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HAMILTONIAN SURFACES IN THE 4-CUBE,
4-BIT GRAY CODES AND VENN DIAGRAMS

Manuela Muzika Dizdarevi¢ and Rade T. Zivaljevié

AssTracT. We study Hamiltonian surfaces in the d-dimensional cube I¢ as
intermediate objects useful for comparative analysis of Venn diagrams and
Gray cycles. In particular we emphasize the importance of 0-Hamiltonian
spheres and the “sphericity” of Gray codes in the context of reducible Venn
diagrams. For illustration we show that precisely two, out of the nine known
types of 4-bit Gray cycles, are not spherical. The unique, balanced Gray
cycle is spherical, which in turn leads to a new construction of a reducible
Venn diagram with 5 ellipses (originally constructed by P. Hamburger and
R.E. Pippert).

1. Introduction

1.1. Gray codes and Hamiltonian surfaces. The idea of a Hamiltonian
circuit in a graph can be naturally extended to higher-dimensional complexes.

Following [15] and [5], a subcomplex of a d-dimensional polyhedral complex
P? (for instance a subcomplex of a convex polytope) is called k-Hamiltonian if
contains the full k-dimensional skeleton of P?. In particular a k-Hamiltonian n-
manifold in P? is a k-Hamiltonian subcomplex of P? which is at the same time an
n-dimensional submanifold of P<.

For example a 1-Hamiltonian 2-manifold (or 1-Hamiltonian surface for short)
in the d-dimensional cube I? is a polyhedral surface in I¢ which contains all edges
of the cube I?. Similarly a 0-Hamiltonian surface in I¢ contains all vertices of I?
and a 0-Hamiltonian 1-manifold in I is a Hamiltonian circuit (in the usual sense)
in the vertex-edge graph of I¢.

Hamiltonian circuits in I¢ are known also as Gray cycles (Gray codes), see [14],
Section 7.2.1.1].

1.2. Venn diagrams. Following [3,[8,[I8] a Venn diagram (or n-Venn dia-
gram) in the plane (or on the sphere) is a collection of simple closed (Jordan)
curves F = {C1,Cs,...,Cy} such that each of the 2" sets X1 N XoN---N X, is
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non-empty and connected, where X; is either the interior or the exterior of the
curve Cj.

A simple Venn diagram is a Venn diagram with an additional property that no
more than two curves intersect at a common point. A Venn diagram is reducible if
one of the curves can be removed so that the remaining curves still form a Venn
diagram. An n-Venn diagram is extendible if the addition of some curve results in
an (n + 1)-Venn diagram.

1.3. Winkler’s conjecture and Gray cycles. Winkler’s conjecture was
originally proposed by Peter Winkler [20]. With a slight modification of Griin-
baum [9] it reads as follows.

WINKLER'S CONJECTURE. Every simple n-Venn diagram is extendible to a
simple (n + 1)-Venn diagram.

Gara Pruesse and Frank Ruskey announced a positive answer to Winkler’s con-
jecture [16] in 2015. Previously it was demonstrated by Chilakamarri, Hamburger,
and Pippert [4] in 1996 that the conjecture is true if the simplicity condition is
removed.

A Venn diagram J can be regarded as a planar graph V(F) (also referred to
as the Venn diagram) in which the vertices are the points of intersection and edges
are the segments of the curves between the vertices. In the Venn graph context,
Winkler’s question is equivalent to asking whether the planar dual D(F) of a simple
Venn diagram V (¥F) is Hamiltonian.

If F is a simple d-Venn diagrams, then D(J) is a subgraph of the vertex-edge
graph Qg := Graph(I?) of the d-cube and, as a consequence, a Hamiltonian path
in D(%) is a Gray cycle.

Moreover, this Gray cycle is spherical in the sense that it can be covered by
a 0-Hamiltonian sphere in I%. Indeed D(J), as a maximal bipartite planar graph,
defines a quadrangulation of the sphere which is a subcomplex of I¢.

1.4. Which Gray cycles are spherical? Previous section illustrates the
relevance of the sphericity of Gray cycles for the general question of extendabil-
ity /reducibility of Venn diagrams.

The “binary reflected Gray code” [14], Section 7.2.1.1], one of the simplest Gray
cycles, is clearly spherical. It is not a surprise that it emerges in many classical
inductive constructions of Venn diagrams, see for examples [18], the section “Gray
codes and Edwards’ construction”.

In summary, spherical Gray cycles may be useful in the construction and clas-
sification of new Venn diagrams. Motivated by these and other related questions
we formulate the following general problem.

PROBLEM. 1. Which Gray cycles in the d-cube I are spherical?
2. Given a not necessarily spherical Gray cycle I' in ¢, determine the small-
est genus of a 0-Hamiltonian surface in I¢ which contains T".

The following theorem gives a complete answer in the case of the 4-dimensional
cube %,
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THEOREM 1.1. There exist 16 different 0-Hamiltonian spheres in the 4-cube I*.
Up to a symmetry of I* they fall into two types referred to as (P1) and (P3). The
first type arises as the quadrangulation of the sphere associated to the (unique) 4-
Venn diagram on S2. Following Gilbert [6] there are 2688 different Gray cycles in
I* which are (Sectiond) classified into 9 types, referred to as G1-Gy.

(a) All Gray cycles G;, with exception of Gs and G4, can be moved by an
automorphism of the ambient 4-cube into a 0-Hamiltonian sphere of the
type (P1).

(b) Only the cycles G1,Ggs,G7,Gs and Gg can be moved by an automorphism
of the ambient 4-cube into a 0-Hamiltonian sphere of the type (Ps).

It follows from Theorem [I.1] that the codes G's and G4 are the only two 4-bit
Gray cycles that are not spherical. Their genus is equal to 1 since they are both
included in a Karnaugh torus (Section B)). From here we deduce (Section [6.2) that
neither of the codes G3 and Gy is knotted in the boundary 9I* of the 4-cube (for
the remaining codes it is an immediate consequence of their sphericity).

1.5. Exceptional role of the Gray code Ggy. The unique, balanced Gray
cycle (Section 2)), classified here as Gy, is spherical and corresponds (Section @) to a
unique Venn diagram, the “clown” diagram from [12]. In Section [7] we demonstrate
how the properties of the balanced Gray cycle can be used for construction of a
reducible Venn diagram with 5 ellipses (originally constructed in [12]). Finally in
Section [§] we give a conceptual and a computer-independent proof of the existence
and uniqueness of the balanced Gray cycle in dimension four.

2. The unique balanced 4-bit Gray code

The 4-bit Gray code exhibited as an array (matrix) (21 of column vectors is
balanced in the sense that in each row the number of changes from 0 to 1, or vice
versa, is the same (and equals to 4).

01100011111 10000
2.1) 001111110001 1O000
000011111 1000O00O0T171
0o oo0oo0o01100111111F0

It is an interesting and important fact that the balanced 4-bit Gray code is up to
symmetry unique in dimension 4. This was first observed by Tootill [19], see also [6]
and [I4]. The proof of uniqueness relied on the computer generated list of all Gray
codes of length 16. Indeed, as demonstrated in [6], there are 9 non-isomorphic 4-bit
Gray codes, and precisely one of them is balanced.

There are results, such as [23] Theorem 5.1], whose proof critically depends on
the uniqueness of the balanced, 4-bit Gray code. For this reason we give in Section
[B a conceptual proof of this fact, which does not depend on a computer search.
We also demonstrate in Section [7l how the existence of this code leads directly to
a construction of a reducible Venn diagram, consisting of five ellipses (see [12}13]
for the original construction).
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Branko Griinbaum, a mathematician with great geometric insight, was the first
to observe that a (non-reducible) Venn configuration of five ellipses exists [8][9],
contrary to the belief of John Venn himself. He is also credited for the Grinbaum—
Hadwiger—Ramos problem [7L[T0L17], which is in dimension 4 closely linked to the
balanced, 4-bit Gray code [17,124].

1110
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FIGURE 1. Two images of the balanced code. The image from [14]
is on the left.

2.1. Inner symmetry of the balanced, 4-bit Gray code. An image of
the balanced 4-digit Gray code (reproduced here in Figure [l on the left) appears
on page 293 in [14], Section 7.2.1.1]. By comparing this image with Figure [l on
the right, one observes that Knuth’s image is rotated counterclockwise through the
angle of %’T.

The right image, taken from [24], reveals an additional symmetry of this code
which was apparently not well known or emphasized before. For the reader’s conve-
nience these two representations are reproduced here in Figure [2] by the equivalent
“polygonal representations”.

Figure2lon the right has the advantage that it clearly exhibits the vertical axes
of symmetry of the balanced code which, in particular, explains why the same code
is obtained if we read (Z1) (or (Z2))) backwards.

2.2. Remark on the notation. Another useful presentation of Gray codes
puts more emphasis on edges, rather than on the vertices of the edge path. For
example the balanced 4-bit Gray code exhibited in (ZI]) can be also written as the
sequence

(2.2) 1213 414 2 43 212 3 4 3

recording the change of the corresponding coordinates. More geometrically, each
edge of Q4 (the vertex-edge graph of the 4-cube) is parallel to one of the coordinate
axes (or the corresponding unit vectors eg, ea, €3, e4) in R* and the sequence (Z2)
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FIGURE 2. Hidden axes of symmetry of the balanced code

records the indices of these axes as they appear when we move along the Gray code.
Note that the condition that the code is balanced becomes even more transparent
as the property that each number (index) from {1,2,3,4} appears precisely four
times.

REMARK 2.1. Strictly speaking a d-Gray cycle is a subgraph I" C @4 isomorphic
to a cycle of length 2¢. The associated cyclic word C-word(I') in the alphabet
[d] = {1,...,d} records the intersections I' N {x = (x;) € I¢ | x; = 1/2} of the Gray
cycle with the corresponding halving hyperplanes of the d-cube.

The code words such as (2.2)) arise when we choose an initial vertex on I'" and
an orientation (preferred direction) of T

More precisely the cyclic word C-word(T") associated to I' is a cycle graph of
length 2¢ with the edges labeled by 1,2...,d. Two cyclic words are considered to
be equivalent (equal) if one of them is obtained from the other by an automorphism
of the corresponding cycle graphs.

A basic observation is that two Gray cycles I'; and T’y are isomorphic if and
only if the corresponding cyclic words C-word(I';) and C-word(I'z) are equivalent

(equal).
3. 1-Hamiltonian surfaces and the Karnaugh map

A 1-Hamiltonian surface, introduced in Section [T}, is a 2-dimensional ana-
logue of the Hamiltonian circuit. Less formally a 1-Hamiltonian surface in the
d-dimensional cube I is a union M of 2-dimensional faces of the d-cube such that:

(1) M is an orientable 2-dimensional surface,
(2) M contains each edge of the cube I

The second condition implies that @g, the vertex-edge graph of the d-cube, is
embedded in the surface M. Moreover each face (a connected component of the
graph complement in the surface) is a quadrangle. (Such decompositions of surfaces
are called quadrangulations.)

A nice and useful consequence of (1) and (2) is that Hamiltonian circuits in I¢
can be visualized (and studied) as Hamiltonian cycles in a quadrangulated surface.
A classical example, originally used for the design of switching circuits, is the



22 MUZIKA DIZDAREVIC AND ZIVALJEVIC

Karnaugh map [14], defined as a quadrangulation of the 2-dimensional torus 72 =
St x St

More explicitly if S' = 9I? is the boundary of the square, then the Karnaugh
torus is the quadrangulated surface K = 0I% x 0I?, interpreted as a 1-Hamiltonian
surface in the 4-cube, via the embedding 0I% x 9I% <« I? x I? = [*.

Karnaugh torus is depicted in Figure[3] (on the left) together with the balanced
Gray code described by the associated code word from equation ([22]).

4
P
2 1 2
3 3 3
4 4 414 4
3 2 3 3
~—
1 2 1

FiGure 3. Karnaugh map and the balanced, 4-bit Gray code

It is natural to ask for a 1-Hamiltonian surface M = M, in I? of the smallest
possible genus g; in particular to decide if there exists a 1-Hamiltonian sphere in I4.
These questions are related to the problem of finding the genus of the cube graph
Q4, that is the minimum ¢ such that Q4 admits an embedding in M,. The well
known answer is given by the following classical result of Ringel and (independently)
of Beineke and Harary.

THEOREM 3.1. [11], Theorem 11.20] The genus of the d-cube graph is
9(Qa) = 14 (d —4)297%.

From here we immediately deduce that g(Q4) = 1 which implies that a 1-
Hamiltonian sphere does not exist already in the case d = 4. Moreover, there is a
relation ( [I1l Corollary 11.1 (b)])

(3.1) fi=2fo—4

which holds for all quadrangulations of the 2-sphere with f; vertices and f; edges.
It immediately follows that each quadrangulated 2-sphere with fy = 16 vertices
must have f; = 28 edges, see Figure [§ for an examples. In other words each 2-
sphere I' C I* which is 0-Hamiltonian, in the sense that it contains all vertices of
I*, is 4 edges short from being a Hamiltonian (1-Hamiltonian) surface in I4.

This observation serves as a motivation for asking if for each Hamiltonian circuit
H there exists a 0-Hamiltonian 2-sphere I' in I* such that H C T.

Theorem [[T] provides a negative answer to this question. The proof is, after
some preparation, given in Section
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FIGURE 4. The uniqueness of the Karnaugh torus.

3.1. The uniqueness of the Karnaugh torus.

ProrosiTION 3.1. The Karnaugh torus is essentially the only 1-Hamiltonian
quadrangulated surface embedded in the 4-cube I*. More precisely, if M is a 1-
Hamiltonian quadrangulated surface embedded in the 4-cube I*, then there is an
automorphism of the cube I* which maps M to the standard Karnaugh torus de-
picted in Figure[3.

ProOOF. Each vertex O of the 4-cube (Tesseract) is a common vertex of six
squares incident to O (Figure[). Rhombic dodecahedron, defined as the Minkowski
sum of 4 segments (OA, OB,OC and OD), is depicted in the middle of this figure.
It provides an accurate model of the neighborhood N of O in I, as far as the
2-dimensional skeleton of the 4-cube is concerned.

From this model we easily read off the local structure of all possible surfaces,
subcomplexes of I*, which have O as a vertex. If O is a 4-valent vertex in M then
there are 3 possibilities for the intersection M NN, while if O is 3-valent in M there
are 4 possible local models for M.

These local models correspond to different cycles in the 1-skeleton of the tetra-
hedron ABCD. For example the cycle AC-CB-BD-DA corresponds to the neigh-
borhood of O of the Karnaugh torus K depicted at the bottom of Figure [l

Suppose that M is a 1-Hamiltonian surface in I* and let O € M be a chosen
vertex. Using the symmetries of the 4-cube we may assume that the neighbor-
hood of O in M is described by the cycle AC-CB-BD-DA, meaning that in the
neighborhood of O the surface M coincides with the Karnaugh torus K.

Inductively we show that M and K coincide over a larger and larger fragment
of K. Here we use the fact that all vertices of M are 4-valent (see Theorem B.T]).
The induction step is based on the observation that for each two adjacent squares
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incident to a (variable) vertex O, such as the squares which share the edge OA of
K (Figure [), there is only one (out of 3) local models containing these squares.
(In our example it is the model corresponding to the cycle AC-CB-BD-DA.)
Summarizing, we observe that if M contains the squares in K incident to the
edge OA it also contains the two squares in K sharing the edge OB, etc. This
procedure continues until we obtain that M = K. O

3.2. Surgery over the Karnaugh torus. Let M; be the union of 7 quadran-
gles (squares) in the Karnaugh torus K, depicted as the shaded region in Figure

D,
A A A, AL A

B, B, B;| B, B,

G C, Cs C, C

D, D, D; D, D, C,

A, A, A, A, A

FIGURE 5. A surgery on the Karnaugh torus.

By inspection we observe that M is a 2-dimensional surface with the boundary
I' = A1 A3 As ... C1 D1 Ay consisting of 12 line segments, as shown in Figure [l on
the right. The union of the remaining 9 squares (the non-shaded 3 x 3-chessboard
in Figure ) is a topological disk U, also bounded by I". The union V of 5 squares

A1A2A3 A4, A1B1C1 Dy, AyB4Cy Dy, Bi BaB3By, A1 B1 By Ay

is also a topological disc with boundary I'. The discs U and V" have disjoint interiors,
hence the union W := U UV is a sphere quadrangulated into 14 squares. This
quadrangulation has 16 vertices which implies that W is a 0-Hamiltonian sphere
in the 4-cube I*. As predicted by the relation (BI) precisely 4 edges from the
Karnaugh torus are not in W, namely the edges

(32) AQBQ;A3B3701047D1D4-

It is convenient to represent the quadrangulated sphere W, as the planar map
(graph) shown in Figure Bl Note that a similar (isomorphic) sphere can be con-
structed by a surgery over K if we choose (for the shaded region) a different row
and a column in the 4 x 4-chessboard, associated to the Karnaugh torus (Figure
B).

As and immediate consequence we obtain the following result.
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B | B;' Bi B4 B \ B" B’x
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FIGURE 6. A balanced Gray code inside the sphere W.

ProPOSITION 3.2. A balanced Gray code can be constructed within the 0-
Hamiltonian sphere W, obtained by a surgery over the Karnaugh torus. In other
words the balanced 4-bit Gray code is spherical (Section [[3).

PRrOOF. The balanced Gray code G exhibited in Figure B (on the right) has
this property. Indeed, none of the edges listed in ([B2) is traversed by this code,
hence I' C W. An explicit realization is given in Figure [l on the right. (]

4. Nine Hamiltonian cycles in I*

Here for the future reference we reproduce the list [6, Table I] of all essentially
different, 4-bit Gray cycles.

Gy 1213121(4)1213121(4)  (8,4,2,2)
G, 1213121(4)2123212(4)  (6,6,2,2)
Gs 1213212(4)1213212(4)  (6,6,2,2)
Gy 1213212(4)2321323(4)  (4,6,4,2)
(4.1) Gs 1213212(4)3231232(4)  (4,6,4,2)
Gs  1232123(4)3212321(4)  (4,6,4,2)
Gr  1232123(4)1232123(4)  (4,6,4,2)
Gs 1232123(4)1312131(4)  (6,4,4,2)
Gy 1213414243212343 (4,4,4,4)

The type of the code G; is the vector Type(G;) = (p1, p2, P3, P4), Or more accurately
a partition 16 = py + p2 + ps + p4 (the order of summands is not important), where
p; is the number of occurrences of the letter j € {1,2,3,4} in the code. We use
parentheses (such as (4) in the list above) for better visibility and to indicate a
letter which occurs only two times.
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4.1. Recognition of 4-bit Gray codes. It is known [14] Ch. 7.2.1.1] that
there are 2688 different Gray cycles in Q4. We need an efficient algorithm (recog-
nition principle) which allows us to classify them into 9 equivalence classes of iso-
morphic codes. In other words, given a Gray code ', we need a test (as simple as
possible) which allows us to determine the unique G; from the list (@I isomorphic
to I'.

Step L. Classified by type, the Gray codes listed in (1)) fall into four classes
(4.2) A={G1} B={Gy,Gs} C={G4,G5,Gs,G7,Gs} D ={Gy}.
It follows that the type Type(T') alone is sufficient to detect codes G; and Gy.

Step II. Number 2 appears as a summand in all the types except in Type(Gy). As
a consequence each of the codes G2-Gg has a (cyclic) representation of the form
w1 (4)w2(4) (or wy (3)w2(3)), where wy and wo are words describing a Hamiltonian
path in a 3-cube.

The only vectors (p, ¢, ) that appear as types of Hamiltonian paths in a 3-cube
are

(4.3) U=(4,2,1) V=322 W=(33,1).

The first two are types of “broken cycles” (Hamiltonian paths in a 3-cube connecting
two neighboring vertices) while W is the type of the “backbone” Hamiltonian path
which connects two diametrically opposite vertices.

The vectors ([{3) are referred to as subtypes of a Gray cycle and Subtype(T') is
the collection of all subtypes of I'. By inspection we observe that

Subtype(Gsz) = {U,W} Subtype(G3) = {W}

which means that the appearance of the subtype U is characteristic for Go. By a
similar analysis the class C' splits as follows,

Subtype(G4) = Subtype(Gs) = {W}
Subtype(Gg) = Subtype(G7) = {V}
Subtype(Gs) = {U,V}

Step III. It remains to separate G4 from G5 and Gg from G,. This is done by
comparing the words wy and wsy in the cyclic representations ws (4)w2(4) of these
codes.

In the case of G; these words are identical, wy = ws. In the case of Gg these
words are different. More precisely they are conjugate wy # ws = w1, in the sense
that one is obtained from the other by reading the first word in the opposite order.

In the case of G4 we have w; = 1213212 and we = 2321323 (more generally
wy = zyxzyry and we = yzyxzyz for a code isomorphic to G4), which means
that the Hamming distance of these two strings is 7 (they are different in all bit

positions).
In the case of G5 we have w; = 1213212 and wy = 3231232 (or in general
wy = zyzzyry and we = zyzayzy), which means that the Hamming distance

Hamm(wy,ws) of these two strings is 4 (they are equal in three bit positions).
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5. A classification of 0-Hamiltonian spheres in I*

In this section we classify up to symmetry of the 4-cube all 0-Hamiltonian
spheres in I*. Tt turns out that they fall into two different isomorphism types, (P)
and (P3), as shown in Figure [ (see also Figure B for the corresponding spherical
realizations).

b
A a b a A a
C
¢ a
d d d d
b d a d
a a 9 C
c c c c c c b b b b
b a
a a (¢ C
d d d d d a d
. C
a b a
/ a
b
(Pl) (PS)

FiGURE 7. Two 0-Hamiltonian spheres in the 4-cube.

PROPOSITION 5.1. There are only two essentially different 0-Hamiltonian sphe-
res in I*.

PROOF. Let M be a 0-Hamiltonian sphere in I*. It follows from Section [
that M is a quadrangulation of the 2-sphere with 16 vertices, 28 edges and 14
quadrangular faces. Suppose that v; is the number of vertices of degree i. Since all
vertices are either of degree 3 or degree 4, we have the relations

vy + vgq = 16, 3vz + 4vy = 56.

As an immediate consequence we obtain that the numbers of 3-valent and 4-valent
vertices is vg = vg = 8.

Altogether there are 32 edges in I* divided into 4 parallel classes, each class
with 8 edges. If e; and es are two edges in M, we say that they are P-equivalent
if they are in the same parallel class and there is a sequence

€1 = 21,%22,-.-,R%k—1,%k = €2
of edges in M such that z; and 2,11 are opposite edges in a quadrangle g; of M,
foreachi < k-1
The equivalence classes of P-equivalent edges of M are called belts, since the

quadrangles {q;}*_, form a “belt” on the surface M. The number k is referred to
as the length of the belt.



28 MUZIKA DIZDAREVIC AND ZIVALJEVIC

Since the cycles in I* are of even length, the length of a belt is an even number
4 <1 < 8. If b; is the number of different belts of length 7 then

(5.1) 4by 4 6bg + 8bg = 28.

If bg # 0, i.e., if there exists a belt of length 8, then M is isomorphic to either the
first or the third quadrangulation depicted in Figure[®l Indeed, there are altogether

G0 QA

(P) (P>) (P3)
FIGURE 8. Three potential 0-Hamiltonian spheres in I%.

16 vertices in M and all of them are on the belt. The boundary of the belt consists
of two connected components, each spanning an octagon. These two octagons are
quadrangulated without new vertices, which immediately leads to the conclusion
that M is one of the three quadrangulated surfaces depicted in Figure B The
surface P, cannot be embedded in the 4-cube since it has a self-intersecting belt.
The surfaces P; and Ps are not isomorphic since by(Py) = 0 # 3 = by(P2) and
bg(P1) =2 # bg(P2) =0 (bs(P1) = bsg(P2) = 2).

We continue by analysing the case bg # 0. Let B a belt of length 6 and By and
By its boundary 6-gons. Each cycle in I* of length 6 is contained in a 3-dimensional
face of I*. Indeed, each parallel class is in each cycle is represented by an even
number of edges. It follows that the word in the alphabet {a,b,c,d} = {1,2,3,4}
associated to a 6-cycle is either wy = abcach or we = abcabc. The word wy = abcacb
is realized in the quadrangulation depicted in Figure [d and this is, up to symmetry
of I*, the only realization. Moreover, this quadrangulation, the quadrangulation
(Py) and the quadrangulation depicted in Figure[d (on the left) are all isomorphic.
This can be observed by tracking and comparing the belts of length 8 in all three
quadrangulations.

The word ws = abcabc cannot arise as the word associated to a boundary cycle
By (or Bsy) of a 6-belt B in a 0-Hamiltonian surface M. Formally, the associated
quadrangulation would appear (as a graph) similar to Figure @ but with different
labeling (described by the word ws) of the two hexagonal bases. This labeling
forces the edge in the middle of each of the hexagons to be labeled by d, which is
contradiction.
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FIGURE 9. A 0-Hamiltonian sphere with bg # 0.

We conclude the analysis by showing that the remaining case bg = bg = 0 and
by = 7 is not possible. Indeed, in this case there would exist two distinct belts U
and V of length 4 which share two quadrangles. However, this can happen only if
the ambient sphere is the boundary of a 3-cube. O

6. Hamiltonian cycles inside 0-Hamiltonian spheres

PROPOSITION 6.1. All Gray cycles listed in Section[{], with exception of Gs and
G4, can be moved by an automorphism of the ambient 4-cube into a 0-Hamiltonian
sphere of the type (Py).

PROOF. A generic 0-Hamiltonian sphere of the type (P;) in the 4-cube is ex-
hibited in Figure [, where A is a vertex in I* and {a,b,c,d} = {1,2,3,4}.

The vertex-edge graph of (P;) has been already studied in [12] as the dual
graph of the unique 4-Venn diagram on the sphere. In particular Hamburger and
Pippert listed 11 different types of Hamiltonian cycles in this graph (see Theorem
4.1 and Figures 3 and 4 in [12]).

We use these 11 Hamiltonian cycles (listed as Hy, ..., Hi1), together with the
algorithm described in Section [£]], to describe all Gray cycles which can be covered
by a sphere of type (Pp). Initially we read off the code word (in the alphabet
{a,b,c,d}) associated to each of the cycles H; by tracking this cycle in Figure [1
in clockwise direction, starting at the vertex A. After that we use the recognition
algorithm to detect the corresponding G . (]

6.1. The case of P;-spheres.

PROPOSITION 6.2. Among all Gray cycles listed in Section [f, only the cycles
G1,Ge,G7,Gs and Gy can be moved by an automorphism of the ambient 4-cube
into a 0-Hamiltonian sphere of the type (Ps).

PROOF. The proof in principle could be given along the lines of the proof of
Proposition To carry on that plan we would need a list of essentially different
Hamiltonian cycles in the Ps-graph (Figure [).



30 MUZIKA DIZDAREVIC AND ZIVALJEVIC

Codeword: abacdcabcbdbadced Codeword: abadacadabadacad

(Hl) Type (47 4,4, 4) (HQ) Type (87 2,2, 4)

Conclusion: Hy — Gy Conclusion: Hy — G1
Codeword: abadab(c)badabad(c)d Codeword: babdba(c)abdbabd(c)d
Type (6,4,2,4) Type (4,6,2,4)

(Hs) Subtype={V}, wo=w; (Ha) Subtype={V'}, w2 =w;
Conclusion: Hs — Gg Conclusion: H4 — Gg
Codeword: bd(c)dadbdad(c)abdba Codeword: ad(b)dad|c]ada(b)adalc]d
Type (4,4,2,6) Type (6,2,2,6)

(Hs) Subtype={U, W}, ws = (Hs) Subtype={U, W}

Conclusion: Hs — Gy Conclusion: Hg — G2
Codeword: bdc(a)cdbdedb(a)bded Codeword: bdedadcbdbedadced
Subtype={V'}, w2 =w1 8

Conclusion: H7 — Gg Conclusion: Hg — G1
Codeword: dcacd(b)acdcacd(b)ac Codeword: bdadbd(c)badabad(c)d
Type (4,2,6,4) Type (4,4,2,6)

(Ho) Subtype={V'}, w1 = w2 (H10) Subtype={U, V'}

Conclusion: Hg — G7 Conclusion: Hig — Gy

Codeword: aba(d)cacbaca(d)babc
(H11) Type (6,4,4,2)

Subtype={W}, Hamm(wi,w2) =4

Conclusion: Hi1 — G5

Instead, here we use the idea implicitly used in the proof of Proposition 3.2

LEMMA 6.1. There are 8 different spheres of the type Pz in the 4-cube I*. They
are in a one-to-one correspondence with rows and columns of the Karnaugh torus
(Figure[3). More precisely, for each sphere in I* of the type P3 the corresponding
“missing edges” from the Karnaugh torus are all located either in the sam raw or
in the same column.

The proof of the proposition is completed by inspection of Figures Bl and IOl
For example the balanced Gray cycle depicted in Figure [l does not use the edges
from the first row. Similarly the image of the Gray cycle of the type Gg, shown in
Figure [0 does not contain any of the edges from the third column.

On the contrary each of the codes G, G3, G4, G5 contains an edge from each
of the rows (columns). Therefore none of these codes can be covered by a sphere
of the type Ps. O

6.2. Are there non-trivial knots among Gray codes? The boundary
O(I*) of the 4-dimensional cube is a 3-sphere so it is a legitimate question whether
some of the 4-bit Gray codes is a non-trivial knot. Recall that the question of the
existence of non-trivial knots in boundaries of 4-polytopes has a quite interesting
history [22].



HAMILTONIAN SURFACES IN THE 4-CUBE 31

*.
G, < G,
—r—3
G, > - G,
G L G
G, > — Cs

FiGURE 10. Hamilton paths G; to Gg in the Karnaugh torus.

PROPOSITION 6.3. Neither of the 9 Gray codes listed in [6]] is knotted.

PROOF. As an immediate consequence of Proposition [6.1], we observe that all
Gray cycles G; for i ¢ {3,4} are trivial knots. Indeed, each of them is embedded
in a 2-sphere of the type (P;) and by the Jordan curve theorem it bounds a disc.

For G5 and G4 we need a different argument. By inspection of Figure [0 we
observe that G5 is a torus knot of the type (3,1), meaning that it winds three
times horizontally and one time vertically in the Karnaugh torus. Similarly Gy is
a (2,1)-torus knot. It is a well known fact that a (p, ¢)-torus knot, where p and ¢
are coprime integers, is a trivial knot if and only if either p = +1 or ¢ = £1. (I

6.3. The “clown” configuration. As already observed in the proof of Pro-
position 6.1l among the 11 distinct, reducible spherical Venn diagrams with 5 curves
(listed in [12] Theorem 4.1]), there is precisely one of them, the diagram Hy, which
realizes the balanced Gray cycle.
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Starting ppint

F1cURE 11. The “clown” configuration.

This Venn diagram, the “clown”, as it is called in [12], is reproduced here in
Figure 11

7. Venn thought it couldn’t be done

Here we use the unique, balanced 4-bit Gray code to describe a conceptual
approach to the construction of a (reducible) planar Venn diagram consisting of
five ellipses. Recall that J. Venn himself thought that a diagram with five ellipses
does not exist and it came as a surprise when B. Griinbaum constructed [8] a
configuration of ellipses with this property.

It is interesting that Griinbaum also made an oversight [9] (see also [13]) by
claiming that “nor simple (in the sense that no 3 ellipses intersect) Venn diagram
with five ellipses can be obtained by adding a fifth ellipse to a Venn diagram of
four ellipses” (such diagrams are called reducible).

We refer the reader to [12L[13] for a very interesting history of this problem
and to [3I[A2[13] for far reaching results and numerous examples of Venn diagrams
with curves of different shapes.

Our basic idea, for a construction of a reducible Venn diagram with five ellipses,
is to use Figure [[4l More explicitly, we will circumscribe ellipses around each of
the four polygons inscribed in the circle to obtain four ellipses which, together with
the circle, are expected to form a 5-Venn diagram. This is, however, not always
the case and the ellipses must be chosen with some care.

Recall that a pencil of conics is a one-parameter family of conics which all pass
through four given points. Therefore our goal is to choose carefully an ellipse in
each of the four pencils, corresponding to four polygons inscribed in the circle.
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FI1GURE 12. Five ellipses which form a reducible Venn diagram.

PROPOSITION 7.1. Let {E;}}_, a collection of ellipses chosen from the pencils
of conics associated to the four polygons inscribed in the circle C' depicted in Figure
4. Then the collection F = {C, E1, E2, Es, E4} is a Venn diagram if the ellipses
& ={En, Es, E3, E4} form a simple 4-Venn diagram.

PRrOOF. Since & = {E1, Es, E5, E4} is a 4-Venn diagram, it divides the plane
(sphere) into 16 connected components. Each of these components is bisected
into two connected regions by one of the 16 arcs on the circle C. Therefore F =
{C, E1, Es, E5, E,} is a 5-Venn diagram. O

A simple argument based on the Euler formula guarantees that a collection of

ellipses € = {F1, E9, F5, E4} is a 4-Venn diagram if and only if

(1) Two ellipses, say E; and FEs, have four points in common;

(2) For any other pair {7, 5} # {1, 2} of indices, the ellipses E; and E; intersect

in precisely two points.

Guided by these properties, with little experimentation, one obtains the diagram
exhibited in Figure[[21 The reader is referred to [12] for a fairly complete analysis of
this problem, leading in particular to examples of reducible Venn diagrams formed
by five congruent ellipses.

8. The uniqueness of the balanced 4-bit Gray code

The uniqueness of the balanced 4-bit Gray code is established in [6] by a com-
puter search. Considering how important this fact is for applications such as [23],
here we give a proof based on a simple case analysis.
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If T is an arbitrary balanced 4-bit Gray code, such as (2.2)), it can be visualized
in two parallel 3-cubes I (30) and I (31), representing the front face and the back face
of the 4-cube I*. Note that in this representation the step in the direction of the
coordinate vector ey corresponds to the “jump” (parallel translation) from I (30) to
1(31) or vice versa.

If we remove letter d = 4 from (Z2]), we obtain four words w; = w;(T") (i =
1,2,3,4) in the alphabet {1,2,3} which will be referred to as characteristic words
associated to I'. A characteristic word is principal if it has the largest length. For
example in (Z2)), a (non-unique) principal word is w = 32123 and after a cyclic
permutation (corresponding to a different choice of the initial vertex) we obtain the
following representation of the code (2.2)):

(8.1) T = 32123(4)31213(4)1(4)2(4) = wy (d)ws (d)ws (d)ws(d) .

We sometimes write w =ST if we want to emphasize that S is the source (initial
vertex) and T the sink (terminal vertex) of the edge-path corresponding to w.

In what follows a, b, ¢, d are tacitly assumed to be different elements in {1, 2, 3,4}
where (most of the time) d = 4. The total length of all four characteristic words
is 12 (so the average length is 3). It follows that the length of a principal word in
a balanced, 4-bit Gray code, is five, four or three. We begin our analysis with the
principal words of the length five.

8.1. Principal word of the type abcba. Assume that wy = abcba (where
{a,b,c} = {1,2,3}) is a principal word associated to a balanced 4-bit Gray code I"
and that the remaining characteristic words are ws, w3, ws. By symmetry we can
assume that a = 1, b = 3, ¢ = 2 which means that the initial (known) part of T is
as shown in Figure [[3 on the left.

o

Sa I[Jl)

3
I[D)

FIGURE 13. Principal word of the type abcba.

We immediately observe from Figure[I3]lthat the characteristic word (path) ws
must connect vertices S3 and Sy, i.e., w3 = c. It may not be immediately clear what
is the source (sink) of ws. However, a moment’s reflections reveals that S3 must
be the source. Indeed, in the opposite case it would not be possible to construct
characteristic paths we and wy (in the back face I (31)) which are disjoint.
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There are precisely two ways to complete w; = abcba (and ws with end-points
Ss3,S54) to a Gray code on [ 4. The corresponding characteristic words ws and wy
are exhibited in Figure I3l on the right. Both these codes are balanced so we have
established the existence of a balanced, 4-bit Gray code.

We observe that 32123 is a principal word of the type abcba in the code ([Z2). It
immediately follows that the two codes exhibited in Figure[I3 are (up to symmetry)
isomorphic either to (Z2) or to the same code read backwards.

REMARK 8.1. Perhaps the easiest way to show that both balanced codes con-
structed in Section are isomorphic to the code (Z2) (and its reversal) is to
visualise (interpret) them in Figure [I4] (labeled version of Figure [2] on the right).
The reflection with respect to the major diagonal of the deltoid keeps both the del-
toid and the trapeze invariant, while interchanging the remaining two (congruent)
quadrangles. From here we immediately deduce that this code is isomorphic to the
same code read backwards.

FIGure 14. Circular presentation of the balanced Gray code (22).

REMARK 8.2. The analysis of the case abcba (Section BI)) and the symmetry
of the standard Gray code, exhibited in Figure [[4] have the following consequence.
If w is a principal word of a balanced Gray code, isomorphic by permutations of
letters to the standard one (22)), and if T is a balanced Gray code which has w°P
(the opposite of w) as a principal word, then I" is also isomorphic to the standard
code by permutation of letters. This allows us to test only the following words of
length 5:

(8.2) abcba abaca abcab acbab



36 MUZIKA DIZDAREVIC AND ZIVALJEVIC

8.2. Principal word of the type abaca. Let us continue by analysing the
case when a principal word of the type abaca. Again by symmetry we can assume
that a = 1, b = 3, ¢ = 2 which means that the initial (known) part of I is shown
in Figu-~ [

3 .
Tig) I,
FIGURE 15. Principal word of the type abaca.

The question is how the word abaca can be continued.
We first observe that the remaining two vertices in the cube I (30) can be con-

nected only by an edge of type a = 1. It immediately follows that in the cube Iél)
we are allowed to use only steps b = 3 and ¢ = 2. Considering that the sources
(sinks) in Iéo) and IPEI) (the black and white vertices) should be matched, we observe
that the only possible reconstruction of I" is depicted in the Figure

3 b
lio I

FIGURE 16. Unique reconstruction of the code in the case w; = abaca.

We obtain a code represented by the word
abaca(d)cbe(d)a(d)beb(d)

which is isomorphic to the code (22). Indeed by interpreting letters a,b,c,d as
a=4,b=3,¢c=2and d =1 in Figure [I6] we obtain the visual representation
corresponding to code ([Z.2)).



HAMILTONIAN SURFACES IN THE 4-CUBE 37

8.3. Principal words of the type abcab and acbab. Let us first convince
ourselves that abcab can’t be a principal word of any Gray code. Indeed, the
corresponding path in the 3-cube [ (30) disconnects the remaining two vertices, so
they cannot be connected by ws.

Iﬁa) Ilal)
FIGURE 17. Principal word of the type acbab.

It remains to check the word wy = acbab. From the Figure [[7 on the left, we
observe that either ws begins at A and ends at B, or the other way around. We also
observe that total letter count of wy and ws together is LC (w1, ws) = (3a,2b,¢)
(meaning that altogether there are 3 steps of type a, 2 steps of type b and one step
of type ¢), which implies that the total letter count of we and wy is LC(wa, wy) =
(a,2b,3c).

We conclude that there are two possibilities for the characteristic words ws, ws,
wy, depicted in Figure [I7 on the right:

(I) ws ZAE wao :Djil w4 Zéib,
(II) ws =BA wo :DBl W4 :AlC

The case (II) is not possible. Indeed, if wy =A;C' is of length 5, then it disconnects
the vertices A; and D. If wy is of length 1 then wy is uniquely reconstructed, but
its letter count is (a,3b,c) # (a,b, 3c).

In the case (I) the unique solution for the paths we and wy is exhibited in the
first cube in Figure [I7 on the right. We obtain the code represented by the word

acbac(d)be(d)a(d)cbea(d).

By permutation (bijection) a <> b,c¢ <> d we obtain a code with principal word
bdaba, which is precisely the code shown in Figure 14l

8.4. Principal words of length four. For a principal word of length four,
up to a permutation of letters and reversal of the order, there are two possibilities,
abca and abac. The word abca is immediately ruled out since it disconnects the
vertex-edge graph of the 3-cube.

If wy = abac, then either ws =DC= ab or w3 —CD= ba (Figure [I8). The
letter count in both cases is LC(wq,ws) = (3a,2b,c). We observe that there are
two possibilities:
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(1) ws =B1D1=b and ws =Cy A= bebab;

(1) wg =B1C1= cac and wy =D1A;= aca.

C

b C,

3 A
Tio)

Iy
FIGURE 18. Principal word of the type abac.

The first case is not possible since wy is of length 5 (and w; = abac is not
principal. In the second case we have LC (w2 + ws) = (3a, 00, 3¢) and the code is
not balanced.

The final conclusion is that there are no balanced codes with a principal word
of length four.

8.5. Characteristic word abc is not possible. In other words we claim
that the word dabcd does not appear in a balanced 4-bit Gray code I'. Suppose
the opposite. We know that {a, b, c} = {1,2,3}, so for concreteness (symmetry) let
a=1,b=3, ¢c=2( Figure[I9).

U
Bo - B
1
C
Ag
Va A -
1y Vi

3
Ijo)

FIGURE 19. The case of the characteristic word abc.

Figure records what we know so far. For example the sources/sinks (as
indicated) are in the set {A4;, B;, U;, Vi}i=0,1- Suppose that Uy is the source and Vj
is the sink.

The only possible (two) ways to complete Figure 20 on the left to a Gray code
is depicted on the right side of the figure.

We obtain two Gray codes but neither of them is balanced. The case when U°
is the sink and V© is the source is similarly ruled out.
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a

3
o) Iy

F1GURE 20. Two possible reconstruction of the code with the prin-
cipal word abc.

8.6. Principal word aba is not possible. Since the principal word w; = aba
is of length three, all characteristic words are of length three. Observe that either
w3 = aba or ws = bab.

If w3 = aba then the total letter count for wy and ws is LC(wy,w3) =
(4a, 2b,0c) which implies that the total letter count for we and wy is LC(we,wy) =
(0a, 2b,4c). It immediately follows that {we,ws} = {cac,cbc}. The case wy = cbc
is not possible since aba(d)cbe(d) is a cycle so we arrive at the word

aba(d)cac(d)aba(d)cbe(d)

which is not a Gray code.

If w3 = bab then the total letter count for wy and w3 is LC (w1, ws) = (3a, 3b,0c)
which implies that the total letter count for wy and wy is LC (w2, wy) = (0a, 3b, 3¢).
It follows that {wq, w4} = {bab, cbc}. The case we = cbe is again not possible since
aba(d)cbe(d) is a cycle so we arrive at the word

aba(d)bab(d)bab(d)cbe(d)
which is again not a Gray code.
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