. Thus N 6 M , N 6e M , End(M), Z(M), r and annr(X)
will stand for N is a submodule of M , N is an essential submodule of M , the ring
of endomorphisms of M , singular submodule of M , the left exact preradical in the
category of right modules and the right annihilator of a subset X in M , respectively.
For any other terminology or unexplained notions, we refer to [3,6,12].

2. Results

Obviously a module with the SIP has the SIPr. In general, a module with the
SIPr need not to have the SIP. The following example shows that there exists a
module with SIPr but not have the SIP.

Example 2.1. Let R =
(

Z4 2Z4

0 Z4

)

and M = R as a right R-module. Then, all

nontrivial idempotents of R are e1 =
(

0 0
0 1

)

, e2 =
(

0 2
0 1

)

, e3 =
(

1 0
0 0

)

, e4 =
(

1 2
0 0

)

.

Since e1R ∩ e2R is not a direct summand of M , M has not the SIP. However,
if we take r = Z, all exact direct summands of M are e3R and M . Hence M has
the SIPr.

Next we give some basic properties of the left exact preradicals in the sense of
exact submodules.

Proposition 2.1. Let M , Mi (i ∈ I) be right R-modules and r a left exact
preradical in the category of right R-modules. Then

(i) If N is an exact submodule of M , then r(M) 6 N .
(ii) If M =

⊕

i∈I Mi then r(M) =
⊕

i∈I r(Mi).
(iii) Let X 6 Y 6 M . If X is exact in Y and Y is exact in M , then X is

exact in M .
(iv) Let N be a submodule of M . If X is an exact submodule of M , then X∩N

is an exact submodule of N .

Proof. (i) and (ii) follows from the definitions (see, for example [11]).

(iii) By assumption, r(Y/X) = r(M/Y ) = 0. Since we have M/Y ∼=
M/X
Y/X , Y/X

is exact in M/X . By (i), r(M/X) 6 Y/X . Since every left exact preradical is
idempotent, we have that r(r(M/X)) = r(M/X) = (M/X) ∩ r(Y/X) = 0. It
follows that X is an exact submodule of M .

(iv) Let X be an exact submodule in M . Since N/(X ∩ N) ∼= (X + N)/X , then
r(N/(X ∩N)) = 0, i.e., X ∩N is an exact submodule of N . �

Remark 2.1. Let M = M1 ⊕M2 and N be an exact submodule in M . Since
M1/(N ∩M1) ∼= (M1 + N)/N , r(M1/(N ∩ M1)) = 0 and hence N ∩M1 is exact
in M1. In particular, if N and K are exact direct summands of M , then N ∩K is
exact in N and so is exact in M by Proposition 2.1(iii).
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Proposition 2.2. Consider the following statements for a module M .

(i) M has the SIP. (ii) M has the SIPr. (iii) M has the SIPz.

Then (i)⇒ (ii)⇒ (iii), but the reverse implications are not true, in general.

Proof. (i)⇒ (ii) Follows from the definitions.

(ii)⇒ (iii) Follows by taking r = Z.

(ii); (i) By Example 2.1.

(iii); (ii) Let R =
(

Z4 Z4

Z4 Z4

)

and M = R as a right R-module. Then, all nontrivial
idempotents of R are

e1 =
{(

0 0
c 1

)

| c ∈ Z4

}

, e2 =
{(

0 b

0 1

)

| b ∈ Z4

}

, e3 =
(

0 2
2 1

)

,

e4 =
{(

1 0
c 0

)

| c ∈ Z4

}

, e5 =
(

1 2
2 0

)

, e6 =
{(

1 b

0 0

)

| b ∈ Z4

}

,

e7 =
(

3 1
2 2

)

, e8 =
(

3 2
1 2

)

, e9 =
(

3 2
3 2

)

, e10 =
(

3 3
2 2

)

,

e11 =
(

2 2
1 3

)

, e12 =
(

2 2
3 3

)

, e13 =
(

2 3
2 3

)

, e14 =
(

2 1
2 3

)

.

By routine calculations, all z-closed direct summands (i.e., D is a direct sum-
mand with Z(M/D) = 0) of M are 0 and M . Hence M has the SIPz. Now, let
r = zer, then every submodule of MR is an exact submodule of M . However,

e3R ∩
(

1 0
2 0

)

R =
(

2Z4 2Z4

0 0

)

is not a direct summand of M . It follows that M has

not the SIPr. �

The following theorem gives a characterization of modules with the SIPr as
well as the SSPr in terms of certain kind of homomorphisms. Recall that a module
have the SSPr if the sum of every pair of exact direct summands of M is a direct
summand of M .

Theorem 2.1. Let M be a module. Then

(i) M has the SIPr if and only if for every decomposition M = A⊕B with an
exact direct summand A of M and for every homomorphism f : A → B,
Ker f is a direct summand of M .

(ii) M has the SSPr if and only if for every decomposition M = A⊕B with an
exact direct summand A of M and for every homomorphism f : A → B,
Imf is a direct summand of M .

Proof. (i) Assume that M has the SIPr. Let M = A⊕B, A exact in M and
f : A → B a homomorphism. Let X = {a + f(a) | a ∈ A} and m ∈ M . Then, it
can be seen that M = X⊕B and Ker f = X ∩A. Since A is exact in M , r(B) = 0.
Hence X is exact in M . Then by assumption, Ker f is a direct summand of M .

Conversely, assume that for every decompositon M = A ⊕ B with an exact
direct summand A of M and for every homomorphism f : A → B, Ker f is a direct
summand of M . Let N and K be exact direct summands of M . Then M = N⊕N1

and M = K ⊕ K1 for some N1,K1 6 M . Let πN1
: M → N1 and πK : M → K

be the canonical projections. Now, define h = (πN1
◦ πK)|N : N → N1. Then
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Kerh = (N ∩ K) ⊕ (N ∩ K1) is a direct summand of M by assumption. Since
N ∩K is a direct summand of Kerh, it is a direct summand of M . Hence M has
the SIPr.

(ii) Assume that M has the SSPr. LetM = A⊕B, A exact in M and f : A → B
a homomorphism. Let X = {a + f(a) | a ∈ A} and m ∈ M . Then, M = X ⊕ B
and X is exact in M as in (i). Then by assumption, M = (A + T ) ⊕ L for some
L 6 M . Since A ∩ Imf = 0, A+ T = A⊕ Imf . Hence Imf is a direct summand
of M . The converse follows from [1, Theorem 8]. �

The following result shows that the SIPr property is inherited by direct sum-
mands of a module which satisfies SIPr.

Theorem 2.2. If M has the SIPr, then any direct summand of M has also the
SIPr.

Proof. Let M be an SIPr-module and M1 a direct summand of M . Assume
that N and K be exact direct summands of M1. Then M = M1 ⊕ M2 for some
submodule M2 of M and M1 = N ⊕N ′ = K ⊕K ′ for some submodules N ′, K ′ of
M1. By assumption, r(N ′) = r(K ′) = 0 and hence N ⊕M2 and K ⊕M2 are exact
submodules of M . By hypothesis, (N ⊕M2)∩ (K⊕M2) is a direct summand of M .
Now, applying the modular law, we have (N⊕M2)∩(K⊕M2) = [N∩(K⊕M2)]⊕M2.
Then, it can be checked that [N∩(K⊕M2)]⊕M2 = (N∩K)⊕M2. Thus (N∩K)⊕M2

is a direct summand of M and hence (N ∩K) is a direct summand of M1. It follows
that M1 has the SIPr. �

3. Decompositions

In this section, we focus on direct sums and decompositions of SIPr-modules.
To this end, we obtain several results when a direct sum and various kind of SIPr-
modules enjoy the property. Moreover, we obtain characterizations of this new
class of modules.

Theorem 3.1. Let M =
⊕

Mi be a direct sum of fully invariant submodules
Mi of M . Then M has the SIPr if and only if each Mi has the SIPr.

Proof. Assume that each Mi has the SIPr. Let S and T be exact direct
summands of M . Since each Mi is fully invariant, S =

⊕

(S ∩ Mi) and T =
⊕

(T ∩Mi). Hence

S ∩ T =
[

⊕

(S ∩Mi)
]

∩
[

⊕

(T ∩Mi)
]

=
⊕

[

(S ∩Mi) ∩ (T ∩Mi)
]

.

By Proposition 2.1(iv), S ∩Mi and T ∩Mi are exact direct summands of Mi, and
hence so also does (S ∩Mi) ∩ (T ∩Mi) by assumption. It follows that M has the
SIPr. The converse is clear by Theorem 2.2. �

To prove our next theorem, we need to have the following lemma which appears
in [7, Proposition 3.9].

Lemma 3.1. Let M = M1⊕M2 be an R-module. If annr(M1)+annr(M2) = R,
then every submodule N of M can be written as N = N1 ⊕ N2, where N1 6 M1

and N2 6 M2.
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Theorem 3.2. Let M and N be modules with the SIPr. If annr(M)+annr(N)
= R, then M ⊕N has the SIPr.

Proof. Let A and B be exact direct summands of M ⊕ N . By Lemma 3.1,
there exist M1,M2 6 M andN1, N2 6 N such that A = M1⊕N1 and B = M2⊕N2.
It is easy to check that M1 and M2 are direct summands of M , N1 and N2 are
direct summands of N . Since (M ⊕N)/A = (M ⊕N)/(M1⊕N1) ∼= M/M1⊕N/N1

and A is an exact direct summand of M ⊕N , M1 is exact in M and N1 is exact in
N . Similarly, M2 is exact in M and N2 is exact in N . By assumption, M1∩M2 and
N1 ∩N2 are direct summands of M and N , respectively. Therefore, (M1 ∩M2)⊕
(N1 ∩N2) is a direct summand of M ⊕N . Now,

(M1 ∩M2)⊕ (N1 ∩N2) = (M1 ⊕N1) ∩ (M2 ⊕N2) = A ∩B.

Thus A ∩B is a direct summand of M ⊕N , and hence M ⊕N has the SIPr. �

Now, recall the conditions (C3) and (D3):

(C3) If A and B are direct summands of M with A∩B = 0, then A⊕B is a direct
summand of M .

(D3) If A and B are direct summands of M with A + B = M , then A ∩ B is a
direct summand of M .

We consider modules with (C3) and (D3) in terms of exact direct summands
and call the conditions (Cr

3 ) and (Dr
3), respectively:

(Cr
3 ) If A and B are exact direct summands of M with A ∩ B = 0, then A ⊕ B is

a direct summand of M .

(Dr
3) If A and B are exact direct summands of M with A+B = M , then A ∩B is

a direct summand of M .

Theorem 3.3. Let M be a module. If for any two exact direct summands A
and B of M , A+B has (Dr

3), then M has the SIPr.

Proof. Assume that for any two exact direct summands A and B of M , A+B
has (Dr

3). Note that A and B are also direct summands of A+B. Since A+B has
(Dr

3), A ∩B is a direct summand of A+ B. Then A+ B = (A ∩B) ⊕ L for some
L 6 A + B. Thus A = (A ∩ B) ⊕ (A ∩ L), and hence A ∩ B is a direct summand
of M . �

Proposition 3.1. Let M be a module. If for any two exact direct summands
A and B of M , A+B is a quasi-projective module, then M has the SIPr.

Proof. It is well known that any quasi-projective module has (D2). If A+B is
a quasi-projective module then it has (Dr

3). Thus M has the SIPr by Theorem 3.3.
�

The following result and its corollary provide the link between the SIPr and
the SSPr conditions.

Proposition 3.2. Let M be a module with (Cr
3 ). If M has the SIPr then M

has the SSPr.
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Proof. The proof follows similarly to [1, Lemma 19 (1)]. �

Corollary 3.1. Let M be a module with the SIPr. Then M has (Cr
3 ) if and

only if M has the SSPr.

Proof. Let M be a module with the SIPr. Assume that M has (Cr
3 ). Then

by Proposition 3.2, M has the SSPr. The converse is clear since every SSPr module
has (Cr

3 ). �

Proposition 3.3. Let M be a module with indecomposable radical submod-
ule r(M) and N be a module. If r(M) ⊕ N has the SIPr, then every nonzero
homomorphism from r(M) to N is a monomorphism.

Proof. Assume that r(M)⊕N has the SIPr. Let f : r(M) → N be a nonzero
homomorphism. Since r(M) is exact in M , Ker f is a direct summand of r(M)⊕N
by Theorem 2.1. So, Ker f is a direct summand of r(M). By assumption, Ker f = 0,
i.e., f is a monomorphism. �

Recall that a module M is quasi-Dedekind if for every 0 6= f ∈ End(M), f is a
monomorphism (see [10]).

Corollary 3.2. Let M be a module with indecomposable radical submodule
r(M) and N any module such that Hom(r(M), N) 6= 0. If r(M)⊕N has the SIPr,
then r(M) is quasi-Dedekind. In particular, if r(M) ⊕ r(M) has the SIPr, then
r(M) is quasi-Dedekind.

Proof. By Proposition 3.3, there is a monomorphism f : r(M) → N . Assume
that r(M) is not quasi-Dedekind. Then, there exists a nonzero endomorphism
g : r(M) → r(M) such that Ker g 6= 0. Since f is a monomorphism, f ◦ g : r(M) →
N is a monomorphism with Ker f ◦ g 6= 0, which is a contradiction. Thus, r(M) is
quasi-Dedekind. �

Proposition 3.4. Let M be a module with injective indecomposable radical
submodule r(M), and N be an indecomposable module such that Hom(r(M), N) 6=
0. If r(M) ⊕ N has the SIPr, then r(M) is isomorphic to N and r(M) is quasi-
Dedekind.

Proof. By Proposition 3.3, r(M) is isomorphic to a submodule of N , and by
Corollary 3.2, r(M) is quasi-Dedekind. Since r(M) is injective, there is an injective
submodule N1 of N . By the injectivity of N1, N1 is a direct summand of N . Since
N is indecomposable, N1 = N . Thus r(M) is isomorphic to N . �

Lemma 3.2. Let M be a module and L 6 N 6 M . If L is essential in N , then
r(L) is essential in r(N).

Proof. Let 0 6= x ∈ r(N). Then x ∈ N and hence there exists t ∈ R such
that 0 6= xt ∈ L. Also xt ∈ r(N) since r(N) 6 M . Thus 0 6= xt ∈ r(N)∩L = r(L).
It follows that r(L) is essential in r(N). �

Proposition 3.5. Let M be a right R-module. Then the following statements
are equivalent.
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(i) E(M) has the SIPr,
(ii) for every T and S exact direct summands of M , there is the equality

E(T ) ∩E(S) = E(T ∩ S).

Proof. (i)⇒ (ii) Let S and T be exact direct summands of M . Then there
exist submodules S′ and T ′ of M such that M = S ⊕ S′ = T ⊕ T ′. Since S′ is
essential in E(S′) and T ′ is essential in E(T ′), r(S′) is essential in r(E(S′)) and
r(T ′) is essential in r(E(T ′)) by Lemma 3.2. It follows that E(S) and E(T ) are
exact direct summands of E(M). Then by assumption, E(T ) ∩ E(S) is a direct
summand of E(M). On the other hand, E(S ∩ T ) is a direct summand in both
E(S) and E(T ), and hence E(S ∩ T ) is a direct summand in E(S) ∩ E(T ). So,
E(S ∩ T ) is a direct summand in E(M). It follows that

(*) E(S) ∩ E(T ) = E(S ∩ T )⊕K

for some K ∈ E(M). Then K = E(X) for some X ∈ M and X 6 S ∩ T by [13,
Lemma 4.14]. Hence K = E(X) is a direct summand in E(S∩T ), which contradicts
the equality (*). It follows that K = E(X) = 0 and the equality in the statement
of Theorem is provided.

(ii)⇒ (i) It is clear from [13, Lemma 4.14]. �
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