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EVALUATING THE SUM OF

CONVERGENT POSITIVE SERIES

Vyaheslav M. Abramov

Abstrat. We provide numerial proedures for possibly best evaluating the

sum of positive series under quite general setting. Our proedures are based

on the appliation of a generalized version of Kummer's test.

1. Introdution

1.1. Formulation of the problem and literature review. Let

(1.1)

∞
∑

n=n0

an = s

be a onvergent series with positive terms an, where n0 is some integer that initiates

the series. The aim of this paper is to provide e�etive numerial proedures for

evaluating s. This problem is old and important, and there is a number of known

onsiderations in the literature. A good motivation of this problem an be found

in Boas [3℄. On page 237, Boas [3℄ writes: �Textbooks spend a lot of time on tests

for onvergene that are of little pratial value, sine a onvergent series either

onverges rapidly, in whih ase almost all test will do; or it onverges slowly, in

whih ase it is not going to be of muh use unless there is some way to get at its sum

without adding up unreasonable number of terms." Then on page 238, he writes:

�It is di�erent, but related, and somewhat more di�ult, problem to alulate

the sum of series when it would take an unreasonable or impossible number of

terms to get it to a desired degree of auray. For example,

∑∞

n=2
n−1(logn)−2

would require about 1087 terms (the exat number is given below, on p. 240)

to get its sum to 2 deimal plaes, but the sum is known, by indiret methods,

to be approximately 2.10974." In [3, page 242℄ Boas provides a table ontaining

the information about onvergene of di�erent series inluding

∑∞

n=2
n−1(logn)−2

,

∑∞

n=3
n−1(logn)−1(log logn)−2

and many other interesting series.
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There are di�erent ways of approahing this problem in the literature. Let

f(x) be a ontinuous, positive and dereasing funtion, and f(n) = an. Denote

Rn =
∑∞

k=n an. Then
∫∞

n+1
f(x) 6 Rn 6

∫∞

n f(x). Morley [21℄ showed that if f(x)
is also onvex, then

∫ ∞

n

f(x)dx − 1

2
f(n) 6 Rn 6

∫ ∞

n

f(x)dx − 1

2
f(n+ 1).

Under the same assumption, this result was further sharpened by Nelsen [22℄ to

the following estimate

1

2
f(n+ 1) +

∫ ∞

n+1

f(x) 6 Rn 6

∫ ∞

n+1/2

f(x)dx.

If f(x) is smooth, Boas [3, pages 238, 239℄ derives the simple inequality that follows

diretly from the Euler�Malaurin formula and the seond mean-value theorem:

∫ ∞

n+1/2

f(x)dx+
1

8
f ′

(

n+
1

2

)

< Rn <

∫ ∞

n+1/2

f(x)dx,

supporting it with many examples. Braden [6℄ has built error bounding pair for a

series onsidering three di�erent tests suh as integral test, limit omparison test

and ratio test. That error bounding pair enables us to evaluate the total number

of terms in the partial sum of the series in order to reah the neessary auray.

The solution of ten hallenging problems of numerial analysis that inlude

series summation as a part has been provided in [4℄. The approah in that book

onerns all major tehniques of the modern numerial analysis that inludes ma-

trix omputation, iterative linear methods, limit extrapolation and onvergene

aeleration, numerial quadrature, ontour integration, disretization of PDEs,

global optimization, Monte Carlo and evolutionary algorithms, error ontrol, inter-

val and high-preision arithmeti, and many more. The problems related to series

summation an be found in [4, Appendix A℄ titled Convergene Aeleration and

in [4, Setion 3℄ titled How Far Away Is In�nity? Spei�ally in [4, Setion 3℄, the

author of the setion, Jörg Waldvogel, �nds the ℓ2-norm of the in�nite matrix A,
the entries of whih are a1,1 = 1, a1,2 = 1/2, a2,1 = 1/3, a1,3 = 1/4, a2,2 = 1/5,
a3,1 = 1/6, and so on. The suggested methods inlude the analyti transform of

the funtion of omplex variable and its ontour integration in order to �nd the

required limit of the partial sums sequene for the series arising there.

Note that the appearane of [4℄ was an aepted hallenge on the announement

of Trefethen in SIAM News [25℄, who formulated ten easy-to-state but hard-to-solve

problems on numerial analysis (see also the reviews of Bailey [2℄ and Borwein [5℄

for the additional omments). So, [4℄ is a problem-oriented book, the methods

of whih an be extended to wider lasses of problems keeping the auray and

omputational speed (see [12℄). Conerning the onvergent positive series, this

means that the methods of [4℄ are appliable for some lasses of slowly onvergent

series, and the limits of partial sums of those series an also be found for them.

During last years, new methods of summation of slowly onvergent series have

been developed in a number of papers of Milovanovi¢ [15�20℄ and Gautshi and
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Milovanovi¢ [8℄. In partiular, in the most reent paper [20℄ Milovanovi¢ used the

so-alled summation/integration method based on transformation of the series to

weighted integrals and onstrution of the quadrature formulas of Gaussian type for

those integrals with respet to the weight funtions ontained in the onstrution

of the weighted integrals. The mentioned paper [20℄ also provides a review of the

known methods for summation of slowly onvergent series developed reently.

1.2. Motivation. The methods suggested in [3,6,21,22℄, annot be suessful

in many ases, when the analytial derivation of

∫∞

n f(x)dx is hard or impossible.

Even in the ases when the analytial derivation of

∫∞

n
f(x)dx is possible but has

a omplex expression, the problem of �nding n in order to reah the neessary

auray an be very hallenging (e.g. see the disussion in [3, page 240℄). As well,

the methods of [4℄ or [20℄ an be suessful in a limited number of ases, for whih

it is possible to evaluate the limit of the sequene of partial sums of a series by

using the speial transforms and analyti tehniques of omplex analysis developed

there.

In the present paper, we estimate the sum s for quite general lasses of on-

vergent series. The terms an in (1.1) may have a very omplex form that will

make impossible to use any analyti transform available in [4℄ or [20℄ to �nd the

limit. For instane, an an be derived from an inhomogeneous in�nite system of

funtional or di�erential equations that often appears in applied areas of probabil-

ity and mathematial analysis. The method of the present paper works in a quite

general situation. The only general information about qualitative properties of an,
suh as the sequene {an+1/an} is stritly inreasing, is known. Thus, the present

paper suggests a new tool for evaluating positive series with pratially required

auray, in whih the expliit formula for an is assumed to be unknown.

1.3. Types of basi numerial proedures and approah. We suggest

two numerial proedures for possibly best evaluating s. One of them is alled test

proedure. It enables us to hek whether the remainder of the series is smaller

than given ǫ. Another proedure that is alled searh proedure evaluates the sum

of series or its remainder. The searh proedure is based on a searh method

that inludes test proedures at eah step of the searh. We shall onsider two

searh proedures. One of them, step-forward searh, is based on the sequential

test proedures onsequently evaluating the remainders of the series as long as the

required auray is not reahed. The seond one, modi�ed step-forward searh, is

an improved version of step-forward searh with better performane that enables

us to reah good auray within a reasonable time. It turns out that the modi�ed

step-forward searh solves the required problem with relatively small number of

iterations justi�ed by the numerial study of the series given in the paper.

The approah of the present paper is based on the modi�ed version of Kummer's

test given by Tong [24℄. We generate the test's auxiliary sequene, and on the basis

of the properties of that sequene, we are able to arrive at the onlusion about the

required auray for the estimate of the series sum.

Kummer's test in its original version appeared in 1835 in [14℄. Sine its �rst

publiation it has been revised many times, and after more than �fty years sine
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then Stoltz provided the learer formulation and proof that has been well-aepted

and appeared in the textbooks (see e.g., [13, page 311℄) and well-known in our

days. About 30 years ago, Tong [24℄ proved a new version of the test that har-

aterizes onvergene or divergene of any positive series in the forms of neessary

and su�ient onditions.

Although Kummer's test is a more general test than many existing partiular

tests suh as d'Alembert test, Raabe's test, Bertrand's test and Gauss's test, it is

seldom applied in pratial and theoretial problems, sine it required an elegant

onstrution of an auxiliary sequene. The known appliations were given for new

partiular tests (e.g., [1℄) and in the theory of di�erene equations (e. g. [9℄). Con-

netion of Kummer's test with regular variation is given in [23℄. The appliations

of Tong's theorem [24℄ hitherto are unknown, and this paper presents the �rst one.

1.4. Comments on the numerial study. The numerial examples of this

paper are relatively simple and have only an illustrative nature. They do not pre-

tend to be hallenging problems that annot be solved by other known methods, but

enable a reader to understand the proedures easily and reprodue the omputations

using MATLAB or another tool. Relatively simple series for illustration purposes

are often used. For instane, the slowly onvergent series

∑∞

n=2
n−1(log n)−2

, the

sum of whih is known (e.g., [3℄) is used in a number of papers (e.g., [6, 7℄) for

illustration of the methods suggested there.

We shall study numerially the following two series. The �rst series, I1 =
∑∞

n=1
n−3/2 log(n + 1), is a series with relatively slow onvergene, and the se-

ond one, I2 =
∑∞

n=1
n−7/4 log(n + 1), is a more regularly onvergent one. Both

these series an be numerially studied by the known methods proposed in [4℄, [6℄

or [20℄. For instane, with the aid of the method of [4, Setion 3℄, it is possible

to �nd the limit of the partial sums of I1 and obtain I1 = 4.917157736018209
(with the auray of �fteen digits). By the method presented in [20, Theo-

rem 3.2℄ with m = 10 and n = 80 (the notation is taken from [20℄; n = 80
denotes the number of nodes in the quadrature formula) we have approximately

I1 = 4.91715773601820873704547032417452640168842246152187424222353.
The method of [6℄ also enables us to �nd the required bounds for I1 and I2 in

order to judge about the possible number of terms for the required auray.

With the algorithms of the present paper, I1 is alulated with the auray of

two digits, and I2 with the auray of four digits.

1.5. Outline of the paper. The rest of the paper is organized as follows. In

Setion 2, we reall the formulation of Tong's theorem [24℄ in the form adapted

to the required numerial proedures and provide its new short proof ontaining

the important expression that is then used in the paper. The proof is based on

appliation of the Abelian and Tauberian theorems. In Setion 3, we explain the

test proedure and justify its e�etiveness on examples. In Setion 4, we explain

the searh proedures on two numerial examples. In Setion 5, we onlude the

paper.
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2. Tong's theorem

In this setion, we formulate and prove the only �rst laim of Tong's theorem

related to the onvergene of the series. The seond laim related to divergene is

not required for our further onstrution. For onveniene, in the formulation and

proof of the theorem, the value n0 in (1.1) is set to 0.

Theorem 2.1. Series

∑∞

n=0
an onverges if and only if there exists a positive

sequene ζn, n = 0, 1, . . . , suh that ζnan/an+1 − ζn+1 = 1.

Remark 2.1. The formulation of Theorem 2.1 is simpler than that in [24℄,

where the sequene ζn was assumed to satisfy ζnan/an+1 − ζn+1 > c > 0.

Proof. The elementary proof given here involves the well-known Abel the-

orem, its inversion for positive series as well as a Hardy-Littlewood Tauberian

theorem [10,11℄. Below we reall the formulation of that Tauberian theorem.

Lemma 2.1. Let the series

∑∞

j=0
ajx

j
onverge for |x| < 1, and suppose that

there exists γ > 0 suh that limx↑1(1 − x)γ
∑∞

n=0
ajx

j = A. Suppose also that

aj > 0. Then, as N → ∞, we have

∑N
j=0

aj = (A/Γ(1 + γ))Nγ(1 + o(1)), where

Γ(x) is Euler's Gamma-funtion.

For |x| < 1 introdue generating funtions. Denote A(x) =
∑∞

n=1
anx

n
and

Z(x) =
∑∞

n=0
anζnx

n
. We have

(2.1) a0ζ0 −A(x) = (1− x)Z(x).

Now both neessary and su�ient onditions follow from (2.1). If

∑∞

n=0
an on-

verges, then aording to Abel's theorem limx↑1A(x) = s − a0, and ζ0 an be

hosen satisfying the ondition ζ0 > (s − a0)/a0. Aording to Lemma 2.1, for

large N , we have

∑N
n=0

anζn =
(

(s − a0)/a0
)

N(1 + o(1)), and hene the required

positive sequene ζn exists. On the other hand, the existene of a positive se-

quene zn = anζn satisfying limx↑1(1 − x)
∑∞

n=0
anζnx

n = c > 0 implies that the

left-hand side of (2.1) is positive and a0ζ0 − limx↑1 A(x) = c, whih means that

s = a0 + a0ζ0 − c < ∞. Here we used the fat that if limx↑1 A(x) exists and

an > 0, then
∑∞

n=1
an = limx↑1A(x), that in partiular follows from Lemma 2.1

for γ = 0. �

The above proof of Theorem 2.1 enables us to establish the following important

property.

Proposition 2.1. Suppose that a0ζ0 >
∑∞

n=1
an, and the sequene bn =

an+1/an, n > 0, is stritly inreasing. Then the sequene ζn, n > 0, stritly

inreases.

Proof. Write anζn − an+1ζn+1 = an+1. Then,

(2.2)

n
∑

k=1

ak = a0ζ0 − anζn.

If a0ζ0 >
∑∞

k=1
ak, then c = a0ζ0 −

∑∞

k=1
ak > 0. From (2.2) we have
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Table 1. Some values of partial sums Sn for the series

∑∞

n=1
n−3/2 log(n+ 1).

n 5, 000 10, 000 20, 000 50, 000 100, 000
Sn 4.619697 4.692955 4.748819 4.802495 4.831695

(2.3) ζn =
1

an

(

c+

∞
∑

k=1

ak −
n
∑

k=1

ak

)

=
1

an

(

c+

∞
∑

k=n+1

ak

)

.

It follows from (2.3) that the sequene ζn is inreasing. Indeed, we have

ζn+1 =
1

an+1

(

c+

∞
∑

k=n+2

ak

)

>
1

an

(

c+

∞
∑

k=n+1

ak

)

= ζn.

The last inequality is true, sine the made assumption implies that an+1 < an for

all n > 0 (if an+1 > an for a ertain n = n0, then the inequality must satisfy for

all n > n0, and we arrive at a divergent series), and

aN
an

= bN−1bN−2 · . . . · bn < bNbN−1 · . . . · bn+1 =
aN+1

an+1

for any N > n. �

If a0ζ0 <
∑∞

k=1
ak, and the sequene bn, n > 1, is inreasing, then it follows

from (2.1) or (2.2) that there is the index value n = n∗
for whih we have ζn∗ >

ζn∗−1, but ζn∗+1 < ζn∗
.

So, the idea of the searh proedure is to �nd the value ζ0 suh that a0ζ0 would
be lose enough to

∑∞

k=1
ak. The idea of the test proedure is to hek whether

the hosen value of ζ0 is given suh that the sum of the series (or more often the

remainder of the series) is less than given ǫ.

3. The test proedure

Let (1.1) be a remainder of the series. The test proedure is aimed to answer

the following question: whether s−an0
< ǫ. So, setting ζn0

an0
= ǫ, we are to hek

whether the sequene ζn, n > n0, is inreasing.

For the numerial illustration we onsider the series

∑∞

n=1
n−3/2 log(n + 1).

Some partial sums of this series, Sn =
∑n

i=1
i−3/2 log(i + 1), are given in Table 1.

Note that for the aforementioned series, the monotoniity ondition bn < bn+1,

n = 1, 2, . . . , is satis�ed.
Using Theorem 2.1 let us solve the following problem. Take n0 = 10, 001 and

ǫ = 0.1. Chek whether

∑∞

n=10,001 n
−3/2 log(n+ 1) < 0.1.

To solve this problem, take ζ10,000a10,000 = 0.1 and hek whether the sequene

ζn, n > 10, 000, is inreasing. In our analysis, we an hek the values ζn for a �xed

number of iterations only, say for 10, 000 6 n 6 59, 999. Note, that beause of

this restrition, our analysis an wrongly show that all the obtained values ζn are
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Table 2. Some values of ζn with the starting value ζ10,000 = 10, 857.244172.

n 17, 802 17, 803 17, 804 17, 805
ζn 12, 736.509420 12, 736.509515 12, 736.509554 12, 736.509537

Table 3. Some values of ζn with the starting value ζ10,000 = 16, 285.866259.

n 59, 996 59, 997 59, 998 59, 999
ζn 42, 691.061392 42, 691.064068 42, 691.066728 42, 691.069372

indeed in the inreasing order, while in fat the behaviour of ζn an be hanged out

of the horizon of 50, 000 iterations. In that ase we may aept a wrong hypothesis

and arrive at the mistaken result.

In our ase the starting value is ζ10,000 = 10, 857.244172. Then using the reur-

rene relation ζn+1 = ζnan/an+1 − 1, we �nd that for n = 10, 000, . . . , 17, 804 the

sequene ζn follows in an inreasing order, and then after n = 17, 804 it dereases.

In Table 2, we provide some relevant values of ζn that indiate the behaviour of

ζn prior the indiated number n. Thus, the solution to this problem yields the

negative answer after less than 8, 000 steps of the reursion, that is muh less

than the maximum number of steps of the above onvention. Following Table 1,

S10,000 = 4.692955 and S10,000 +0.1 = 4.792955. The last value is loser to S50,000.

More aurately, S41,363 = 4.792955.
Let us now onsider the same example with ǫ = 0.15. That is, we would

like to hek whether

∑∞

n=10,001 n
−3/2 log(n + 1) < 0.15. In this ase, ζ10,000 =

16, 285.866259, and from the aforementioned reurrene relation, we �nd that all

the values ζn, 10, 000 6 n 6 59, 999, follow an inreasing order. In Table 3, we

provide the four last values of ζn. Aording to the numerial results obtained, we

arrive at the positive answer to our hypothesis. Is the made onlusion orret?

The obtained value is greater than that indiated in Table 1 for S100,000. So, we

indeed an believe that our solution is true.

Let us now re-hek whether our onlusion is true. Take n = 100, 000. Then
from Table 1 we have ǫ = 4.842955− 4.831695 = 0.011260. The assoiated value

of ζ100,000 is ζ100,000 = 30, 928.034437. Now a new realulation shows that our

previous onlusion was wrong. Starting with ζ100,000 = 30, 928.034437 one an ob-

serve that the sequene ζn is not inreasing, just dereasing. Even the seond value

ζ100,001 = 30, 927.471495 is less than the �rst (original) value ζ100,000. Summing up

the series terms that are out of Table 1, we �nd S139,230 = 4.842955. These two test
alulations show a massive di�erene between the �rst test given for n = 10, 000
and ǫ = 0.15 and the seond one given for n = 100, 000 and ǫ = 0.011260. In

the �rst ase 50, 000 steps of iterations were insu�ient to arrive at true onlu-

sion, while in the seond ase an only single iteration provided a true onlusion.

Indeed, in the seond ase the information on the partial sum S100,000 is more om-

plete about the series, and the smaller value of ǫ ompared to its originally de�ned

value enables us to provide a more exat veri�ation of the test. The last onlusion
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follows diretly from (2.2). If a0ζ0 <
∑∞

n=1
an, then there exists n∗

suh that the

partial sum Sn∗ > a0ζ0 and ζn∗
must be negative. Prior beoming negative, the

sequene ζn that starts from the positive ζ0 must derease. So, if n < n∗
is lose

to n∗
, then for the remainder of the series the sequene ζn will derease, and this

e�et has just been obtained numerially.

4. The searh proedure

The main idea of the searh method is a sequential evaluation of the sum of

series or its remainder.

4.1. Searh algorithms. The algorithm of step-forward searh

(i) Initial step. For someN �nd the partial sum of the series SN =
∑N

n=n0
an.

(ii) Test searh step. For a given ǫ test whether the remainder of the series

∑∞

n=N+1
an is less than ǫ.

(iii) If the answer in (ii) is negative, then �nd a new value of SN∗
, where

N∗ = min

{

m :

m
∑

n=n0

an > SN + ǫ

}

= min{m : Sm > SN + ǫ},

set SN = SN∗
and repeat (i) and (ii).

(iv) If the answer in (ii) is positive, the proedure is terminated.

Using this method assumes that the possible number of iterations at a test

searh step an be large. Then a wrong deision at �nal step in the series of the

test searh steps an be made with negligibly small likelihood. The maximum

number of iterations in a step is set to 109.

The algorithm of modi�ed step-forward searh

(i) Initial step. For some N �nd the partial sum of the series SN =
∑N

n=n0
an.

(ii) Test searh step. For a given ǫ test whether the remainder of the series

∑∞

n=N+1
an is less than ǫ.

(iii) If the number of iterations is less than a spei�ed value M before the

negative answer is obtained, then we �nd a new value of SN∗
, where

N∗ = min

{

m :

m
∑

n=n0

an > SN + ǫ

}

= min{m : Sm > SN + ǫ},

and repeat (i) and (ii).

(iv) If the number of iteration reahes M , then the proedure of test searh is

interrupted.

(v) New test searh step. The test searh is resumed with the new parameter

ǫ∗ = ǫ/K.

(vi) If the answer in (v) is negative, then �nd a new value of SN∗
, where

N∗ = min

{

m :

m
∑

n=n0

an > SN + ǫ∗
}

= min{m : Sm > SN + ǫ∗},

set SN = SN∗
and repeat (v) and (vi).
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Table 4. Numerial study of the series

∑∞

n=1
log(n+ 1)n−3/2

by

step-forward searh with ǫ = 0.01

Step number Number of iterations n Sn

in the step

0 N/A 100, 000 4.831695
1 1 133, 854 4.841695
2 1 186, 526 4.851695
3 1 274, 211 4.861695
4 1 434, 474 4.871695
5 1 789, 816 4.881695
6 413, 543 1, 702, 013 4.891695
7 6, 248, 811 5, 401, 971 4.901695
8 333, 412, 235 62, 126, 060 4.911695
9 109 109 4.915721

(vii) If the answer in (v) is positive, the proedure is terminated.

Remarks 4.1. 1. In general, M > 2. In the numerial study in Setion 4.2,

we set M = 2 that seems to be the best setting in the general situation.

2. The most onvenient setting for K is K = 10.
3. The presented algorithm an be further modi�ed. For instane, after step

(v) we an hek the number of iterations again similarly to that it is

given in step (iii). If it is less than M , then we �nd SN as indiated in

(vi). Otherwise the proedure is interrupted and then resumed with the

new parameter ǫ∗∗ = ǫ∗/K and so on.

4. Following the above three remarks, the total number of iterations in order

to reah the required auray of the series an be made relatively small.

4.2. Numerial study. For the numerial study we onsider the same series

(4.1)

∞
∑

n=1

log(n+ 1)

n
√
n

that was onsidered in Setion 3 as well as the series

(4.2)

∞
∑

n=1

log(n+ 1)

n
√
n 4
√
n

that onverges with a higher rate ompared to the series given by (4.1) and hene

an be provided with higher auray. For series (4.1) we provide our experiments

with ǫ = 0.01 taking the initial partial sum S100,000 = 4.831695 (see Table 1). For

series (4.2) we use ǫ = 0.0001 starting with the initial partial sum S1,000,000 =
2.625626.

4.2.1. Step-forward searh. With ǫ = 0.01 the step-by-step results for series

(4.1) are given in Table 4 and for series (4.2) in Table 5.
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Table 5. Numerial study of the series

∑∞

n=1
log(n+ 1)n−7/4

by

step-forward searh with ǫ = 0.0001

Step number Number of iterations n Sn

in the step

0 N/A 1, 000, 000 2.625626
1 1 1, 282, 406 2.625726
2 1 1, 730, 125 2.625826
3 1 2, 251, 124 2.625926
4 1 4, 189, 924 2.626026
5 96, 723 9, 190, 084 2.626126
6 6, 975, 835 57, 584, 662 2.626226
7 109 1010 2.626263

It is seen from Table 4 that by the only 9 steps, we arrive at the result giving us

the approximate value of the series 4.915318. The result with two deimal plaes

for the sum of series is 4.92 that ahieved with approximately 109 terms. Note

also that in the �rst 5 steps, there is only a single iteration, while when we arrive

loser to the end, the number of iterations within the step essentially inreases.

The essential grows of the number of iterations is seen in steps 6, 7 and 8, while in
step 9 the number of iterations reahes the established limit of 109.

For the series given by (4.2), the required result is ahieved by 7 steps. From

Table 5 we see that the number iterations at step 5 is 96, 723 and the number of

iterations in step 6 is 57, 584, 662. The 7th step is �nal, and the resulting sum of

the series is approximately 2.626263. The result with four deimal plaes for this

series is 2.6263. It is ahieved after summing up approximately 109 terms.

4.2.2. Modi�ed step-forward searh. Numerial study with modi�ed step-for-

ward searh is provided with same ǫ and M = 2. This means that for series (4.1)

all alulation starting from step 6 are to be provided with parameter ǫ∗ = 0.001.
Step-by-step results that orrespond to steps 8 and 9 in step-forward method of

Table 4 are now shown in Table 6. For series (4.2), all alulation starting from

step 5 are to be provided with parameter ǫ∗ = 0.00001. Step-by-step results that

orrespond to steps 6 and 7 in step-forward method of Table 5 are now shown in

Table 7.

5. Conluding remark

In the present paper we suggested a new method of estimating the sum of

positive onvergent series. The numerial proedures based on this method show

their e�etiveness for a wide lass of series. The assumption that the sequene

bn = an+1/an is stritly inreasing is quite natural. The reasonable questions are

how important this assumption is, what if it is not satis�ed.

Under the made assumption, the test proedure redues to �nd the �rst value

ζn in the sequene that is less then the previous one. If suh value is found, then
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Table 6. Numerial study of the series

∑∞

n=1
log(n+ 1)n−3/2

by

modi�ed step-forward searh with ǫ = 0.01 and ǫ∗ = 0.001

Step number Number of iterations n Sn

in the step

25 1 5, 401, 971 4.901695
26 1 6, 307, 961 4.902695
27 1 7, 449, 235 4.903695
28 1 8, 912, 398 4.904695
29 1 10, 827, 113 4.905695
30 1 13, 394, 222 4.906695
31 1 16, 937, 648 4.907695
32 1 22, 005, 935 4.908695
33 1 29, 585, 579 4.909695
34 1 41, 590, 939 4.910695
35 1 62, 126, 060 4.911695
36 1 101, 277, 959 4.912695
37 1 189, 350, 834 4.913695
38 8, 546, 857 453, 021, 228 4.914695
39 109 109 4.915721

Table 7. Numerial study of the series

∑∞

n=1
log(n+ 1)n−7/4

by

modi�ed step-forward searh with ǫ = 0.0001 and ǫ∗ = 0.00001

Step number Number of iterations n Sn

in the step

14 1 9, 190, 084 2.626126
15 1 10, 238, 361 2.626136
16 1 11, 505, 615 2.626146
17 1 13, 062, 296 2.626156
18 1 15, 011, 116 2.626166
19 1 17, 507, 220 2.626176
20 1 20, 795, 233 2.626186
21 1 25, 281, 898 2.626196
22 1 31, 690, 710 2.626206
23 1 41, 428, 077 2.626216
24 1 57, 584, 662 2.626226
25 1 88, 308, 941 2.626236
26 1 162, 735, 728 2.626246
27 47, 811, 731 482, 815, 421 2.626256
28 856, 114, 482 over 1010 2.626266
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the hypothesis is rejeted. Modi�ed step-forward searh improves the onstrution

and made the searh proedure quiker.

If this assumption about the sequene bn is not satis�ed, then the test proedure

beomes muh longer, sine in that ase we are required a muh larger number of

iterations to �nd the �rst negative value of ζn in the sequene, and only then we

rejet the proposed hypothesis. A larger number of operations a�ets negatively the

performane and makes impossible it to use the modi�ation of the searh method

that is used in the ase when the aforementioned assumption on the sequene bn is

satis�ed.
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