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EVALUATING THE SUM OF

CONVERGENT POSITIVE SERIES

Vya
heslav M. Abramov

Abstra
t. We provide numeri
al pro
edures for possibly best evaluating the

sum of positive series under quite general setting. Our pro
edures are based

on the appli
ation of a generalized version of Kummer's test.

1. Introdu
tion

1.1. Formulation of the problem and literature review. Let

(1.1)

∞
∑

n=n0

an = s

be a 
onvergent series with positive terms an, where n0 is some integer that initiates

the series. The aim of this paper is to provide e�e
tive numeri
al pro
edures for

evaluating s. This problem is old and important, and there is a number of known


onsiderations in the literature. A good motivation of this problem 
an be found

in Boas [3℄. On page 237, Boas [3℄ writes: �Textbooks spend a lot of time on tests

for 
onvergen
e that are of little pra
ti
al value, sin
e a 
onvergent series either


onverges rapidly, in whi
h 
ase almost all test will do; or it 
onverges slowly, in

whi
h 
ase it is not going to be of mu
h use unless there is some way to get at its sum

without adding up unreasonable number of terms." Then on page 238, he writes:

�It is di�erent, but related, and somewhat more di�
ult, problem to 
al
ulate

the sum of series when it would take an unreasonable or impossible number of

terms to get it to a desired degree of a

ura
y. For example,

∑∞

n=2
n−1(logn)−2

would require about 1087 terms (the exa
t number is given below, on p. 240)

to get its sum to 2 de
imal pla
es, but the sum is known, by indire
t methods,

to be approximately 2.10974." In [3, page 242℄ Boas provides a table 
ontaining

the information about 
onvergen
e of di�erent series in
luding

∑∞

n=2
n−1(logn)−2

,

∑∞

n=3
n−1(logn)−1(log logn)−2

and many other interesting series.
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There are di�erent ways of approa
hing this problem in the literature. Let

f(x) be a 
ontinuous, positive and de
reasing fun
tion, and f(n) = an. Denote

Rn =
∑∞

k=n an. Then
∫∞

n+1
f(x) 6 Rn 6

∫∞

n f(x). Morley [21℄ showed that if f(x)
is also 
onvex, then

∫ ∞

n

f(x)dx − 1

2
f(n) 6 Rn 6

∫ ∞

n

f(x)dx − 1

2
f(n+ 1).

Under the same assumption, this result was further sharpened by Nelsen [22℄ to

the following estimate

1

2
f(n+ 1) +

∫ ∞

n+1

f(x) 6 Rn 6

∫ ∞

n+1/2

f(x)dx.

If f(x) is smooth, Boas [3, pages 238, 239℄ derives the simple inequality that follows

dire
tly from the Euler�Ma
laurin formula and the se
ond mean-value theorem:

∫ ∞

n+1/2

f(x)dx+
1

8
f ′

(

n+
1

2

)

< Rn <

∫ ∞

n+1/2

f(x)dx,

supporting it with many examples. Braden [6℄ has built error bounding pair for a

series 
onsidering three di�erent tests su
h as integral test, limit 
omparison test

and ratio test. That error bounding pair enables us to evaluate the total number

of terms in the partial sum of the series in order to rea
h the ne
essary a

ura
y.

The solution of ten 
hallenging problems of numeri
al analysis that in
lude

series summation as a part has been provided in [4℄. The approa
h in that book


on
erns all major te
hniques of the modern numeri
al analysis that in
ludes ma-

trix 
omputation, iterative linear methods, limit extrapolation and 
onvergen
e

a

eleration, numeri
al quadrature, 
ontour integration, dis
retization of PDEs,

global optimization, Monte Carlo and evolutionary algorithms, error 
ontrol, inter-

val and high-pre
ision arithmeti
, and many more. The problems related to series

summation 
an be found in [4, Appendix A℄ titled Convergen
e A

eleration and

in [4, Se
tion 3℄ titled How Far Away Is In�nity? Spe
i�
ally in [4, Se
tion 3℄, the

author of the se
tion, Jörg Waldvogel, �nds the ℓ2-norm of the in�nite matrix A,
the entries of whi
h are a1,1 = 1, a1,2 = 1/2, a2,1 = 1/3, a1,3 = 1/4, a2,2 = 1/5,
a3,1 = 1/6, and so on. The suggested methods in
lude the analyti
 transform of

the fun
tion of 
omplex variable and its 
ontour integration in order to �nd the

required limit of the partial sums sequen
e for the series arising there.

Note that the appearan
e of [4℄ was an a

epted 
hallenge on the announ
ement

of Trefethen in SIAM News [25℄, who formulated ten easy-to-state but hard-to-solve

problems on numeri
al analysis (see also the reviews of Bailey [2℄ and Borwein [5℄

for the additional 
omments). So, [4℄ is a problem-oriented book, the methods

of whi
h 
an be extended to wider 
lasses of problems keeping the a

ura
y and


omputational speed (see [12℄). Con
erning the 
onvergent positive series, this

means that the methods of [4℄ are appli
able for some 
lasses of slowly 
onvergent

series, and the limits of partial sums of those series 
an also be found for them.

During last years, new methods of summation of slowly 
onvergent series have

been developed in a number of papers of Milovanovi¢ [15�20℄ and Gauts
hi and
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Milovanovi¢ [8℄. In parti
ular, in the most re
ent paper [20℄ Milovanovi¢ used the

so-
alled summation/integration method based on transformation of the series to

weighted integrals and 
onstru
tion of the quadrature formulas of Gaussian type for

those integrals with respe
t to the weight fun
tions 
ontained in the 
onstru
tion

of the weighted integrals. The mentioned paper [20℄ also provides a review of the

known methods for summation of slowly 
onvergent series developed re
ently.

1.2. Motivation. The methods suggested in [3,6,21,22℄, 
annot be su

essful

in many 
ases, when the analyti
al derivation of

∫∞

n f(x)dx is hard or impossible.

Even in the 
ases when the analyti
al derivation of

∫∞

n
f(x)dx is possible but has

a 
omplex expression, the problem of �nding n in order to rea
h the ne
essary

a

ura
y 
an be very 
hallenging (e.g. see the dis
ussion in [3, page 240℄). As well,

the methods of [4℄ or [20℄ 
an be su

essful in a limited number of 
ases, for whi
h

it is possible to evaluate the limit of the sequen
e of partial sums of a series by

using the spe
ial transforms and analyti
 te
hniques of 
omplex analysis developed

there.

In the present paper, we estimate the sum s for quite general 
lasses of 
on-

vergent series. The terms an in (1.1) may have a very 
omplex form that will

make impossible to use any analyti
 transform available in [4℄ or [20℄ to �nd the

limit. For instan
e, an 
an be derived from an inhomogeneous in�nite system of

fun
tional or di�erential equations that often appears in applied areas of probabil-

ity and mathemati
al analysis. The method of the present paper works in a quite

general situation. The only general information about qualitative properties of an,
su
h as the sequen
e {an+1/an} is stri
tly in
reasing, is known. Thus, the present

paper suggests a new tool for evaluating positive series with pra
ti
ally required

a

ura
y, in whi
h the expli
it formula for an is assumed to be unknown.

1.3. Types of basi
 numeri
al pro
edures and approa
h. We suggest

two numeri
al pro
edures for possibly best evaluating s. One of them is 
alled test

pro
edure. It enables us to 
he
k whether the remainder of the series is smaller

than given ǫ. Another pro
edure that is 
alled sear
h pro
edure evaluates the sum

of series or its remainder. The sear
h pro
edure is based on a sear
h method

that in
ludes test pro
edures at ea
h step of the sear
h. We shall 
onsider two

sear
h pro
edures. One of them, step-forward sear
h, is based on the sequential

test pro
edures 
onsequently evaluating the remainders of the series as long as the

required a

ura
y is not rea
hed. The se
ond one, modi�ed step-forward sear
h, is

an improved version of step-forward sear
h with better performan
e that enables

us to rea
h good a

ura
y within a reasonable time. It turns out that the modi�ed

step-forward sear
h solves the required problem with relatively small number of

iterations justi�ed by the numeri
al study of the series given in the paper.

The approa
h of the present paper is based on the modi�ed version of Kummer's

test given by Tong [24℄. We generate the test's auxiliary sequen
e, and on the basis

of the properties of that sequen
e, we are able to arrive at the 
on
lusion about the

required a

ura
y for the estimate of the series sum.

Kummer's test in its original version appeared in 1835 in [14℄. Sin
e its �rst

publi
ation it has been revised many times, and after more than �fty years sin
e
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then Stoltz provided the 
learer formulation and proof that has been well-a

epted

and appeared in the textbooks (see e.g., [13, page 311℄) and well-known in our

days. About 30 years ago, Tong [24℄ proved a new version of the test that 
har-

a
terizes 
onvergen
e or divergen
e of any positive series in the forms of ne
essary

and su�
ient 
onditions.

Although Kummer's test is a more general test than many existing parti
ular

tests su
h as d'Alembert test, Raabe's test, Bertrand's test and Gauss's test, it is

seldom applied in pra
ti
al and theoreti
al problems, sin
e it required an elegant


onstru
tion of an auxiliary sequen
e. The known appli
ations were given for new

parti
ular tests (e.g., [1℄) and in the theory of di�eren
e equations (e. g. [9℄). Con-

ne
tion of Kummer's test with regular variation is given in [23℄. The appli
ations

of Tong's theorem [24℄ hitherto are unknown, and this paper presents the �rst one.

1.4. Comments on the numeri
al study. The numeri
al examples of this

paper are relatively simple and have only an illustrative nature. They do not pre-

tend to be 
hallenging problems that 
annot be solved by other known methods, but

enable a reader to understand the pro
edures easily and reprodu
e the 
omputations

using MATLAB or another tool. Relatively simple series for illustration purposes

are often used. For instan
e, the slowly 
onvergent series

∑∞

n=2
n−1(log n)−2

, the

sum of whi
h is known (e.g., [3℄) is used in a number of papers (e.g., [6, 7℄) for

illustration of the methods suggested there.

We shall study numeri
ally the following two series. The �rst series, I1 =
∑∞

n=1
n−3/2 log(n + 1), is a series with relatively slow 
onvergen
e, and the se
-

ond one, I2 =
∑∞

n=1
n−7/4 log(n + 1), is a more regularly 
onvergent one. Both

these series 
an be numeri
ally studied by the known methods proposed in [4℄, [6℄

or [20℄. For instan
e, with the aid of the method of [4, Se
tion 3℄, it is possible

to �nd the limit of the partial sums of I1 and obtain I1 = 4.917157736018209
(with the a

ura
y of �fteen digits). By the method presented in [20, Theo-

rem 3.2℄ with m = 10 and n = 80 (the notation is taken from [20℄; n = 80
denotes the number of nodes in the quadrature formula) we have approximately

I1 = 4.91715773601820873704547032417452640168842246152187424222353.
The method of [6℄ also enables us to �nd the required bounds for I1 and I2 in

order to judge about the possible number of terms for the required a

ura
y.

With the algorithms of the present paper, I1 is 
al
ulated with the a

ura
y of

two digits, and I2 with the a

ura
y of four digits.

1.5. Outline of the paper. The rest of the paper is organized as follows. In

Se
tion 2, we re
all the formulation of Tong's theorem [24℄ in the form adapted

to the required numeri
al pro
edures and provide its new short proof 
ontaining

the important expression that is then used in the paper. The proof is based on

appli
ation of the Abelian and Tauberian theorems. In Se
tion 3, we explain the

test pro
edure and justify its e�e
tiveness on examples. In Se
tion 4, we explain

the sear
h pro
edures on two numeri
al examples. In Se
tion 5, we 
on
lude the

paper.
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2. Tong's theorem

In this se
tion, we formulate and prove the only �rst 
laim of Tong's theorem

related to the 
onvergen
e of the series. The se
ond 
laim related to divergen
e is

not required for our further 
onstru
tion. For 
onvenien
e, in the formulation and

proof of the theorem, the value n0 in (1.1) is set to 0.

Theorem 2.1. Series

∑∞

n=0
an 
onverges if and only if there exists a positive

sequen
e ζn, n = 0, 1, . . . , su
h that ζnan/an+1 − ζn+1 = 1.

Remark 2.1. The formulation of Theorem 2.1 is simpler than that in [24℄,

where the sequen
e ζn was assumed to satisfy ζnan/an+1 − ζn+1 > c > 0.

Proof. The elementary proof given here involves the well-known Abel the-

orem, its inversion for positive series as well as a Hardy-Littlewood Tauberian

theorem [10,11℄. Below we re
all the formulation of that Tauberian theorem.

Lemma 2.1. Let the series

∑∞

j=0
ajx

j

onverge for |x| < 1, and suppose that

there exists γ > 0 su
h that limx↑1(1 − x)γ
∑∞

n=0
ajx

j = A. Suppose also that

aj > 0. Then, as N → ∞, we have

∑N
j=0

aj = (A/Γ(1 + γ))Nγ(1 + o(1)), where

Γ(x) is Euler's Gamma-fun
tion.

For |x| < 1 introdu
e generating fun
tions. Denote A(x) =
∑∞

n=1
anx

n
and

Z(x) =
∑∞

n=0
anζnx

n
. We have

(2.1) a0ζ0 −A(x) = (1− x)Z(x).

Now both ne
essary and su�
ient 
onditions follow from (2.1). If

∑∞

n=0
an 
on-

verges, then a

ording to Abel's theorem limx↑1A(x) = s − a0, and ζ0 
an be


hosen satisfying the 
ondition ζ0 > (s − a0)/a0. A

ording to Lemma 2.1, for

large N , we have

∑N
n=0

anζn =
(

(s − a0)/a0
)

N(1 + o(1)), and hen
e the required

positive sequen
e ζn exists. On the other hand, the existen
e of a positive se-

quen
e zn = anζn satisfying limx↑1(1 − x)
∑∞

n=0
anζnx

n = c > 0 implies that the

left-hand side of (2.1) is positive and a0ζ0 − limx↑1 A(x) = c, whi
h means that

s = a0 + a0ζ0 − c < ∞. Here we used the fa
t that if limx↑1 A(x) exists and

an > 0, then
∑∞

n=1
an = limx↑1A(x), that in parti
ular follows from Lemma 2.1

for γ = 0. �

The above proof of Theorem 2.1 enables us to establish the following important

property.

Proposition 2.1. Suppose that a0ζ0 >
∑∞

n=1
an, and the sequen
e bn =

an+1/an, n > 0, is stri
tly in
reasing. Then the sequen
e ζn, n > 0, stri
tly

in
reases.

Proof. Write anζn − an+1ζn+1 = an+1. Then,

(2.2)

n
∑

k=1

ak = a0ζ0 − anζn.

If a0ζ0 >
∑∞

k=1
ak, then c = a0ζ0 −

∑∞

k=1
ak > 0. From (2.2) we have
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Table 1. Some values of partial sums Sn for the series

∑∞

n=1
n−3/2 log(n+ 1).

n 5, 000 10, 000 20, 000 50, 000 100, 000
Sn 4.619697 4.692955 4.748819 4.802495 4.831695

(2.3) ζn =
1

an

(

c+

∞
∑

k=1

ak −
n
∑

k=1

ak

)

=
1

an

(

c+

∞
∑

k=n+1

ak

)

.

It follows from (2.3) that the sequen
e ζn is in
reasing. Indeed, we have

ζn+1 =
1

an+1

(

c+

∞
∑

k=n+2

ak

)

>
1

an

(

c+

∞
∑

k=n+1

ak

)

= ζn.

The last inequality is true, sin
e the made assumption implies that an+1 < an for

all n > 0 (if an+1 > an for a 
ertain n = n0, then the inequality must satisfy for

all n > n0, and we arrive at a divergent series), and

aN
an

= bN−1bN−2 · . . . · bn < bNbN−1 · . . . · bn+1 =
aN+1

an+1

for any N > n. �

If a0ζ0 <
∑∞

k=1
ak, and the sequen
e bn, n > 1, is in
reasing, then it follows

from (2.1) or (2.2) that there is the index value n = n∗
for whi
h we have ζn∗ >

ζn∗−1, but ζn∗+1 < ζn∗
.

So, the idea of the sear
h pro
edure is to �nd the value ζ0 su
h that a0ζ0 would
be 
lose enough to

∑∞

k=1
ak. The idea of the test pro
edure is to 
he
k whether

the 
hosen value of ζ0 is given su
h that the sum of the series (or more often the

remainder of the series) is less than given ǫ.

3. The test pro
edure

Let (1.1) be a remainder of the series. The test pro
edure is aimed to answer

the following question: whether s−an0
< ǫ. So, setting ζn0

an0
= ǫ, we are to 
he
k

whether the sequen
e ζn, n > n0, is in
reasing.

For the numeri
al illustration we 
onsider the series

∑∞

n=1
n−3/2 log(n + 1).

Some partial sums of this series, Sn =
∑n

i=1
i−3/2 log(i + 1), are given in Table 1.

Note that for the aforementioned series, the monotoni
ity 
ondition bn < bn+1,

n = 1, 2, . . . , is satis�ed.
Using Theorem 2.1 let us solve the following problem. Take n0 = 10, 001 and

ǫ = 0.1. Che
k whether

∑∞

n=10,001 n
−3/2 log(n+ 1) < 0.1.

To solve this problem, take ζ10,000a10,000 = 0.1 and 
he
k whether the sequen
e

ζn, n > 10, 000, is in
reasing. In our analysis, we 
an 
he
k the values ζn for a �xed

number of iterations only, say for 10, 000 6 n 6 59, 999. Note, that be
ause of

this restri
tion, our analysis 
an wrongly show that all the obtained values ζn are
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Table 2. Some values of ζn with the starting value ζ10,000 = 10, 857.244172.

n 17, 802 17, 803 17, 804 17, 805
ζn 12, 736.509420 12, 736.509515 12, 736.509554 12, 736.509537

Table 3. Some values of ζn with the starting value ζ10,000 = 16, 285.866259.

n 59, 996 59, 997 59, 998 59, 999
ζn 42, 691.061392 42, 691.064068 42, 691.066728 42, 691.069372

indeed in the in
reasing order, while in fa
t the behaviour of ζn 
an be 
hanged out

of the horizon of 50, 000 iterations. In that 
ase we may a

ept a wrong hypothesis

and arrive at the mistaken result.

In our 
ase the starting value is ζ10,000 = 10, 857.244172. Then using the re
ur-

ren
e relation ζn+1 = ζnan/an+1 − 1, we �nd that for n = 10, 000, . . . , 17, 804 the

sequen
e ζn follows in an in
reasing order, and then after n = 17, 804 it de
reases.

In Table 2, we provide some relevant values of ζn that indi
ate the behaviour of

ζn prior the indi
ated number n. Thus, the solution to this problem yields the

negative answer after less than 8, 000 steps of the re
ursion, that is mu
h less

than the maximum number of steps of the above 
onvention. Following Table 1,

S10,000 = 4.692955 and S10,000 +0.1 = 4.792955. The last value is 
loser to S50,000.

More a

urately, S41,363 = 4.792955.
Let us now 
onsider the same example with ǫ = 0.15. That is, we would

like to 
he
k whether

∑∞

n=10,001 n
−3/2 log(n + 1) < 0.15. In this 
ase, ζ10,000 =

16, 285.866259, and from the aforementioned re
urren
e relation, we �nd that all

the values ζn, 10, 000 6 n 6 59, 999, follow an in
reasing order. In Table 3, we

provide the four last values of ζn. A

ording to the numeri
al results obtained, we

arrive at the positive answer to our hypothesis. Is the made 
on
lusion 
orre
t?

The obtained value is greater than that indi
ated in Table 1 for S100,000. So, we

indeed 
an believe that our solution is true.

Let us now re-
he
k whether our 
on
lusion is true. Take n = 100, 000. Then
from Table 1 we have ǫ = 4.842955− 4.831695 = 0.011260. The asso
iated value

of ζ100,000 is ζ100,000 = 30, 928.034437. Now a new re
al
ulation shows that our

previous 
on
lusion was wrong. Starting with ζ100,000 = 30, 928.034437 one 
an ob-

serve that the sequen
e ζn is not in
reasing, just de
reasing. Even the se
ond value

ζ100,001 = 30, 927.471495 is less than the �rst (original) value ζ100,000. Summing up

the series terms that are out of Table 1, we �nd S139,230 = 4.842955. These two test

al
ulations show a massive di�eren
e between the �rst test given for n = 10, 000
and ǫ = 0.15 and the se
ond one given for n = 100, 000 and ǫ = 0.011260. In

the �rst 
ase 50, 000 steps of iterations were insu�
ient to arrive at true 
on
lu-

sion, while in the se
ond 
ase an only single iteration provided a true 
on
lusion.

Indeed, in the se
ond 
ase the information on the partial sum S100,000 is more 
om-

plete about the series, and the smaller value of ǫ 
ompared to its originally de�ned

value enables us to provide a more exa
t veri�
ation of the test. The last 
on
lusion
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follows dire
tly from (2.2). If a0ζ0 <
∑∞

n=1
an, then there exists n∗

su
h that the

partial sum Sn∗ > a0ζ0 and ζn∗
must be negative. Prior be
oming negative, the

sequen
e ζn that starts from the positive ζ0 must de
rease. So, if n < n∗
is 
lose

to n∗
, then for the remainder of the series the sequen
e ζn will de
rease, and this

e�e
t has just been obtained numeri
ally.

4. The sear
h pro
edure

The main idea of the sear
h method is a sequential evaluation of the sum of

series or its remainder.

4.1. Sear
h algorithms. The algorithm of step-forward sear
h

(i) Initial step. For someN �nd the partial sum of the series SN =
∑N

n=n0
an.

(ii) Test sear
h step. For a given ǫ test whether the remainder of the series

∑∞

n=N+1
an is less than ǫ.

(iii) If the answer in (ii) is negative, then �nd a new value of SN∗
, where

N∗ = min

{

m :

m
∑

n=n0

an > SN + ǫ

}

= min{m : Sm > SN + ǫ},

set SN = SN∗
and repeat (i) and (ii).

(iv) If the answer in (ii) is positive, the pro
edure is terminated.

Using this method assumes that the possible number of iterations at a test

sear
h step 
an be large. Then a wrong de
ision at �nal step in the series of the

test sear
h steps 
an be made with negligibly small likelihood. The maximum

number of iterations in a step is set to 109.

The algorithm of modi�ed step-forward sear
h

(i) Initial step. For some N �nd the partial sum of the series SN =
∑N

n=n0
an.

(ii) Test sear
h step. For a given ǫ test whether the remainder of the series

∑∞

n=N+1
an is less than ǫ.

(iii) If the number of iterations is less than a spe
i�ed value M before the

negative answer is obtained, then we �nd a new value of SN∗
, where

N∗ = min

{

m :

m
∑

n=n0

an > SN + ǫ

}

= min{m : Sm > SN + ǫ},

and repeat (i) and (ii).

(iv) If the number of iteration rea
hes M , then the pro
edure of test sear
h is

interrupted.

(v) New test sear
h step. The test sear
h is resumed with the new parameter

ǫ∗ = ǫ/K.

(vi) If the answer in (v) is negative, then �nd a new value of SN∗
, where

N∗ = min

{

m :

m
∑

n=n0

an > SN + ǫ∗
}

= min{m : Sm > SN + ǫ∗},

set SN = SN∗
and repeat (v) and (vi).
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Table 4. Numeri
al study of the series

∑∞

n=1
log(n+ 1)n−3/2

by

step-forward sear
h with ǫ = 0.01

Step number Number of iterations n Sn

in the step

0 N/A 100, 000 4.831695
1 1 133, 854 4.841695
2 1 186, 526 4.851695
3 1 274, 211 4.861695
4 1 434, 474 4.871695
5 1 789, 816 4.881695
6 413, 543 1, 702, 013 4.891695
7 6, 248, 811 5, 401, 971 4.901695
8 333, 412, 235 62, 126, 060 4.911695
9 109 109 4.915721

(vii) If the answer in (v) is positive, the pro
edure is terminated.

Remarks 4.1. 1. In general, M > 2. In the numeri
al study in Se
tion 4.2,

we set M = 2 that seems to be the best setting in the general situation.

2. The most 
onvenient setting for K is K = 10.
3. The presented algorithm 
an be further modi�ed. For instan
e, after step

(v) we 
an 
he
k the number of iterations again similarly to that it is

given in step (iii). If it is less than M , then we �nd SN as indi
ated in

(vi). Otherwise the pro
edure is interrupted and then resumed with the

new parameter ǫ∗∗ = ǫ∗/K and so on.

4. Following the above three remarks, the total number of iterations in order

to rea
h the required a

ura
y of the series 
an be made relatively small.

4.2. Numeri
al study. For the numeri
al study we 
onsider the same series

(4.1)

∞
∑

n=1

log(n+ 1)

n
√
n

that was 
onsidered in Se
tion 3 as well as the series

(4.2)

∞
∑

n=1

log(n+ 1)

n
√
n 4
√
n

that 
onverges with a higher rate 
ompared to the series given by (4.1) and hen
e


an be provided with higher a

ura
y. For series (4.1) we provide our experiments

with ǫ = 0.01 taking the initial partial sum S100,000 = 4.831695 (see Table 1). For

series (4.2) we use ǫ = 0.0001 starting with the initial partial sum S1,000,000 =
2.625626.

4.2.1. Step-forward sear
h. With ǫ = 0.01 the step-by-step results for series

(4.1) are given in Table 4 and for series (4.2) in Table 5.
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Table 5. Numeri
al study of the series

∑∞

n=1
log(n+ 1)n−7/4

by

step-forward sear
h with ǫ = 0.0001

Step number Number of iterations n Sn

in the step

0 N/A 1, 000, 000 2.625626
1 1 1, 282, 406 2.625726
2 1 1, 730, 125 2.625826
3 1 2, 251, 124 2.625926
4 1 4, 189, 924 2.626026
5 96, 723 9, 190, 084 2.626126
6 6, 975, 835 57, 584, 662 2.626226
7 109 1010 2.626263

It is seen from Table 4 that by the only 9 steps, we arrive at the result giving us

the approximate value of the series 4.915318. The result with two de
imal pla
es

for the sum of series is 4.92 that a
hieved with approximately 109 terms. Note

also that in the �rst 5 steps, there is only a single iteration, while when we arrive


loser to the end, the number of iterations within the step essentially in
reases.

The essential grows of the number of iterations is seen in steps 6, 7 and 8, while in
step 9 the number of iterations rea
hes the established limit of 109.

For the series given by (4.2), the required result is a
hieved by 7 steps. From

Table 5 we see that the number iterations at step 5 is 96, 723 and the number of

iterations in step 6 is 57, 584, 662. The 7th step is �nal, and the resulting sum of

the series is approximately 2.626263. The result with four de
imal pla
es for this

series is 2.6263. It is a
hieved after summing up approximately 109 terms.

4.2.2. Modi�ed step-forward sear
h. Numeri
al study with modi�ed step-for-

ward sear
h is provided with same ǫ and M = 2. This means that for series (4.1)

all 
al
ulation starting from step 6 are to be provided with parameter ǫ∗ = 0.001.
Step-by-step results that 
orrespond to steps 8 and 9 in step-forward method of

Table 4 are now shown in Table 6. For series (4.2), all 
al
ulation starting from

step 5 are to be provided with parameter ǫ∗ = 0.00001. Step-by-step results that


orrespond to steps 6 and 7 in step-forward method of Table 5 are now shown in

Table 7.

5. Con
luding remark

In the present paper we suggested a new method of estimating the sum of

positive 
onvergent series. The numeri
al pro
edures based on this method show

their e�e
tiveness for a wide 
lass of series. The assumption that the sequen
e

bn = an+1/an is stri
tly in
reasing is quite natural. The reasonable questions are

how important this assumption is, what if it is not satis�ed.

Under the made assumption, the test pro
edure redu
es to �nd the �rst value

ζn in the sequen
e that is less then the previous one. If su
h value is found, then
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Table 6. Numeri
al study of the series

∑∞

n=1
log(n+ 1)n−3/2

by

modi�ed step-forward sear
h with ǫ = 0.01 and ǫ∗ = 0.001

Step number Number of iterations n Sn

in the step

25 1 5, 401, 971 4.901695
26 1 6, 307, 961 4.902695
27 1 7, 449, 235 4.903695
28 1 8, 912, 398 4.904695
29 1 10, 827, 113 4.905695
30 1 13, 394, 222 4.906695
31 1 16, 937, 648 4.907695
32 1 22, 005, 935 4.908695
33 1 29, 585, 579 4.909695
34 1 41, 590, 939 4.910695
35 1 62, 126, 060 4.911695
36 1 101, 277, 959 4.912695
37 1 189, 350, 834 4.913695
38 8, 546, 857 453, 021, 228 4.914695
39 109 109 4.915721

Table 7. Numeri
al study of the series

∑∞

n=1
log(n+ 1)n−7/4

by

modi�ed step-forward sear
h with ǫ = 0.0001 and ǫ∗ = 0.00001

Step number Number of iterations n Sn

in the step

14 1 9, 190, 084 2.626126
15 1 10, 238, 361 2.626136
16 1 11, 505, 615 2.626146
17 1 13, 062, 296 2.626156
18 1 15, 011, 116 2.626166
19 1 17, 507, 220 2.626176
20 1 20, 795, 233 2.626186
21 1 25, 281, 898 2.626196
22 1 31, 690, 710 2.626206
23 1 41, 428, 077 2.626216
24 1 57, 584, 662 2.626226
25 1 88, 308, 941 2.626236
26 1 162, 735, 728 2.626246
27 47, 811, 731 482, 815, 421 2.626256
28 856, 114, 482 over 1010 2.626266
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the hypothesis is reje
ted. Modi�ed step-forward sear
h improves the 
onstru
tion

and made the sear
h pro
edure qui
ker.

If this assumption about the sequen
e bn is not satis�ed, then the test pro
edure

be
omes mu
h longer, sin
e in that 
ase we are required a mu
h larger number of

iterations to �nd the �rst negative value of ζn in the sequen
e, and only then we

reje
t the proposed hypothesis. A larger number of operations a�e
ts negatively the

performan
e and makes impossible it to use the modi�
ation of the sear
h method

that is used in the 
ase when the aforementioned assumption on the sequen
e bn is

satis�ed.
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