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HAMILTONIAN SURFACES IN THE 4-CUBE,

4-BIT GRAY CODES AND VENN DIAGRAMS

Manuela Muzika Dizdarevi¢ and Rade T. �ivaljevi¢

Abstra
t. We study Hamiltonian surfa
es in the d-dimensional 
ube Id as

intermediate obje
ts useful for 
omparative analysis of Venn diagrams and

Gray 
y
les. In parti
ular we emphasize the importan
e of 0-Hamiltonian

spheres and the �spheri
ity� of Gray 
odes in the 
ontext of redu
ible Venn

diagrams. For illustration we show that pre
isely two, out of the nine known

types of 4-bit Gray 
y
les, are not spheri
al. The unique, balan
ed Gray


y
le is spheri
al, whi
h in turn leads to a new 
onstru
tion of a redu
ible

Venn diagram with 5 ellipses (originally 
onstru
ted by P. Hamburger and

R.E. Pippert).

1. Introdu
tion

1.1. Gray 
odes and Hamiltonian surfa
es. The idea of a Hamiltonian


ir
uit in a graph 
an be naturally extended to higher-dimensional 
omplexes.

Following [15℄ and [5℄, a sub
omplex of a d-dimensional polyhedral 
omplex

P d
(for instan
e a sub
omplex of a 
onvex polytope) is 
alled k-Hamiltonian if


ontains the full k-dimensional skeleton of P d
. In parti
ular a k-Hamiltonian n-

manifold in P d
is a k-Hamiltonian sub
omplex of P d

whi
h is at the same time an

n-dimensional submanifold of P d
.

For example a 1-Hamiltonian 2-manifold (or 1-Hamiltonian surfa
e for short)

in the d-dimensional 
ube Id is a polyhedral surfa
e in Id whi
h 
ontains all edges

of the 
ube Id. Similarly a 0-Hamiltonian surfa
e in Id 
ontains all verti
es of Id

and a 0-Hamiltonian 1-manifold in Id is a Hamiltonian 
ir
uit (in the usual sense)

in the vertex-edge graph of Id.
Hamiltonian 
ir
uits in Id are known also as Gray 
y
les (Gray 
odes), see [14,

Se
tion 7.2.1.1℄.

1.2. Venn diagrams. Following [3, 8, 18℄ a Venn diagram (or n-Venn dia-

gram) in the plane (or on the sphere) is a 
olle
tion of simple 
losed (Jordan)


urves F = {C1, C2, . . . , Cn} su
h that ea
h of the 2n sets X1 ∩ X2 ∩ · · · ∩ Xn is
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non-empty and 
onne
ted, where Xi is either the interior or the exterior of the


urve Ci.

A simple Venn diagram is a Venn diagram with an additional property that no

more than two 
urves interse
t at a 
ommon point. A Venn diagram is redu
ible if

one of the 
urves 
an be removed so that the remaining 
urves still form a Venn

diagram. An n-Venn diagram is extendible if the addition of some 
urve results in

an (n+ 1)-Venn diagram.

1.3. Winkler's 
onje
ture and Gray 
y
les. Winkler's 
onje
ture was

originally proposed by Peter Winkler [20℄. With a slight modi�
ation of Grün-

baum [9℄ it reads as follows.

Winkler's 
onje
ture. Every simple n-Venn diagram is extendible to a

simple (n+ 1)-Venn diagram.

Gara Pruesse and Frank Ruskey announ
ed a positive answer to Winkler's 
on-

je
ture [16℄ in 2015. Previously it was demonstrated by Chilakamarri, Hamburger,

and Pippert [4℄ in 1996 that the 
onje
ture is true if the simpli
ity 
ondition is

removed.

A Venn diagram F 
an be regarded as a planar graph V (F) (also referred to

as the Venn diagram) in whi
h the verti
es are the points of interse
tion and edges

are the segments of the 
urves between the verti
es. In the Venn graph 
ontext,

Winkler's question is equivalent to asking whether the planar dual D(F) of a simple

Venn diagram V (F) is Hamiltonian.

If F is a simple d-Venn diagrams, then D(F) is a subgraph of the vertex-edge

graph Qd := Graph(Id) of the d-
ube and, as a 
onsequen
e, a Hamiltonian path

in D(F) is a Gray 
y
le.

Moreover, this Gray 
y
le is spheri
al in the sense that it 
an be 
overed by

a 0-Hamiltonian sphere in Id. Indeed D(F), as a maximal bipartite planar graph,

de�nes a quadrangulation of the sphere whi
h is a sub
omplex of Id.

1.4. Whi
h Gray 
y
les are spheri
al? Previous se
tion illustrates the

relevan
e of the spheri
ity of Gray 
y
les for the general question of extendabil-

ity/redu
ibility of Venn diagrams.

The �binary re�e
ted Gray 
ode� [14, Se
tion 7.2.1.1℄, one of the simplest Gray


y
les, is 
learly spheri
al. It is not a surprise that it emerges in many 
lassi
al

indu
tive 
onstru
tions of Venn diagrams, see for examples [18℄, the se
tion �Gray


odes and Edwards' 
onstru
tion�.

In summary, spheri
al Gray 
y
les may be useful in the 
onstru
tion and 
las-

si�
ation of new Venn diagrams. Motivated by these and other related questions

we formulate the following general problem.

Problem. 1. Whi
h Gray 
y
les in the d-
ube Id are spheri
al?

2. Given a not ne
essarily spheri
al Gray 
y
le Γ in Id, determine the small-

est genus of a 0-Hamiltonian surfa
e in Id whi
h 
ontains Γ.

The following theorem gives a 
omplete answer in the 
ase of the 4-dimensional


ube I4.
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Theorem 1.1. There exist 16 di�erent 0-Hamiltonian spheres in the 4-
ube I4.
Up to a symmetry of I4 they fall into two types referred to as (P1) and (P3). The

�rst type arises as the quadrangulation of the sphere asso
iated to the (unique) 4-
Venn diagram on S2

. Following Gilbert [6℄ there are 2688 di�erent Gray 
y
les in

I4 whi
h are (Se
tion 4) 
lassi�ed into 9 types, referred to as G1�G9.

(a) All Gray 
y
les Gi, with ex
eption of G3 and G4, 
an be moved by an

automorphism of the ambient 4-
ube into a 0-Hamiltonian sphere of the

type (P1).
(b) Only the 
y
les G1, G6, G7, G8 and G9 
an be moved by an automorphism

of the ambient 4-
ube into a 0-Hamiltonian sphere of the type (P3).

It follows from Theorem 1.1 that the 
odes G3 and G4 are the only two 4-bit
Gray 
y
les that are not spheri
al. Their genus is equal to 1 sin
e they are both

in
luded in a Karnaugh torus (Se
tion 3). From here we dedu
e (Se
tion 6.2) that

neither of the 
odes G3 and G4 is knotted in the boundary ∂I4 of the 4-
ube (for

the remaining 
odes it is an immediate 
onsequen
e of their spheri
ity).

1.5. Ex
eptional role of the Gray 
ode G9. The unique, balan
ed Gray


y
le (Se
tion 2), 
lassi�ed here as G9, is spheri
al and 
orresponds (Se
tion 6) to a

unique Venn diagram, the �
lown� diagram from [12℄. In Se
tion 7 we demonstrate

how the properties of the balan
ed Gray 
y
le 
an be used for 
onstru
tion of a

redu
ible Venn diagram with 5 ellipses (originally 
onstru
ted in [12℄). Finally in

Se
tion 8, we give a 
on
eptual and a 
omputer-independent proof of the existen
e

and uniqueness of the balan
ed Gray 
y
le in dimension four.

2. The unique balan
ed 4-bit Gray 
ode

The 4-bit Gray 
ode exhibited as an array (matrix) (2.1) of 
olumn ve
tors is

balan
ed in the sense that in ea
h row the number of 
hanges from 0 to 1, or vi
e
versa, is the same (and equals to 4).

(2.1)

0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1
0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0

It is an interesting and important fa
t that the balan
ed 4-bit Gray 
ode is up to

symmetry unique in dimension 4. This was �rst observed by Tootill [19℄, see also [6℄
and [14℄. The proof of uniqueness relied on the 
omputer generated list of all Gray


odes of length 16. Indeed, as demonstrated in [6℄, there are 9 non-isomorphi
 4-bit

Gray 
odes, and pre
isely one of them is balan
ed.

There are results, su
h as [23, Theorem 5.1℄, whose proof 
riti
ally depends on

the uniqueness of the balan
ed, 4-bit Gray 
ode. For this reason we give in Se
tion

8 a 
on
eptual proof of this fa
t, whi
h does not depend on a 
omputer sear
h.

We also demonstrate in Se
tion 7 how the existen
e of this 
ode leads dire
tly to

a 
onstru
tion of a redu
ible Venn diagram, 
onsisting of �ve ellipses (see [12,13℄

for the original 
onstru
tion).
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Branko Grünbaum, a mathemati
ian with great geometri
 insight, was the �rst

to observe that a (non-redu
ible) Venn 
on�guration of �ve ellipses exists [8, 9℄,


ontrary to the belief of John Venn himself. He is also 
redited for the Grünbaum�

Hadwiger�Ramos problem [7,10,17℄, whi
h is in dimension 4 
losely linked to the

balan
ed, 4-bit Gray 
ode [17,24℄.

Figure 1. Two images of the balan
ed 
ode. The image from [14℄

is on the left.

2.1. Inner symmetry of the balan
ed, 4-bit Gray 
ode. An image of

the balan
ed 4-digit Gray 
ode (reprodu
ed here in Figure 1 on the left) appears

on page 293 in [14, Se
tion 7.2.1.1℄. By 
omparing this image with Figure 1 on

the right, one observes that Knuth's image is rotated 
ounter
lo
kwise through the

angle of

3π
8 .

The right image, taken from [24℄, reveals an additional symmetry of this 
ode

whi
h was apparently not well known or emphasized before. For the reader's 
onve-

nien
e these two representations are reprodu
ed here in Figure 2 by the equivalent

�polygonal representations�.

Figure 2 on the right has the advantage that it 
learly exhibits the verti
al axes

of symmetry of the balan
ed 
ode whi
h, in parti
ular, explains why the same 
ode

is obtained if we read (2.1) (or (2.2)) ba
kwards.

2.2. Remark on the notation. Another useful presentation of Gray 
odes

puts more emphasis on edges, rather than on the verti
es of the edge path. For

example the balan
ed 4-bit Gray 
ode exhibited in (2.1) 
an be also written as the

sequen
e

(2.2)
1 2 1 3 4 1 4 2 4 3 2 1 2 3 4 3

re
ording the 
hange of the 
orresponding 
oordinates. More geometri
ally, ea
h

edge of Q4 (the vertex-edge graph of the 4-
ube) is parallel to one of the 
oordinate
axes (or the 
orresponding unit ve
tors e1, e2, e3, e4) in R

4
and the sequen
e (2.2)
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Figure 2. Hidden axes of symmetry of the balan
ed 
ode

re
ords the indi
es of these axes as they appear when we move along the Gray 
ode.

Note that the 
ondition that the 
ode is balan
ed be
omes even more transparent

as the property that ea
h number (index) from {1, 2, 3, 4} appears pre
isely four

times.

Remark 2.1. Stri
tly speaking a d-Gray 
y
le is a subgraph Γ ⊂ Qd isomorphi


to a 
y
le of length 2d. The asso
iated 
y
li
 word C-word(Γ) in the alphabet

[d] = {1, . . . , d} re
ords the interse
tions Γ∩{x = (xi) ∈ Id | xi = 1/2} of the Gray

y
le with the 
orresponding halving hyperplanes of the d-
ube.

The 
ode words su
h as (2.2) arise when we 
hoose an initial vertex on Γ and

an orientation (preferred dire
tion) of Γ.
More pre
isely the 
y
li
 word C-word(Γ) asso
iated to Γ is a 
y
le graph of

length 2d with the edges labeled by 1, 2 . . . , d. Two 
y
li
 words are 
onsidered to

be equivalent (equal) if one of them is obtained from the other by an automorphism

of the 
orresponding 
y
le graphs.

A basi
 observation is that two Gray 
y
les Γ1 and Γ2 are isomorphi
 if and

only if the 
orresponding 
y
li
 words C-word(Γ1) and C-word(Γ2) are equivalent
(equal).

3. 1-Hamiltonian surfa
es and the Karnaugh map

A 1-Hamiltonian surfa
e, introdu
ed in Se
tion 1.1, is a 2-dimensional ana-

logue of the Hamiltonian 
ir
uit. Less formally a 1-Hamiltonian surfa
e in the

d-dimensional 
ube Id is a union M of 2-dimensional fa
es of the d-
ube su
h that:

(1) M is an orientable 2-dimensional surfa
e,

(2) M 
ontains ea
h edge of the 
ube Id.

The se
ond 
ondition implies that Qd, the vertex-edge graph of the d-
ube, is

embedded in the surfa
e M . Moreover ea
h fa
e (a 
onne
ted 
omponent of the

graph 
omplement in the surfa
e) is a quadrangle. (Su
h de
ompositions of surfa
es

are 
alled quadrangulations.)

A ni
e and useful 
onsequen
e of (1) and (2) is that Hamiltonian 
ir
uits in Id


an be visualized (and studied) as Hamiltonian 
y
les in a quadrangulated surfa
e.

A 
lassi
al example, originally used for the design of swit
hing 
ir
uits, is the
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Karnaugh map [14℄, de�ned as a quadrangulation of the 2-dimensional torus T 2 =
S1 × S1

.

More expli
itly if S1 = ∂I2 is the boundary of the square, then the Karnaugh

torus is the quadrangulated surfa
e K = ∂I2×∂I2, interpreted as a 1-Hamiltonian

surfa
e in the 4-
ube, via the embedding ∂I2 × ∂I2 →֒ I2 × I2 = I4.

Karnaugh torus is depi
ted in Figure 3 (on the left) together with the balan
ed

Gray 
ode des
ribed by the asso
iated 
ode word from equation (2.2).

Figure 3. Karnaugh map and the balan
ed, 4-bit Gray 
ode

It is natural to ask for a 1-Hamiltonian surfa
e M = Mg in Id of the smallest

possible genus g; in parti
ular to de
ide if there exists a 1-Hamiltonian sphere in I4.
These questions are related to the problem of �nding the genus of the 
ube graph

Qd, that is the minimum g su
h that Qd admits an embedding in Mg. The well

known answer is given by the following 
lassi
al result of Ringel and (independently)

of Beineke and Harary.

Theorem 3.1. [11, Theorem 11.20℄ The genus of the d-
ube graph is

g(Qd) = 1 + (d− 4)2d−3 .

From here we immediately dedu
e that g(Q4) = 1 whi
h implies that a 1-
Hamiltonian sphere does not exist already in the 
ase d = 4. Moreover, there is a

relation ( [11, Corollary 11.1 (b)℄)

(3.1) f1 = 2f0 − 4

whi
h holds for all quadrangulations of the 2-sphere with f0 verti
es and f1 edges.

It immediately follows that ea
h quadrangulated 2-sphere with f0 = 16 verti
es

must have f1 = 28 edges, see Figure 8 for an examples. In other words ea
h 2-
sphere Γ ⊂ I4 whi
h is 0-Hamiltonian, in the sense that it 
ontains all verti
es of

I4, is 4 edges short from being a Hamiltonian (1-Hamiltonian) surfa
e in I4.
This observation serves as a motivation for asking if for ea
h Hamiltonian 
ir
uit

H there exists a 0-Hamiltonian 2-sphere Γ in I4 su
h that H ⊂ Γ.
Theorem 1.1 provides a negative answer to this question. The proof is, after

some preparation, given in Se
tion 6.
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Figure 4. The uniqueness of the Karnaugh torus.

3.1. The uniqueness of the Karnaugh torus.

Proposition 3.1. The Karnaugh torus is essentially the only 1-Hamiltonian

quadrangulated surfa
e embedded in the 4-
ube I4. More pre
isely, if M is a 1-
Hamiltonian quadrangulated surfa
e embedded in the 4-
ube I4, then there is an

automorphism of the 
ube I4 whi
h maps M to the standard Karnaugh torus de-

pi
ted in Figure 3.

Proof. Ea
h vertex O of the 4-
ube (Tessera
t) is a 
ommon vertex of six

squares in
ident to O (Figure 4). Rhombi
 dode
ahedron, de�ned as the Minkowski

sum of 4 segments (OA,OB,OC and OD), is depi
ted in the middle of this �gure.

It provides an a

urate model of the neighborhood N of O in I4, as far as the

2-dimensional skeleton of the 4-
ube is 
on
erned.
From this model we easily read o� the lo
al stru
ture of all possible surfa
es,

sub
omplexes of I4, whi
h have O as a vertex. If O is a 4-valent vertex in M then

there are 3 possibilities for the interse
tion M ∩N , while if O is 3-valent in M there

are 4 possible lo
al models for M .

These lo
al models 
orrespond to di�erent 
y
les in the 1-skeleton of the tetra-

hedron ABCD. For example the 
y
le AC-CB-BD-DA 
orresponds to the neigh-

borhood of O of the Karnaugh torus K depi
ted at the bottom of Figure 4.

Suppose that M is a 1-Hamiltonian surfa
e in I4 and let O ∈ M be a 
hosen

vertex. Using the symmetries of the 4-
ube we may assume that the neighbor-

hood of O in M is des
ribed by the 
y
le AC-CB-BD-DA, meaning that in the

neighborhood of O the surfa
e M 
oin
ides with the Karnaugh torus K.

Indu
tively we show that M and K 
oin
ide over a larger and larger fragment

of K. Here we use the fa
t that all verti
es of M are 4-valent (see Theorem 3.1).

The indu
tion step is based on the observation that for ea
h two adja
ent squares
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in
ident to a (variable) vertex O, su
h as the squares whi
h share the edge OA of

K (Figure 4), there is only one (out of 3) lo
al models 
ontaining these squares.

(In our example it is the model 
orresponding to the 
y
le AC-CB-BD-DA.)
Summarizing, we observe that if M 
ontains the squares in K in
ident to the

edge OA it also 
ontains the two squares in K sharing the edge OB, et
. This

pro
edure 
ontinues until we obtain that M = K. �

3.2. Surgery over the Karnaugh torus. LetM1 be the union of 7 quadran-

gles (squares) in the Karnaugh torus K, depi
ted as the shaded region in Figure 5.

A1 A2 A3 A4 A1

B1

A4 A1

B1

B2

B3
B4

C4

D4

A4

A3

A2

A1

C1

D1

A1 A2 A3

C1

D1

C2

C3

D2

D3

Figure 5. A surgery on the Karnaugh torus.

By inspe
tion we observe that M1 is a 2-dimensional surfa
e with the boundary

Γ = A1A2A3 . . . C1D1A1 
onsisting of 12 line segments, as shown in Figure 5 on

the right. The union of the remaining 9 squares (the non-shaded 3× 3-
hessboard
in Figure 5) is a topologi
al disk U , also bounded by Γ. The union V of 5 squares

A1A2A3A4, A1B1C1D1, A4B4C4D4, B1B2B3B4, A1B1B4A4

is also a topologi
al dis
 with boundary Γ. The dis
s U and V have disjoint interiors,

hen
e the union W := U ∪ V is a sphere quadrangulated into 14 squares. This

quadrangulation has 16 verti
es whi
h implies that W is a 0-Hamiltonian sphere

in the 4-
ube I4. As predi
ted by the relation (3.1) pre
isely 4 edges from the

Karnaugh torus are not in W , namely the edges

(3.2) A2B2, A3B3, C1C4, D1D4 .

It is 
onvenient to represent the quadrangulated sphere W , as the planar map

(graph) shown in Figure 6. Note that a similar (isomorphi
) sphere 
an be 
on-

stru
ted by a surgery over K if we 
hoose (for the shaded region) a di�erent row

and a 
olumn in the 4 × 4-
hessboard, asso
iated to the Karnaugh torus (Figure

5).

As and immediate 
onsequen
e we obtain the following result.
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Figure 6. A balan
ed Gray 
ode inside the sphere W .

Proposition 3.2. A balan
ed Gray 
ode 
an be 
onstru
ted within the 0-
Hamiltonian sphere W , obtained by a surgery over the Karnaugh torus. In other

words the balan
ed 4-bit Gray 
ode is spheri
al (Se
tion 1.3).

Proof. The balan
ed Gray 
ode G exhibited in Figure 3 (on the right) has

this property. Indeed, none of the edges listed in (3.2) is traversed by this 
ode,

hen
e Γ ⊂ W . An expli
it realization is given in Figure 6 on the right. �

4. Nine Hamiltonian 
y
les in I4

Here for the future referen
e we reprodu
e the list [6, Table I℄ of all essentially

di�erent, 4-bit Gray 
y
les.

(4.1)

G1 1 2 1 3 1 2 1 (4) 1 2 1 3 1 2 1 (4) (8, 4, 2, 2)
G2 1 2 1 3 1 2 1 (4) 2 1 2 3 2 1 2 (4) (6, 6, 2, 2)
G3 1 2 1 3 2 1 2 (4) 1 2 1 3 2 1 2 (4) (6, 6, 2, 2)
G4 1 2 1 3 2 1 2 (4) 2 3 2 1 3 2 3 (4) (4, 6, 4, 2)
G5 1 2 1 3 2 1 2 (4) 3 2 3 1 2 3 2 (4) (4, 6, 4, 2)
G6 1 2 3 2 1 2 3 (4) 3 2 1 2 3 2 1 (4) (4, 6, 4, 2)
G7 1 2 3 2 1 2 3 (4) 1 2 3 2 1 2 3 (4) (4, 6, 4, 2)
G8 1 2 3 2 1 2 3 (4) 1 3 1 2 1 3 1 (4) (6, 4, 4, 2)
G9 1 2 1 3 4 1 4 2 4 3 2 1 2 3 4 3 (4, 4, 4, 4)

The type of the 
ode Gi is the ve
tor Type(Gi) = (p1, p2, p3, p4), or more a

urately

a partition 16 = p1+ p2+ p3+ p4 (the order of summands is not important), where

pj is the number of o

urren
es of the letter j ∈ {1, 2, 3, 4} in the 
ode. We use

parentheses (su
h as (4) in the list above) for better visibility and to indi
ate a

letter whi
h o

urs only two times.
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4.1. Re
ognition of 4-bit Gray 
odes. It is known [14, Ch. 7.2.1.1℄ that

there are 2688 di�erent Gray 
y
les in Q4. We need an e�
ient algorithm (re
og-

nition prin
iple) whi
h allows us to 
lassify them into 9 equivalen
e 
lasses of iso-

morphi
 
odes. In other words, given a Gray 
ode Γ, we need a test (as simple as

possible) whi
h allows us to determine the unique Gi from the list (4.1) isomorphi


to Γ.

Step I. Classi�ed by type, the Gray 
odes listed in (4.1) fall into four 
lasses

(4.2) A = {G1} B = {G2, G3} C = {G4, G5, G6, G7, G8} D = {G9} .

It follows that the type Type(Γ) alone is su�
ient to dete
t 
odes G1 and G9.

Step II. Number 2 appears as a summand in all the types ex
ept in Type(G9). As
a 
onsequen
e ea
h of the 
odes G2-G8 has a (
y
li
) representation of the form

w1(4)w2(4) (or w1(3)w2(3)), where w1 and w2 are words des
ribing a Hamiltonian

path in a 3-
ube.

The only ve
tors (p, q, r) that appear as types of Hamiltonian paths in a 3-
ube

are

(4.3) U = (4, 2, 1) V = (3, 2, 2) W = (3, 3, 1) .

The �rst two are types of �broken 
y
les� (Hamiltonian paths in a 3-
ube 
onne
ting

two neighboring verti
es) while W is the type of the �ba
kbone� Hamiltonian path

whi
h 
onne
ts two diametri
ally opposite verti
es.

The ve
tors (4.3) are referred to as subtypes of a Gray 
y
le and Subtype(Γ) is
the 
olle
tion of all subtypes of Γ. By inspe
tion we observe that

Subtype(G2) = {U,W} Subtype(G3) = {W}

whi
h means that the appearan
e of the subtype U is 
hara
teristi
 for G2. By a

similar analysis the 
lass C splits as follows,

Subtype(G4) = Subtype(G5) = {W}

Subtype(G6) = Subtype(G7) = {V }

Subtype(G8) = {U, V }

Step III. It remains to separate G4 from G5 and G6 from G7. This is done by


omparing the words w1 and w2 in the 
y
li
 representations w1(4)w2(4) of these

odes.

In the 
ase of G7 these words are identi
al, w1 = w2. In the 
ase of G6 these

words are di�erent. More pre
isely they are 
onjugate w1 6= w2 = w1, in the sense

that one is obtained from the other by reading the �rst word in the opposite order.

In the 
ase of G4 we have w1 = 1213212 and w2 = 2321323 (more generally

w1 = xyxzyxy and w2 = yzyxzyz for a 
ode isomorphi
 to G4), whi
h means

that the Hamming distan
e of these two strings is 7 (they are di�erent in all bit

positions).

In the 
ase of G5 we have w1 = 1213212 and w2 = 3231232 (or in general

w1 = xyxzyxy and w2 = zyzxyzy), whi
h means that the Hamming distan
e

Hamm(w1, w2) of these two strings is 4 (they are equal in three bit positions).
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5. A 
lassi�
ation of 0-Hamiltonian spheres in I4

In this se
tion we 
lassify up to symmetry of the 4-
ube all 0-Hamiltonian

spheres in I4. It turns out that they fall into two di�erent isomorphism types, (P1)
and (P3), as shown in Figure 7 (see also Figure 8 for the 
orresponding spheri
al

realizations).

A
A

(P1)
(P3)

a b a

b

c c

d d d d

c c c c

d d d d

b

a
b

a

a
b

a

a b a

a

a

a

a

a

a

b b b b

c
c

c
c
d

d d

d

cc

c c

Figure 7. Two 0-Hamiltonian spheres in the 4-
ube.

Proposition 5.1. There are only two essentially di�erent 0-Hamiltonian sphe-

res in I4.

Proof. Let M be a 0-Hamiltonian sphere in I4. It follows from Se
tion 3

that M is a quadrangulation of the 2-sphere with 16 verti
es, 28 edges and 14

quadrangular fa
es. Suppose that vi is the number of verti
es of degree i. Sin
e all
verti
es are either of degree 3 or degree 4, we have the relations

v3 + v4 = 16, 3v3 + 4v4 = 56 .

As an immediate 
onsequen
e we obtain that the numbers of 3-valent and 4-valent

verti
es is v3 = v4 = 8.
Altogether there are 32 edges in I4 divided into 4 parallel 
lasses, ea
h 
lass

with 8 edges. If e1 and e2 are two edges in M , we say that they are P -equivalent
if they are in the same parallel 
lass and there is a sequen
e

e1 = z1, z2, . . . , zk−1, zk = e2

of edges in M su
h that zi and zi+1 are opposite edges in a quadrangle qi of M ,

for ea
h i 6 k − 1
The equivalen
e 
lasses of P -equivalent edges of M are 
alled belts, sin
e the

quadrangles {qi}
k
i=1 form a �belt� on the surfa
e M . The number k is referred to

as the length of the belt.
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Sin
e the 
y
les in I4 are of even length, the length of a belt is an even number

4 6 l 6 8. If bi is the number of di�erent belts of length i then

(5.1) 4b4 + 6b6 + 8b8 = 28.

If b8 6= 0, i.e., if there exists a belt of length 8, then M is isomorphi
 to either the

�rst or the third quadrangulation depi
ted in Figure 8. Indeed, there are altogether

(P1)
(P2) (P3)

Figure 8. Three potential 0-Hamiltonian spheres in I4.

16 verti
es in M and all of them are on the belt. The boundary of the belt 
onsists

of two 
onne
ted 
omponents, ea
h spanning an o
tagon. These two o
tagons are

quadrangulated without new verti
es, whi
h immediately leads to the 
on
lusion

that M is one of the three quadrangulated surfa
es depi
ted in Figure 8. The

surfa
e P2 
annot be embedded in the 4-
ube sin
e it has a self-interse
ting belt.

The surfa
es P1 and P3 are not isomorphi
 sin
e b4(P1) = 0 6= 3 = b4(P2) and

b6(P1) = 2 6= b6(P2) = 0 (b8(P1) = b8(P2) = 2).
We 
ontinue by analysing the 
ase b6 6= 0. Let B a belt of length 6 and B1 and

B2 its boundary 6-gons. Ea
h 
y
le in I4 of length 6 is 
ontained in a 3-dimensional

fa
e of I4. Indeed, ea
h parallel 
lass is in ea
h 
y
le is represented by an even

number of edges. It follows that the word in the alphabet {a, b, c, d} = {1, 2, 3, 4}
asso
iated to a 6-
y
le is either w1 = abcacb or w2 = abcabc. The word w1 = abcacb
is realized in the quadrangulation depi
ted in Figure 9 and this is, up to symmetry

of I4, the only realization. Moreover, this quadrangulation, the quadrangulation

(P1) and the quadrangulation depi
ted in Figure 6 (on the left) are all isomorphi
.

This 
an be observed by tra
king and 
omparing the belts of length 8 in all three

quadrangulations.

The word w2 = abcabc 
annot arise as the word asso
iated to a boundary 
y
le

B1 (or B2) of a 6-belt B in a 0-Hamiltonian surfa
e M . Formally, the asso
iated

quadrangulation would appear (as a graph) similar to Figure 9, but with di�erent

labeling (des
ribed by the word w2) of the two hexagonal bases. This labeling

for
es the edge in the middle of ea
h of the hexagons to be labeled by d, whi
h is


ontradi
tion.
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Figure 9. A 0-Hamiltonian sphere with b6 6= 0.

We 
on
lude the analysis by showing that the remaining 
ase b6 = b8 = 0 and

b4 = 7 is not possible. Indeed, in this 
ase there would exist two distin
t belts U
and V of length 4 whi
h share two quadrangles. However, this 
an happen only if

the ambient sphere is the boundary of a 3-
ube. �

6. Hamiltonian 
y
les inside 0-Hamiltonian spheres

Proposition 6.1. All Gray 
y
les listed in Se
tion 4, with ex
eption of G3 and

G4, 
an be moved by an automorphism of the ambient 4-
ube into a 0-Hamiltonian

sphere of the type (P1).

Proof. A generi
 0-Hamiltonian sphere of the type (P1) in the 4-
ube is ex-

hibited in Figure 7, where A is a vertex in I4 and {a, b, c, d} = {1, 2, 3, 4}.
The vertex-edge graph of (P1) has been already studied in [12℄ as the dual

graph of the unique 4-Venn diagram on the sphere. In parti
ular Hamburger and

Pippert listed 11 di�erent types of Hamiltonian 
y
les in this graph (see Theorem

4.1 and Figures 3 and 4 in [12℄).

We use these 11 Hamiltonian 
y
les (listed as H1, . . . , H11), together with the

algorithm des
ribed in Se
tion 4.1, to des
ribe all Gray 
y
les whi
h 
an be 
overed

by a sphere of type (P1). Initially we read o� the 
ode word (in the alphabet

{a, b, c, d}) asso
iated to ea
h of the 
y
les Hi by tra
king this 
y
le in Figure 7

in 
lo
kwise dire
tion, starting at the vertex A. After that we use the re
ognition
algorithm to dete
t the 
orresponding Gj . �

6.1. The 
ase of P3-spheres.

Proposition 6.2. Among all Gray 
y
les listed in Se
tion 4, only the 
y
les

G1, G6, G7, G8 and G9 
an be moved by an automorphism of the ambient 4-
ube
into a 0-Hamiltonian sphere of the type (P3).

Proof. The proof in prin
iple 
ould be given along the lines of the proof of

Proposition 6.1. To 
arry on that plan we would need a list of essentially di�erent

Hamiltonian 
y
les in the P3-graph (Figure 7).



30 MUZIKA DIZDAREVI� AND �IVALJEVI�

(H1)

Codeword: abacdcabcbdbadcd

(H2)

Codeword: abadacadabadacad

Type (4, 4, 4, 4) Type (8, 2, 2, 4)
Con
lusion: H1 7→ G9 Con
lusion: H2 7→ G1

(H3)

Codeword: abadab(c)badabad(c)d

(H4)

Codeword: babdba(c)abdbabd(c)d
Type (6, 4, 2, 4) Type (4, 6, 2, 4)
Subtype={V }, w2 = w1 Subtype={V }, w2 = w1

Con
lusion: H3 7→ G6 Con
lusion: H4 7→ G6

(H5)

Codeword: bd(c)dadbdad(c)abdba

(H6)

Codeword: ad(b)dad[c]ada(b)ada[c]d
Type (4, 4, 2, 6) Type (6, 2, 2, 6)
Subtype={U,W}, w2 = w1 Subtype={U,W}
Con
lusion: H5 7→ G8 Con
lusion: H6 7→ G2

(H7)

Codeword: bdc(a)cdbdcdb(a)bdcd

(H8)

Codeword: bdcdadcbdbcdadcd

Type (2, 4, 4, 6) Type (2, 2, 4, 8)
Subtype={V }, w2 = w1

Con
lusion: H7 7→ G6 Con
lusion: H8 7→ G1

(H9)

Codeword: dcacd(b)acdcacd(b)ac

(H10)

Codeword: bdadbd(c)badabad(c)d
Type (4, 2, 6, 4) Type (4, 4, 2, 6)
Subtype={V }, w1 = w2 Subtype={U, V }
Con
lusion: H9 7→ G7 Con
lusion: H10 7→ G8

(H11)

Codeword: aba(d)cacbaca(d)babc
Type (6, 4, 4, 2)
Subtype={W}, Hamm(w1, w2) = 4
Con
lusion: H11 7→ G5

Instead, here we use the idea impli
itly used in the proof of Proposition 3.2.

Lemma 6.1. There are 8 di�erent spheres of the type P3 in the 4-
ube I4. They
are in a one-to-one 
orresponden
e with rows and 
olumns of the Karnaugh torus

(Figure 3). More pre
isely, for ea
h sphere in I4 of the type P3 the 
orresponding

�missing edges� from the Karnaugh torus are all lo
ated either in the sam raw or

in the same 
olumn.

The proof of the proposition is 
ompleted by inspe
tion of Figures 3 and 10.

For example the balan
ed Gray 
y
le depi
ted in Figure 3 does not use the edges

from the �rst row. Similarly the image of the Gray 
y
le of the type G6, shown in

Figure 10, does not 
ontain any of the edges from the third 
olumn.

On the 
ontrary ea
h of the 
odes G2, G3, G4, G5 
ontains an edge from ea
h

of the rows (
olumns). Therefore none of these 
odes 
an be 
overed by a sphere

of the type P3. �

6.2. Are there non-trivial knots among Gray 
odes? The boundary

∂(I4) of the 4-dimensional 
ube is a 3-sphere so it is a legitimate question whether

some of the 4-bit Gray 
odes is a non-trivial knot. Re
all that the question of the

existen
e of non-trivial knots in boundaries of 4-polytopes has a quite interesting

history [22℄.
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Figure 10. Hamilton paths G1 to G8 in the Karnaugh torus.

Proposition 6.3. Neither of the 9 Gray 
odes listed in [6℄ is knotted.

Proof. As an immediate 
onsequen
e of Proposition 6.1, we observe that all

Gray 
y
les Gi for i /∈ {3, 4} are trivial knots. Indeed, ea
h of them is embedded

in a 2-sphere of the type (P1) and by the Jordan 
urve theorem it bounds a dis
.

For G3 and G4 we need a di�erent argument. By inspe
tion of Figure 10, we

observe that G3 is a torus knot of the type (3, 1), meaning that it winds three

times horizontally and one time verti
ally in the Karnaugh torus. Similarly G4 is

a (2, 1)-torus knot. It is a well known fa
t that a (p, q)-torus knot, where p and q
are 
oprime integers, is a trivial knot if and only if either p = ±1 or q = ±1. �

6.3. The �
lown� 
on�guration. As already observed in the proof of Pro-

position 6.1, among the 11 distin
t, redu
ible spheri
al Venn diagrams with 5 
urves

(listed in [12, Theorem 4.1℄), there is pre
isely one of them, the diagram H1, whi
h

realizes the balan
ed Gray 
y
le.
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Figure 11. The �
lown� 
on�guration.

This Venn diagram, the �
lown�, as it is 
alled in [12℄, is reprodu
ed here in

Figure 11.

7. Venn thought it 
ouldn't be done

Here we use the unique, balan
ed 4-bit Gray 
ode to des
ribe a 
on
eptual

approa
h to the 
onstru
tion of a (redu
ible) planar Venn diagram 
onsisting of

�ve ellipses. Re
all that J. Venn himself thought that a diagram with �ve ellipses

does not exist and it 
ame as a surprise when B. Grünbaum 
onstru
ted [8℄ a


on�guration of ellipses with this property.

It is interesting that Grünbaum also made an oversight [9℄ (see also [13℄) by


laiming that �nor simple (in the sense that no 3 ellipses interse
t) Venn diagram

with �ve ellipses 
an be obtained by adding a �fth ellipse to a Venn diagram of

four ellipses� (su
h diagrams are 
alled redu
ible).

We refer the reader to [12, 13℄ for a very interesting history of this problem

and to [3,12,13℄ for far rea
hing results and numerous examples of Venn diagrams

with 
urves of di�erent shapes.

Our basi
 idea, for a 
onstru
tion of a redu
ible Venn diagram with �ve ellipses,

is to use Figure 14. More expli
itly, we will 
ir
ums
ribe ellipses around ea
h of

the four polygons ins
ribed in the 
ir
le to obtain four ellipses whi
h, together with

the 
ir
le, are expe
ted to form a 5-Venn diagram. This is, however, not always

the 
ase and the ellipses must be 
hosen with some 
are.

Re
all that a pen
il of 
oni
s is a one-parameter family of 
oni
s whi
h all pass

through four given points. Therefore our goal is to 
hoose 
arefully an ellipse in

ea
h of the four pen
ils, 
orresponding to four polygons ins
ribed in the 
ir
le.
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Figure 12. Five ellipses whi
h form a redu
ible Venn diagram.

Proposition 7.1. Let {Ei}
4
i=1 a 
olle
tion of ellipses 
hosen from the pen
ils

of 
oni
s asso
iated to the four polygons ins
ribed in the 
ir
le C depi
ted in Figure

14. Then the 
olle
tion F = {C,E1, E2, E3, E4} is a Venn diagram if the ellipses

E = {E1, E2, E3, E4} form a simple 4-Venn diagram.

Proof. Sin
e E = {E1, E2, E3, E4} is a 4-Venn diagram, it divides the plane

(sphere) into 16 
onne
ted 
omponents. Ea
h of these 
omponents is bise
ted

into two 
onne
ted regions by one of the 16 ar
s on the 
ir
le C. Therefore F =
{C,E1, E2, E3, E4} is a 5-Venn diagram. �

A simple argument based on the Euler formula guarantees that a 
olle
tion of

ellipses E = {E1, E2, E3, E4} is a 4-Venn diagram if and only if

(1) Two ellipses, say E1 and E2, have four points in 
ommon;

(2) For any other pair {i, j} 6= {1, 2} of indi
es, the ellipses Ei and Ej interse
t

in pre
isely two points.

Guided by these properties, with little experimentation, one obtains the diagram

exhibited in Figure 12. The reader is referred to [12℄ for a fairly 
omplete analysis of

this problem, leading in parti
ular to examples of redu
ible Venn diagrams formed

by �ve 
ongruent ellipses.

8. The uniqueness of the balan
ed 4-bit Gray 
ode

The uniqueness of the balan
ed 4-bit Gray 
ode is established in [6℄ by a 
om-

puter sear
h. Considering how important this fa
t is for appli
ations su
h as [23℄,

here we give a proof based on a simple 
ase analysis.
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If Γ is an arbitrary balan
ed 4-bit Gray 
ode, su
h as (2.2), it 
an be visualized

in two parallel 3-
ubes I3(0) and I3(1), representing the front fa
e and the ba
k fa
e

of the 4-
ube I4. Note that in this representation the step in the dire
tion of the


oordinate ve
tor e4 
orresponds to the �jump� (parallel translation) from I3(0) to

I3(1) or vi
e versa.

If we remove letter d = 4 from (2.2), we obtain four words wi = wi(Γ) (i =
1, 2, 3, 4) in the alphabet {1, 2, 3} whi
h will be referred to as 
hara
teristi
 words

asso
iated to Γ. A 
hara
teristi
 word is prin
ipal if it has the largest length. For

example in (2.2), a (non-unique) prin
ipal word is w = 32123 and after a 
y
li


permutation (
orresponding to a di�erent 
hoi
e of the initial vertex) we obtain the

following representation of the 
ode (2.2):

(8.1)
Γ = 32123(4)31213(4)1(4)2(4) = w1(d)w2(d)w3(d)w4(d) .

We sometimes write w =
99K

ST if we want to emphasize that S is the sour
e (initial

vertex) and T the sink (terminal vertex) of the edge-path 
orresponding to ω.

In what follows a, b, c, d are ta
itly assumed to be di�erent elements in {1, 2, 3, 4}
where (most of the time) d = 4. The total length of all four 
hara
teristi
 words

is 12 (so the average length is 3). It follows that the length of a prin
ipal word in

a balan
ed, 4-bit Gray 
ode, is �ve, four or three. We begin our analysis with the

prin
ipal words of the length �ve.

8.1. Prin
ipal word of the type abcba. Assume that w1 = abcba (where

{a, b, c} = {1, 2, 3}) is a prin
ipal word asso
iated to a balan
ed 4-bit Gray 
ode Γ
and that the remaining 
hara
teristi
 words are w2, w3, w4. By symmetry we 
an

assume that a = 1, b = 3, c = 2 whi
h means that the initial (known) part of Γ is

as shown in Figure 13 on the left.

Figure 13. Prin
ipal word of the type abcba.

We immediately observe from Figure 13 that the 
hara
teristi
 word (path) w3

must 
onne
t verti
es S3 and S4, i.e., w3 = c. It may not be immediately 
lear what

is the sour
e (sink) of w3. However, a moment's re�e
tions reveals that S3 must

be the sour
e. Indeed, in the opposite 
ase it would not be possible to 
onstru
t


hara
teristi
 paths w2 and w4 (in the ba
k fa
e I3(1)) whi
h are disjoint.
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There are pre
isely two ways to 
omplete w1 = abcba (and w3 with end-points

S3, S4) to a Gray 
ode on I4. The 
orresponding 
hara
teristi
 words w2 and w4

are exhibited in Figure 13 on the right. Both these 
odes are balan
ed so we have

established the existen
e of a balan
ed, 4-bit Gray 
ode.

We observe that 32123 is a prin
ipal word of the type abcba in the 
ode (2.2). It

immediately follows that the two 
odes exhibited in Figure 13 are (up to symmetry)

isomorphi
 either to (2.2) or to the same 
ode read ba
kwards.

Remark 8.1. Perhaps the easiest way to show that both balan
ed 
odes 
on-

stru
ted in Se
tion 8.1 are isomorphi
 to the 
ode (2.2) (and its reversal) is to

visualise (interpret) them in Figure 14 (labeled version of Figure 2 on the right).

The re�e
tion with respe
t to the major diagonal of the deltoid keeps both the del-

toid and the trapeze invariant, while inter
hanging the remaining two (
ongruent)

quadrangles. From here we immediately dedu
e that this 
ode is isomorphi
 to the

same 
ode read ba
kwards.

Figure 14. Cir
ular presentation of the balan
ed Gray 
ode (2.2).

Remark 8.2. The analysis of the 
ase abcba (Se
tion 8.1) and the symmetry

of the standard Gray 
ode, exhibited in Figure 14, have the following 
onsequen
e.

If w is a prin
ipal word of a balan
ed Gray 
ode, isomorphi
 by permutations of

letters to the standard one (2.2), and if Γ is a balan
ed Gray 
ode whi
h has wop

(the opposite of w) as a prin
ipal word, then Γ is also isomorphi
 to the standard


ode by permutation of letters. This allows us to test only the following words of

length 5:

(8.2) abcba abaca abcab acbab
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8.2. Prin
ipal word of the type abaca. Let us 
ontinue by analysing the


ase when a prin
ipal word of the type abaca. Again by symmetry we 
an assume

that a = 1, b = 3, c = 2 whi
h means that the initial (known) part of Γ is shown

in Figure 15.

Figure 15. Prin
ipal word of the type abaca.

The question is how the word abaca 
an be 
ontinued.

We �rst observe that the remaining two verti
es in the 
ube I3(0) 
an be 
on-

ne
ted only by an edge of type a = 1. It immediately follows that in the 
ube I
(1)
3

we are allowed to use only steps b = 3 and c = 2. Considering that the sour
es

(sinks) in I
(0)
3 and I

(1)
3 (the bla
k and white verti
es) should be mat
hed, we observe

that the only possible re
onstru
tion of Γ is depi
ted in the Figure 16.

Figure 16. Unique re
onstru
tion of the 
ode in the 
ase w1 = abaca.

We obtain a 
ode represented by the word

abaca(d)cbc(d)a(d)bcb(d)

whi
h is isomorphi
 to the 
ode (2.2). Indeed by interpreting letters a, b, c, d as

a = 4, b = 3, c = 2 and d = 1 in Figure 16, we obtain the visual representation


orresponding to 
ode (2.2).
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8.3. Prin
ipal words of the type abcab and acbab. Let us �rst 
onvin
e
ourselves that abcab 
an't be a prin
ipal word of any Gray 
ode. Indeed, the


orresponding path in the 3-
ube I3(0) dis
onne
ts the remaining two verti
es, so

they 
annot be 
onne
ted by w3.

Figure 17. Prin
ipal word of the type acbab.

It remains to 
he
k the word w1 = acbab. From the Figure 17 on the left, we

observe that either w3 begins at A and ends at B, or the other way around. We also

observe that total letter 
ount of w1 and w3 together is LC(w1, w3) = (3a, 2b, c)
(meaning that altogether there are 3 steps of type a, 2 steps of type b and one step

of type c), whi
h implies that the total letter 
ount of w2 and w4 is LC(w2, w4) =
(a, 2b, 3c).

We 
on
lude that there are two possibilities for the 
hara
teristi
 words w2, w3,
w4, depi
ted in Figure 17 on the right:

(I) w3 =
99K

AB w2 =
99K

DA1 w4 =
99K

B1C;

(II) w3 =
99K

BA w2 =
99K

DB1 w4 =
99K

A1C.

The 
ase (II) is not possible. Indeed, if w4 =
99K

A1C is of length 5, then it dis
onne
ts

the verti
es A1 and D. If w4 is of length 1 then w2 is uniquely re
onstru
ted, but

its letter 
ount is (a, 3b, c) 6= (a, b, 3c).
In the 
ase (I) the unique solution for the paths w2 and w4 is exhibited in the

�rst 
ube in Figure 17 on the right. We obtain the 
ode represented by the word

acbac(d)bc(d)a(d)cbca(d).

By permutation (bije
tion) a ↔ b, c ↔ d we obtain a 
ode with prin
ipal word

bdaba, whi
h is pre
isely the 
ode shown in Figure 14.

8.4. Prin
ipal words of length four. For a prin
ipal word of length four,

up to a permutation of letters and reversal of the order, there are two possibilities,

abca and abac. The word abca is immediately ruled out sin
e it dis
onne
ts the

vertex-edge graph of the 3-
ube.

If w1 = abac, then either w3 =
99K

DC= ab or w3 =
99K

CD= ba (Figure 18). The

letter 
ount in both 
ases is LC(w1, w3) = (3a, 2b, c). We observe that there are

two possibilities:
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(I) w2 =
99K

B1D1= b and w4 =
99K

C1A1= bcbab;

(II) w2 =
99K

B1C1= cac and w4 =
99K

D1A1= aca.

Figure 18. Prin
ipal word of the type abac.

The �rst 
ase is not possible sin
e w4 is of length 5 (and w1 = abac is not

prin
ipal. In the se
ond 
ase we have LC(w2 + w4) = (3a, 0b, 3c) and the 
ode is

not balan
ed.

The �nal 
on
lusion is that there are no balan
ed 
odes with a prin
ipal word

of length four.

8.5. Chara
teristi
 word abc is not possible. In other words we 
laim

that the word dabcd does not appear in a balan
ed 4-bit Gray 
ode Γ. Suppose

the opposite. We know that {a, b, c} = {1, 2, 3}, so for 
on
reteness (symmetry) let

a = 1, b = 3, c = 2 ( Figure 19).

Figure 19. The 
ase of the 
hara
teristi
 word abc.

Figure 19 re
ords what we know so far. For example the sour
es/sinks (as

indi
ated) are in the set {Ai, Bi, Ui, Vi}i=0,1. Suppose that U0 is the sour
e and V0

is the sink.

The only possible (two) ways to 
omplete Figure 20 on the left to a Gray 
ode

is depi
ted on the right side of the �gure.

We obtain two Gray 
odes but neither of them is balan
ed. The 
ase when U0

is the sink and V 0
is the sour
e is similarly ruled out.
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Figure 20. Two possible re
onstru
tion of the 
ode with the prin-


ipal word abc.

8.6. Prin
ipal word aba is not possible. Sin
e the prin
ipal word w1 = aba
is of length three, all 
hara
teristi
 words are of length three. Observe that either

w3 = aba or w3 = bab.
If w3 = aba then the total letter 
ount for w1 and w3 is LC(w1, w3) =

(4a, 2b, 0c) whi
h implies that the total letter 
ount for w2 and w4 is LC(w2, w4) =
(0a, 2b, 4c). It immediately follows that {w2, w4} = {cac, cbc}. The 
ase w2 = cbc
is not possible sin
e aba(d)cbc(d) is a 
y
le so we arrive at the word

aba(d)cac(d)aba(d)cbc(d)

whi
h is not a Gray 
ode.

If w3 = bab then the total letter 
ount for w1 and w3 is LC(w1, w3) = (3a, 3b, 0c)
whi
h implies that the total letter 
ount for w2 and w4 is LC(w2, w4) = (0a, 3b, 3c).
It follows that {w2, w4} = {bab, cbc}. The 
ase w2 = cbc is again not possible sin
e

aba(d)cbc(d) is a 
y
le so we arrive at the word

aba(d)bab(d)bab(d)cbc(d)

whi
h is again not a Gray 
ode.
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