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HAMILTONIAN SURFACES IN THE 4-CUBE,

4-BIT GRAY CODES AND VENN DIAGRAMS

Manuela Muzika Dizdarevi¢ and Rade T. �ivaljevi¢

Abstrat. We study Hamiltonian surfaes in the d-dimensional ube Id as

intermediate objets useful for omparative analysis of Venn diagrams and

Gray yles. In partiular we emphasize the importane of 0-Hamiltonian

spheres and the �spheriity� of Gray odes in the ontext of reduible Venn

diagrams. For illustration we show that preisely two, out of the nine known

types of 4-bit Gray yles, are not spherial. The unique, balaned Gray

yle is spherial, whih in turn leads to a new onstrution of a reduible

Venn diagram with 5 ellipses (originally onstruted by P. Hamburger and

R.E. Pippert).

1. Introdution

1.1. Gray odes and Hamiltonian surfaes. The idea of a Hamiltonian

iruit in a graph an be naturally extended to higher-dimensional omplexes.

Following [15℄ and [5℄, a subomplex of a d-dimensional polyhedral omplex

P d
(for instane a subomplex of a onvex polytope) is alled k-Hamiltonian if

ontains the full k-dimensional skeleton of P d
. In partiular a k-Hamiltonian n-

manifold in P d
is a k-Hamiltonian subomplex of P d

whih is at the same time an

n-dimensional submanifold of P d
.

For example a 1-Hamiltonian 2-manifold (or 1-Hamiltonian surfae for short)

in the d-dimensional ube Id is a polyhedral surfae in Id whih ontains all edges

of the ube Id. Similarly a 0-Hamiltonian surfae in Id ontains all verties of Id

and a 0-Hamiltonian 1-manifold in Id is a Hamiltonian iruit (in the usual sense)

in the vertex-edge graph of Id.
Hamiltonian iruits in Id are known also as Gray yles (Gray odes), see [14,

Setion 7.2.1.1℄.

1.2. Venn diagrams. Following [3, 8, 18℄ a Venn diagram (or n-Venn dia-

gram) in the plane (or on the sphere) is a olletion of simple losed (Jordan)

urves F = {C1, C2, . . . , Cn} suh that eah of the 2n sets X1 ∩ X2 ∩ · · · ∩ Xn is
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non-empty and onneted, where Xi is either the interior or the exterior of the

urve Ci.

A simple Venn diagram is a Venn diagram with an additional property that no

more than two urves interset at a ommon point. A Venn diagram is reduible if

one of the urves an be removed so that the remaining urves still form a Venn

diagram. An n-Venn diagram is extendible if the addition of some urve results in

an (n+ 1)-Venn diagram.

1.3. Winkler's onjeture and Gray yles. Winkler's onjeture was

originally proposed by Peter Winkler [20℄. With a slight modi�ation of Grün-

baum [9℄ it reads as follows.

Winkler's onjeture. Every simple n-Venn diagram is extendible to a

simple (n+ 1)-Venn diagram.

Gara Pruesse and Frank Ruskey announed a positive answer to Winkler's on-

jeture [16℄ in 2015. Previously it was demonstrated by Chilakamarri, Hamburger,

and Pippert [4℄ in 1996 that the onjeture is true if the simpliity ondition is

removed.

A Venn diagram F an be regarded as a planar graph V (F) (also referred to

as the Venn diagram) in whih the verties are the points of intersetion and edges

are the segments of the urves between the verties. In the Venn graph ontext,

Winkler's question is equivalent to asking whether the planar dual D(F) of a simple

Venn diagram V (F) is Hamiltonian.

If F is a simple d-Venn diagrams, then D(F) is a subgraph of the vertex-edge

graph Qd := Graph(Id) of the d-ube and, as a onsequene, a Hamiltonian path

in D(F) is a Gray yle.

Moreover, this Gray yle is spherial in the sense that it an be overed by

a 0-Hamiltonian sphere in Id. Indeed D(F), as a maximal bipartite planar graph,

de�nes a quadrangulation of the sphere whih is a subomplex of Id.

1.4. Whih Gray yles are spherial? Previous setion illustrates the

relevane of the spheriity of Gray yles for the general question of extendabil-

ity/reduibility of Venn diagrams.

The �binary re�eted Gray ode� [14, Setion 7.2.1.1℄, one of the simplest Gray

yles, is learly spherial. It is not a surprise that it emerges in many lassial

indutive onstrutions of Venn diagrams, see for examples [18℄, the setion �Gray

odes and Edwards' onstrution�.

In summary, spherial Gray yles may be useful in the onstrution and las-

si�ation of new Venn diagrams. Motivated by these and other related questions

we formulate the following general problem.

Problem. 1. Whih Gray yles in the d-ube Id are spherial?

2. Given a not neessarily spherial Gray yle Γ in Id, determine the small-

est genus of a 0-Hamiltonian surfae in Id whih ontains Γ.

The following theorem gives a omplete answer in the ase of the 4-dimensional

ube I4.
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Theorem 1.1. There exist 16 di�erent 0-Hamiltonian spheres in the 4-ube I4.
Up to a symmetry of I4 they fall into two types referred to as (P1) and (P3). The

�rst type arises as the quadrangulation of the sphere assoiated to the (unique) 4-
Venn diagram on S2

. Following Gilbert [6℄ there are 2688 di�erent Gray yles in

I4 whih are (Setion 4) lassi�ed into 9 types, referred to as G1�G9.

(a) All Gray yles Gi, with exeption of G3 and G4, an be moved by an

automorphism of the ambient 4-ube into a 0-Hamiltonian sphere of the

type (P1).
(b) Only the yles G1, G6, G7, G8 and G9 an be moved by an automorphism

of the ambient 4-ube into a 0-Hamiltonian sphere of the type (P3).

It follows from Theorem 1.1 that the odes G3 and G4 are the only two 4-bit
Gray yles that are not spherial. Their genus is equal to 1 sine they are both

inluded in a Karnaugh torus (Setion 3). From here we dedue (Setion 6.2) that

neither of the odes G3 and G4 is knotted in the boundary ∂I4 of the 4-ube (for

the remaining odes it is an immediate onsequene of their spheriity).

1.5. Exeptional role of the Gray ode G9. The unique, balaned Gray

yle (Setion 2), lassi�ed here as G9, is spherial and orresponds (Setion 6) to a

unique Venn diagram, the �lown� diagram from [12℄. In Setion 7 we demonstrate

how the properties of the balaned Gray yle an be used for onstrution of a

reduible Venn diagram with 5 ellipses (originally onstruted in [12℄). Finally in

Setion 8, we give a oneptual and a omputer-independent proof of the existene

and uniqueness of the balaned Gray yle in dimension four.

2. The unique balaned 4-bit Gray ode

The 4-bit Gray ode exhibited as an array (matrix) (2.1) of olumn vetors is

balaned in the sense that in eah row the number of hanges from 0 to 1, or vie
versa, is the same (and equals to 4).

(2.1)

0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1
0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0

It is an interesting and important fat that the balaned 4-bit Gray ode is up to

symmetry unique in dimension 4. This was �rst observed by Tootill [19℄, see also [6℄
and [14℄. The proof of uniqueness relied on the omputer generated list of all Gray

odes of length 16. Indeed, as demonstrated in [6℄, there are 9 non-isomorphi 4-bit

Gray odes, and preisely one of them is balaned.

There are results, suh as [23, Theorem 5.1℄, whose proof ritially depends on

the uniqueness of the balaned, 4-bit Gray ode. For this reason we give in Setion

8 a oneptual proof of this fat, whih does not depend on a omputer searh.

We also demonstrate in Setion 7 how the existene of this ode leads diretly to

a onstrution of a reduible Venn diagram, onsisting of �ve ellipses (see [12,13℄

for the original onstrution).
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Branko Grünbaum, a mathematiian with great geometri insight, was the �rst

to observe that a (non-reduible) Venn on�guration of �ve ellipses exists [8, 9℄,

ontrary to the belief of John Venn himself. He is also redited for the Grünbaum�

Hadwiger�Ramos problem [7,10,17℄, whih is in dimension 4 losely linked to the

balaned, 4-bit Gray ode [17,24℄.

Figure 1. Two images of the balaned ode. The image from [14℄

is on the left.

2.1. Inner symmetry of the balaned, 4-bit Gray ode. An image of

the balaned 4-digit Gray ode (reprodued here in Figure 1 on the left) appears

on page 293 in [14, Setion 7.2.1.1℄. By omparing this image with Figure 1 on

the right, one observes that Knuth's image is rotated ounterlokwise through the

angle of

3π
8 .

The right image, taken from [24℄, reveals an additional symmetry of this ode

whih was apparently not well known or emphasized before. For the reader's onve-

niene these two representations are reprodued here in Figure 2 by the equivalent

�polygonal representations�.

Figure 2 on the right has the advantage that it learly exhibits the vertial axes

of symmetry of the balaned ode whih, in partiular, explains why the same ode

is obtained if we read (2.1) (or (2.2)) bakwards.

2.2. Remark on the notation. Another useful presentation of Gray odes

puts more emphasis on edges, rather than on the verties of the edge path. For

example the balaned 4-bit Gray ode exhibited in (2.1) an be also written as the

sequene

(2.2)
1 2 1 3 4 1 4 2 4 3 2 1 2 3 4 3

reording the hange of the orresponding oordinates. More geometrially, eah

edge of Q4 (the vertex-edge graph of the 4-ube) is parallel to one of the oordinate
axes (or the orresponding unit vetors e1, e2, e3, e4) in R

4
and the sequene (2.2)
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Figure 2. Hidden axes of symmetry of the balaned ode

reords the indies of these axes as they appear when we move along the Gray ode.

Note that the ondition that the ode is balaned beomes even more transparent

as the property that eah number (index) from {1, 2, 3, 4} appears preisely four

times.

Remark 2.1. Stritly speaking a d-Gray yle is a subgraph Γ ⊂ Qd isomorphi

to a yle of length 2d. The assoiated yli word C-word(Γ) in the alphabet

[d] = {1, . . . , d} reords the intersetions Γ∩{x = (xi) ∈ Id | xi = 1/2} of the Gray
yle with the orresponding halving hyperplanes of the d-ube.

The ode words suh as (2.2) arise when we hoose an initial vertex on Γ and

an orientation (preferred diretion) of Γ.
More preisely the yli word C-word(Γ) assoiated to Γ is a yle graph of

length 2d with the edges labeled by 1, 2 . . . , d. Two yli words are onsidered to

be equivalent (equal) if one of them is obtained from the other by an automorphism

of the orresponding yle graphs.

A basi observation is that two Gray yles Γ1 and Γ2 are isomorphi if and

only if the orresponding yli words C-word(Γ1) and C-word(Γ2) are equivalent
(equal).

3. 1-Hamiltonian surfaes and the Karnaugh map

A 1-Hamiltonian surfae, introdued in Setion 1.1, is a 2-dimensional ana-

logue of the Hamiltonian iruit. Less formally a 1-Hamiltonian surfae in the

d-dimensional ube Id is a union M of 2-dimensional faes of the d-ube suh that:

(1) M is an orientable 2-dimensional surfae,

(2) M ontains eah edge of the ube Id.

The seond ondition implies that Qd, the vertex-edge graph of the d-ube, is

embedded in the surfae M . Moreover eah fae (a onneted omponent of the

graph omplement in the surfae) is a quadrangle. (Suh deompositions of surfaes

are alled quadrangulations.)

A nie and useful onsequene of (1) and (2) is that Hamiltonian iruits in Id

an be visualized (and studied) as Hamiltonian yles in a quadrangulated surfae.

A lassial example, originally used for the design of swithing iruits, is the
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Karnaugh map [14℄, de�ned as a quadrangulation of the 2-dimensional torus T 2 =
S1 × S1

.

More expliitly if S1 = ∂I2 is the boundary of the square, then the Karnaugh

torus is the quadrangulated surfae K = ∂I2×∂I2, interpreted as a 1-Hamiltonian

surfae in the 4-ube, via the embedding ∂I2 × ∂I2 →֒ I2 × I2 = I4.

Karnaugh torus is depited in Figure 3 (on the left) together with the balaned

Gray ode desribed by the assoiated ode word from equation (2.2).

Figure 3. Karnaugh map and the balaned, 4-bit Gray ode

It is natural to ask for a 1-Hamiltonian surfae M = Mg in Id of the smallest

possible genus g; in partiular to deide if there exists a 1-Hamiltonian sphere in I4.
These questions are related to the problem of �nding the genus of the ube graph

Qd, that is the minimum g suh that Qd admits an embedding in Mg. The well

known answer is given by the following lassial result of Ringel and (independently)

of Beineke and Harary.

Theorem 3.1. [11, Theorem 11.20℄ The genus of the d-ube graph is

g(Qd) = 1 + (d− 4)2d−3 .

From here we immediately dedue that g(Q4) = 1 whih implies that a 1-
Hamiltonian sphere does not exist already in the ase d = 4. Moreover, there is a

relation ( [11, Corollary 11.1 (b)℄)

(3.1) f1 = 2f0 − 4

whih holds for all quadrangulations of the 2-sphere with f0 verties and f1 edges.

It immediately follows that eah quadrangulated 2-sphere with f0 = 16 verties

must have f1 = 28 edges, see Figure 8 for an examples. In other words eah 2-
sphere Γ ⊂ I4 whih is 0-Hamiltonian, in the sense that it ontains all verties of

I4, is 4 edges short from being a Hamiltonian (1-Hamiltonian) surfae in I4.
This observation serves as a motivation for asking if for eah Hamiltonian iruit

H there exists a 0-Hamiltonian 2-sphere Γ in I4 suh that H ⊂ Γ.
Theorem 1.1 provides a negative answer to this question. The proof is, after

some preparation, given in Setion 6.
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Figure 4. The uniqueness of the Karnaugh torus.

3.1. The uniqueness of the Karnaugh torus.

Proposition 3.1. The Karnaugh torus is essentially the only 1-Hamiltonian

quadrangulated surfae embedded in the 4-ube I4. More preisely, if M is a 1-
Hamiltonian quadrangulated surfae embedded in the 4-ube I4, then there is an

automorphism of the ube I4 whih maps M to the standard Karnaugh torus de-

pited in Figure 3.

Proof. Eah vertex O of the 4-ube (Tesserat) is a ommon vertex of six

squares inident to O (Figure 4). Rhombi dodeahedron, de�ned as the Minkowski

sum of 4 segments (OA,OB,OC and OD), is depited in the middle of this �gure.

It provides an aurate model of the neighborhood N of O in I4, as far as the

2-dimensional skeleton of the 4-ube is onerned.
From this model we easily read o� the loal struture of all possible surfaes,

subomplexes of I4, whih have O as a vertex. If O is a 4-valent vertex in M then

there are 3 possibilities for the intersetion M ∩N , while if O is 3-valent in M there

are 4 possible loal models for M .

These loal models orrespond to di�erent yles in the 1-skeleton of the tetra-

hedron ABCD. For example the yle AC-CB-BD-DA orresponds to the neigh-

borhood of O of the Karnaugh torus K depited at the bottom of Figure 4.

Suppose that M is a 1-Hamiltonian surfae in I4 and let O ∈ M be a hosen

vertex. Using the symmetries of the 4-ube we may assume that the neighbor-

hood of O in M is desribed by the yle AC-CB-BD-DA, meaning that in the

neighborhood of O the surfae M oinides with the Karnaugh torus K.

Indutively we show that M and K oinide over a larger and larger fragment

of K. Here we use the fat that all verties of M are 4-valent (see Theorem 3.1).

The indution step is based on the observation that for eah two adjaent squares
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inident to a (variable) vertex O, suh as the squares whih share the edge OA of

K (Figure 4), there is only one (out of 3) loal models ontaining these squares.

(In our example it is the model orresponding to the yle AC-CB-BD-DA.)
Summarizing, we observe that if M ontains the squares in K inident to the

edge OA it also ontains the two squares in K sharing the edge OB, et. This

proedure ontinues until we obtain that M = K. �

3.2. Surgery over the Karnaugh torus. LetM1 be the union of 7 quadran-

gles (squares) in the Karnaugh torus K, depited as the shaded region in Figure 5.

A1 A2 A3 A4 A1

B1

A4 A1

B1

B2

B3
B4

C4

D4

A4

A3

A2

A1

C1

D1

A1 A2 A3

C1

D1

C2

C3

D2

D3

Figure 5. A surgery on the Karnaugh torus.

By inspetion we observe that M1 is a 2-dimensional surfae with the boundary

Γ = A1A2A3 . . . C1D1A1 onsisting of 12 line segments, as shown in Figure 5 on

the right. The union of the remaining 9 squares (the non-shaded 3× 3-hessboard
in Figure 5) is a topologial disk U , also bounded by Γ. The union V of 5 squares

A1A2A3A4, A1B1C1D1, A4B4C4D4, B1B2B3B4, A1B1B4A4

is also a topologial dis with boundary Γ. The diss U and V have disjoint interiors,

hene the union W := U ∪ V is a sphere quadrangulated into 14 squares. This

quadrangulation has 16 verties whih implies that W is a 0-Hamiltonian sphere

in the 4-ube I4. As predited by the relation (3.1) preisely 4 edges from the

Karnaugh torus are not in W , namely the edges

(3.2) A2B2, A3B3, C1C4, D1D4 .

It is onvenient to represent the quadrangulated sphere W , as the planar map

(graph) shown in Figure 6. Note that a similar (isomorphi) sphere an be on-

struted by a surgery over K if we hoose (for the shaded region) a di�erent row

and a olumn in the 4 × 4-hessboard, assoiated to the Karnaugh torus (Figure

5).

As and immediate onsequene we obtain the following result.
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Figure 6. A balaned Gray ode inside the sphere W .

Proposition 3.2. A balaned Gray ode an be onstruted within the 0-
Hamiltonian sphere W , obtained by a surgery over the Karnaugh torus. In other

words the balaned 4-bit Gray ode is spherial (Setion 1.3).

Proof. The balaned Gray ode G exhibited in Figure 3 (on the right) has

this property. Indeed, none of the edges listed in (3.2) is traversed by this ode,

hene Γ ⊂ W . An expliit realization is given in Figure 6 on the right. �

4. Nine Hamiltonian yles in I4

Here for the future referene we reprodue the list [6, Table I℄ of all essentially

di�erent, 4-bit Gray yles.

(4.1)

G1 1 2 1 3 1 2 1 (4) 1 2 1 3 1 2 1 (4) (8, 4, 2, 2)
G2 1 2 1 3 1 2 1 (4) 2 1 2 3 2 1 2 (4) (6, 6, 2, 2)
G3 1 2 1 3 2 1 2 (4) 1 2 1 3 2 1 2 (4) (6, 6, 2, 2)
G4 1 2 1 3 2 1 2 (4) 2 3 2 1 3 2 3 (4) (4, 6, 4, 2)
G5 1 2 1 3 2 1 2 (4) 3 2 3 1 2 3 2 (4) (4, 6, 4, 2)
G6 1 2 3 2 1 2 3 (4) 3 2 1 2 3 2 1 (4) (4, 6, 4, 2)
G7 1 2 3 2 1 2 3 (4) 1 2 3 2 1 2 3 (4) (4, 6, 4, 2)
G8 1 2 3 2 1 2 3 (4) 1 3 1 2 1 3 1 (4) (6, 4, 4, 2)
G9 1 2 1 3 4 1 4 2 4 3 2 1 2 3 4 3 (4, 4, 4, 4)

The type of the ode Gi is the vetor Type(Gi) = (p1, p2, p3, p4), or more aurately

a partition 16 = p1+ p2+ p3+ p4 (the order of summands is not important), where

pj is the number of ourrenes of the letter j ∈ {1, 2, 3, 4} in the ode. We use

parentheses (suh as (4) in the list above) for better visibility and to indiate a

letter whih ours only two times.
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4.1. Reognition of 4-bit Gray odes. It is known [14, Ch. 7.2.1.1℄ that

there are 2688 di�erent Gray yles in Q4. We need an e�ient algorithm (reog-

nition priniple) whih allows us to lassify them into 9 equivalene lasses of iso-

morphi odes. In other words, given a Gray ode Γ, we need a test (as simple as

possible) whih allows us to determine the unique Gi from the list (4.1) isomorphi

to Γ.

Step I. Classi�ed by type, the Gray odes listed in (4.1) fall into four lasses

(4.2) A = {G1} B = {G2, G3} C = {G4, G5, G6, G7, G8} D = {G9} .

It follows that the type Type(Γ) alone is su�ient to detet odes G1 and G9.

Step II. Number 2 appears as a summand in all the types exept in Type(G9). As
a onsequene eah of the odes G2-G8 has a (yli) representation of the form

w1(4)w2(4) (or w1(3)w2(3)), where w1 and w2 are words desribing a Hamiltonian

path in a 3-ube.

The only vetors (p, q, r) that appear as types of Hamiltonian paths in a 3-ube

are

(4.3) U = (4, 2, 1) V = (3, 2, 2) W = (3, 3, 1) .

The �rst two are types of �broken yles� (Hamiltonian paths in a 3-ube onneting

two neighboring verties) while W is the type of the �bakbone� Hamiltonian path

whih onnets two diametrially opposite verties.

The vetors (4.3) are referred to as subtypes of a Gray yle and Subtype(Γ) is
the olletion of all subtypes of Γ. By inspetion we observe that

Subtype(G2) = {U,W} Subtype(G3) = {W}

whih means that the appearane of the subtype U is harateristi for G2. By a

similar analysis the lass C splits as follows,

Subtype(G4) = Subtype(G5) = {W}

Subtype(G6) = Subtype(G7) = {V }

Subtype(G8) = {U, V }

Step III. It remains to separate G4 from G5 and G6 from G7. This is done by

omparing the words w1 and w2 in the yli representations w1(4)w2(4) of these
odes.

In the ase of G7 these words are idential, w1 = w2. In the ase of G6 these

words are di�erent. More preisely they are onjugate w1 6= w2 = w1, in the sense

that one is obtained from the other by reading the �rst word in the opposite order.

In the ase of G4 we have w1 = 1213212 and w2 = 2321323 (more generally

w1 = xyxzyxy and w2 = yzyxzyz for a ode isomorphi to G4), whih means

that the Hamming distane of these two strings is 7 (they are di�erent in all bit

positions).

In the ase of G5 we have w1 = 1213212 and w2 = 3231232 (or in general

w1 = xyxzyxy and w2 = zyzxyzy), whih means that the Hamming distane

Hamm(w1, w2) of these two strings is 4 (they are equal in three bit positions).
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5. A lassi�ation of 0-Hamiltonian spheres in I4

In this setion we lassify up to symmetry of the 4-ube all 0-Hamiltonian

spheres in I4. It turns out that they fall into two di�erent isomorphism types, (P1)
and (P3), as shown in Figure 7 (see also Figure 8 for the orresponding spherial

realizations).

A
A

(P1)
(P3)

a b a

b

c c

d d d d

c c c c

d d d d

b

a
b

a

a
b

a

a b a

a

a

a

a

a

a

b b b b

c
c

c
c
d

d d

d

cc

c c

Figure 7. Two 0-Hamiltonian spheres in the 4-ube.

Proposition 5.1. There are only two essentially di�erent 0-Hamiltonian sphe-

res in I4.

Proof. Let M be a 0-Hamiltonian sphere in I4. It follows from Setion 3

that M is a quadrangulation of the 2-sphere with 16 verties, 28 edges and 14

quadrangular faes. Suppose that vi is the number of verties of degree i. Sine all
verties are either of degree 3 or degree 4, we have the relations

v3 + v4 = 16, 3v3 + 4v4 = 56 .

As an immediate onsequene we obtain that the numbers of 3-valent and 4-valent

verties is v3 = v4 = 8.
Altogether there are 32 edges in I4 divided into 4 parallel lasses, eah lass

with 8 edges. If e1 and e2 are two edges in M , we say that they are P -equivalent
if they are in the same parallel lass and there is a sequene

e1 = z1, z2, . . . , zk−1, zk = e2

of edges in M suh that zi and zi+1 are opposite edges in a quadrangle qi of M ,

for eah i 6 k − 1
The equivalene lasses of P -equivalent edges of M are alled belts, sine the

quadrangles {qi}
k
i=1 form a �belt� on the surfae M . The number k is referred to

as the length of the belt.
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Sine the yles in I4 are of even length, the length of a belt is an even number

4 6 l 6 8. If bi is the number of di�erent belts of length i then

(5.1) 4b4 + 6b6 + 8b8 = 28.

If b8 6= 0, i.e., if there exists a belt of length 8, then M is isomorphi to either the

�rst or the third quadrangulation depited in Figure 8. Indeed, there are altogether

(P1)
(P2) (P3)

Figure 8. Three potential 0-Hamiltonian spheres in I4.

16 verties in M and all of them are on the belt. The boundary of the belt onsists

of two onneted omponents, eah spanning an otagon. These two otagons are

quadrangulated without new verties, whih immediately leads to the onlusion

that M is one of the three quadrangulated surfaes depited in Figure 8. The

surfae P2 annot be embedded in the 4-ube sine it has a self-interseting belt.

The surfaes P1 and P3 are not isomorphi sine b4(P1) = 0 6= 3 = b4(P2) and

b6(P1) = 2 6= b6(P2) = 0 (b8(P1) = b8(P2) = 2).
We ontinue by analysing the ase b6 6= 0. Let B a belt of length 6 and B1 and

B2 its boundary 6-gons. Eah yle in I4 of length 6 is ontained in a 3-dimensional

fae of I4. Indeed, eah parallel lass is in eah yle is represented by an even

number of edges. It follows that the word in the alphabet {a, b, c, d} = {1, 2, 3, 4}
assoiated to a 6-yle is either w1 = abcacb or w2 = abcabc. The word w1 = abcacb
is realized in the quadrangulation depited in Figure 9 and this is, up to symmetry

of I4, the only realization. Moreover, this quadrangulation, the quadrangulation

(P1) and the quadrangulation depited in Figure 6 (on the left) are all isomorphi.

This an be observed by traking and omparing the belts of length 8 in all three

quadrangulations.

The word w2 = abcabc annot arise as the word assoiated to a boundary yle

B1 (or B2) of a 6-belt B in a 0-Hamiltonian surfae M . Formally, the assoiated

quadrangulation would appear (as a graph) similar to Figure 9, but with di�erent

labeling (desribed by the word w2) of the two hexagonal bases. This labeling

fores the edge in the middle of eah of the hexagons to be labeled by d, whih is

ontradition.
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Figure 9. A 0-Hamiltonian sphere with b6 6= 0.

We onlude the analysis by showing that the remaining ase b6 = b8 = 0 and

b4 = 7 is not possible. Indeed, in this ase there would exist two distint belts U
and V of length 4 whih share two quadrangles. However, this an happen only if

the ambient sphere is the boundary of a 3-ube. �

6. Hamiltonian yles inside 0-Hamiltonian spheres

Proposition 6.1. All Gray yles listed in Setion 4, with exeption of G3 and

G4, an be moved by an automorphism of the ambient 4-ube into a 0-Hamiltonian

sphere of the type (P1).

Proof. A generi 0-Hamiltonian sphere of the type (P1) in the 4-ube is ex-

hibited in Figure 7, where A is a vertex in I4 and {a, b, c, d} = {1, 2, 3, 4}.
The vertex-edge graph of (P1) has been already studied in [12℄ as the dual

graph of the unique 4-Venn diagram on the sphere. In partiular Hamburger and

Pippert listed 11 di�erent types of Hamiltonian yles in this graph (see Theorem

4.1 and Figures 3 and 4 in [12℄).

We use these 11 Hamiltonian yles (listed as H1, . . . , H11), together with the

algorithm desribed in Setion 4.1, to desribe all Gray yles whih an be overed

by a sphere of type (P1). Initially we read o� the ode word (in the alphabet

{a, b, c, d}) assoiated to eah of the yles Hi by traking this yle in Figure 7

in lokwise diretion, starting at the vertex A. After that we use the reognition
algorithm to detet the orresponding Gj . �

6.1. The ase of P3-spheres.

Proposition 6.2. Among all Gray yles listed in Setion 4, only the yles

G1, G6, G7, G8 and G9 an be moved by an automorphism of the ambient 4-ube
into a 0-Hamiltonian sphere of the type (P3).

Proof. The proof in priniple ould be given along the lines of the proof of

Proposition 6.1. To arry on that plan we would need a list of essentially di�erent

Hamiltonian yles in the P3-graph (Figure 7).
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(H1)

Codeword: abacdcabcbdbadcd

(H2)

Codeword: abadacadabadacad

Type (4, 4, 4, 4) Type (8, 2, 2, 4)
Conlusion: H1 7→ G9 Conlusion: H2 7→ G1

(H3)

Codeword: abadab(c)badabad(c)d

(H4)

Codeword: babdba(c)abdbabd(c)d
Type (6, 4, 2, 4) Type (4, 6, 2, 4)
Subtype={V }, w2 = w1 Subtype={V }, w2 = w1

Conlusion: H3 7→ G6 Conlusion: H4 7→ G6

(H5)

Codeword: bd(c)dadbdad(c)abdba

(H6)

Codeword: ad(b)dad[c]ada(b)ada[c]d
Type (4, 4, 2, 6) Type (6, 2, 2, 6)
Subtype={U,W}, w2 = w1 Subtype={U,W}
Conlusion: H5 7→ G8 Conlusion: H6 7→ G2

(H7)

Codeword: bdc(a)cdbdcdb(a)bdcd

(H8)

Codeword: bdcdadcbdbcdadcd

Type (2, 4, 4, 6) Type (2, 2, 4, 8)
Subtype={V }, w2 = w1

Conlusion: H7 7→ G6 Conlusion: H8 7→ G1

(H9)

Codeword: dcacd(b)acdcacd(b)ac

(H10)

Codeword: bdadbd(c)badabad(c)d
Type (4, 2, 6, 4) Type (4, 4, 2, 6)
Subtype={V }, w1 = w2 Subtype={U, V }
Conlusion: H9 7→ G7 Conlusion: H10 7→ G8

(H11)

Codeword: aba(d)cacbaca(d)babc
Type (6, 4, 4, 2)
Subtype={W}, Hamm(w1, w2) = 4
Conlusion: H11 7→ G5

Instead, here we use the idea impliitly used in the proof of Proposition 3.2.

Lemma 6.1. There are 8 di�erent spheres of the type P3 in the 4-ube I4. They
are in a one-to-one orrespondene with rows and olumns of the Karnaugh torus

(Figure 3). More preisely, for eah sphere in I4 of the type P3 the orresponding

�missing edges� from the Karnaugh torus are all loated either in the sam raw or

in the same olumn.

The proof of the proposition is ompleted by inspetion of Figures 3 and 10.

For example the balaned Gray yle depited in Figure 3 does not use the edges

from the �rst row. Similarly the image of the Gray yle of the type G6, shown in

Figure 10, does not ontain any of the edges from the third olumn.

On the ontrary eah of the odes G2, G3, G4, G5 ontains an edge from eah

of the rows (olumns). Therefore none of these odes an be overed by a sphere

of the type P3. �

6.2. Are there non-trivial knots among Gray odes? The boundary

∂(I4) of the 4-dimensional ube is a 3-sphere so it is a legitimate question whether

some of the 4-bit Gray odes is a non-trivial knot. Reall that the question of the

existene of non-trivial knots in boundaries of 4-polytopes has a quite interesting

history [22℄.
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Figure 10. Hamilton paths G1 to G8 in the Karnaugh torus.

Proposition 6.3. Neither of the 9 Gray odes listed in [6℄ is knotted.

Proof. As an immediate onsequene of Proposition 6.1, we observe that all

Gray yles Gi for i /∈ {3, 4} are trivial knots. Indeed, eah of them is embedded

in a 2-sphere of the type (P1) and by the Jordan urve theorem it bounds a dis.

For G3 and G4 we need a di�erent argument. By inspetion of Figure 10, we

observe that G3 is a torus knot of the type (3, 1), meaning that it winds three

times horizontally and one time vertially in the Karnaugh torus. Similarly G4 is

a (2, 1)-torus knot. It is a well known fat that a (p, q)-torus knot, where p and q
are oprime integers, is a trivial knot if and only if either p = ±1 or q = ±1. �

6.3. The �lown� on�guration. As already observed in the proof of Pro-

position 6.1, among the 11 distint, reduible spherial Venn diagrams with 5 urves

(listed in [12, Theorem 4.1℄), there is preisely one of them, the diagram H1, whih

realizes the balaned Gray yle.
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Figure 11. The �lown� on�guration.

This Venn diagram, the �lown�, as it is alled in [12℄, is reprodued here in

Figure 11.

7. Venn thought it ouldn't be done

Here we use the unique, balaned 4-bit Gray ode to desribe a oneptual

approah to the onstrution of a (reduible) planar Venn diagram onsisting of

�ve ellipses. Reall that J. Venn himself thought that a diagram with �ve ellipses

does not exist and it ame as a surprise when B. Grünbaum onstruted [8℄ a

on�guration of ellipses with this property.

It is interesting that Grünbaum also made an oversight [9℄ (see also [13℄) by

laiming that �nor simple (in the sense that no 3 ellipses interset) Venn diagram

with �ve ellipses an be obtained by adding a �fth ellipse to a Venn diagram of

four ellipses� (suh diagrams are alled reduible).

We refer the reader to [12, 13℄ for a very interesting history of this problem

and to [3,12,13℄ for far reahing results and numerous examples of Venn diagrams

with urves of di�erent shapes.

Our basi idea, for a onstrution of a reduible Venn diagram with �ve ellipses,

is to use Figure 14. More expliitly, we will irumsribe ellipses around eah of

the four polygons insribed in the irle to obtain four ellipses whih, together with

the irle, are expeted to form a 5-Venn diagram. This is, however, not always

the ase and the ellipses must be hosen with some are.

Reall that a penil of onis is a one-parameter family of onis whih all pass

through four given points. Therefore our goal is to hoose arefully an ellipse in

eah of the four penils, orresponding to four polygons insribed in the irle.
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Figure 12. Five ellipses whih form a reduible Venn diagram.

Proposition 7.1. Let {Ei}
4
i=1 a olletion of ellipses hosen from the penils

of onis assoiated to the four polygons insribed in the irle C depited in Figure

14. Then the olletion F = {C,E1, E2, E3, E4} is a Venn diagram if the ellipses

E = {E1, E2, E3, E4} form a simple 4-Venn diagram.

Proof. Sine E = {E1, E2, E3, E4} is a 4-Venn diagram, it divides the plane

(sphere) into 16 onneted omponents. Eah of these omponents is biseted

into two onneted regions by one of the 16 ars on the irle C. Therefore F =
{C,E1, E2, E3, E4} is a 5-Venn diagram. �

A simple argument based on the Euler formula guarantees that a olletion of

ellipses E = {E1, E2, E3, E4} is a 4-Venn diagram if and only if

(1) Two ellipses, say E1 and E2, have four points in ommon;

(2) For any other pair {i, j} 6= {1, 2} of indies, the ellipses Ei and Ej interset

in preisely two points.

Guided by these properties, with little experimentation, one obtains the diagram

exhibited in Figure 12. The reader is referred to [12℄ for a fairly omplete analysis of

this problem, leading in partiular to examples of reduible Venn diagrams formed

by �ve ongruent ellipses.

8. The uniqueness of the balaned 4-bit Gray ode

The uniqueness of the balaned 4-bit Gray ode is established in [6℄ by a om-

puter searh. Considering how important this fat is for appliations suh as [23℄,

here we give a proof based on a simple ase analysis.



34 MUZIKA DIZDAREVI� AND �IVALJEVI�

If Γ is an arbitrary balaned 4-bit Gray ode, suh as (2.2), it an be visualized

in two parallel 3-ubes I3(0) and I3(1), representing the front fae and the bak fae

of the 4-ube I4. Note that in this representation the step in the diretion of the

oordinate vetor e4 orresponds to the �jump� (parallel translation) from I3(0) to

I3(1) or vie versa.

If we remove letter d = 4 from (2.2), we obtain four words wi = wi(Γ) (i =
1, 2, 3, 4) in the alphabet {1, 2, 3} whih will be referred to as harateristi words

assoiated to Γ. A harateristi word is prinipal if it has the largest length. For

example in (2.2), a (non-unique) prinipal word is w = 32123 and after a yli

permutation (orresponding to a di�erent hoie of the initial vertex) we obtain the

following representation of the ode (2.2):

(8.1)
Γ = 32123(4)31213(4)1(4)2(4) = w1(d)w2(d)w3(d)w4(d) .

We sometimes write w =
99K

ST if we want to emphasize that S is the soure (initial

vertex) and T the sink (terminal vertex) of the edge-path orresponding to ω.

In what follows a, b, c, d are taitly assumed to be di�erent elements in {1, 2, 3, 4}
where (most of the time) d = 4. The total length of all four harateristi words

is 12 (so the average length is 3). It follows that the length of a prinipal word in

a balaned, 4-bit Gray ode, is �ve, four or three. We begin our analysis with the

prinipal words of the length �ve.

8.1. Prinipal word of the type abcba. Assume that w1 = abcba (where

{a, b, c} = {1, 2, 3}) is a prinipal word assoiated to a balaned 4-bit Gray ode Γ
and that the remaining harateristi words are w2, w3, w4. By symmetry we an

assume that a = 1, b = 3, c = 2 whih means that the initial (known) part of Γ is

as shown in Figure 13 on the left.

Figure 13. Prinipal word of the type abcba.

We immediately observe from Figure 13 that the harateristi word (path) w3

must onnet verties S3 and S4, i.e., w3 = c. It may not be immediately lear what

is the soure (sink) of w3. However, a moment's re�etions reveals that S3 must

be the soure. Indeed, in the opposite ase it would not be possible to onstrut

harateristi paths w2 and w4 (in the bak fae I3(1)) whih are disjoint.



HAMILTONIAN SURFACES IN THE 4-CUBE 35

There are preisely two ways to omplete w1 = abcba (and w3 with end-points

S3, S4) to a Gray ode on I4. The orresponding harateristi words w2 and w4

are exhibited in Figure 13 on the right. Both these odes are balaned so we have

established the existene of a balaned, 4-bit Gray ode.

We observe that 32123 is a prinipal word of the type abcba in the ode (2.2). It

immediately follows that the two odes exhibited in Figure 13 are (up to symmetry)

isomorphi either to (2.2) or to the same ode read bakwards.

Remark 8.1. Perhaps the easiest way to show that both balaned odes on-

struted in Setion 8.1 are isomorphi to the ode (2.2) (and its reversal) is to

visualise (interpret) them in Figure 14 (labeled version of Figure 2 on the right).

The re�etion with respet to the major diagonal of the deltoid keeps both the del-

toid and the trapeze invariant, while interhanging the remaining two (ongruent)

quadrangles. From here we immediately dedue that this ode is isomorphi to the

same ode read bakwards.

Figure 14. Cirular presentation of the balaned Gray ode (2.2).

Remark 8.2. The analysis of the ase abcba (Setion 8.1) and the symmetry

of the standard Gray ode, exhibited in Figure 14, have the following onsequene.

If w is a prinipal word of a balaned Gray ode, isomorphi by permutations of

letters to the standard one (2.2), and if Γ is a balaned Gray ode whih has wop

(the opposite of w) as a prinipal word, then Γ is also isomorphi to the standard

ode by permutation of letters. This allows us to test only the following words of

length 5:

(8.2) abcba abaca abcab acbab
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8.2. Prinipal word of the type abaca. Let us ontinue by analysing the

ase when a prinipal word of the type abaca. Again by symmetry we an assume

that a = 1, b = 3, c = 2 whih means that the initial (known) part of Γ is shown

in Figure 15.

Figure 15. Prinipal word of the type abaca.

The question is how the word abaca an be ontinued.

We �rst observe that the remaining two verties in the ube I3(0) an be on-

neted only by an edge of type a = 1. It immediately follows that in the ube I
(1)
3

we are allowed to use only steps b = 3 and c = 2. Considering that the soures

(sinks) in I
(0)
3 and I

(1)
3 (the blak and white verties) should be mathed, we observe

that the only possible reonstrution of Γ is depited in the Figure 16.

Figure 16. Unique reonstrution of the ode in the ase w1 = abaca.

We obtain a ode represented by the word

abaca(d)cbc(d)a(d)bcb(d)

whih is isomorphi to the ode (2.2). Indeed by interpreting letters a, b, c, d as

a = 4, b = 3, c = 2 and d = 1 in Figure 16, we obtain the visual representation

orresponding to ode (2.2).
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8.3. Prinipal words of the type abcab and acbab. Let us �rst onvine
ourselves that abcab an't be a prinipal word of any Gray ode. Indeed, the

orresponding path in the 3-ube I3(0) disonnets the remaining two verties, so

they annot be onneted by w3.

Figure 17. Prinipal word of the type acbab.

It remains to hek the word w1 = acbab. From the Figure 17 on the left, we

observe that either w3 begins at A and ends at B, or the other way around. We also

observe that total letter ount of w1 and w3 together is LC(w1, w3) = (3a, 2b, c)
(meaning that altogether there are 3 steps of type a, 2 steps of type b and one step

of type c), whih implies that the total letter ount of w2 and w4 is LC(w2, w4) =
(a, 2b, 3c).

We onlude that there are two possibilities for the harateristi words w2, w3,
w4, depited in Figure 17 on the right:

(I) w3 =
99K

AB w2 =
99K

DA1 w4 =
99K

B1C;

(II) w3 =
99K

BA w2 =
99K

DB1 w4 =
99K

A1C.

The ase (II) is not possible. Indeed, if w4 =
99K

A1C is of length 5, then it disonnets

the verties A1 and D. If w4 is of length 1 then w2 is uniquely reonstruted, but

its letter ount is (a, 3b, c) 6= (a, b, 3c).
In the ase (I) the unique solution for the paths w2 and w4 is exhibited in the

�rst ube in Figure 17 on the right. We obtain the ode represented by the word

acbac(d)bc(d)a(d)cbca(d).

By permutation (bijetion) a ↔ b, c ↔ d we obtain a ode with prinipal word

bdaba, whih is preisely the ode shown in Figure 14.

8.4. Prinipal words of length four. For a prinipal word of length four,

up to a permutation of letters and reversal of the order, there are two possibilities,

abca and abac. The word abca is immediately ruled out sine it disonnets the

vertex-edge graph of the 3-ube.

If w1 = abac, then either w3 =
99K

DC= ab or w3 =
99K

CD= ba (Figure 18). The

letter ount in both ases is LC(w1, w3) = (3a, 2b, c). We observe that there are

two possibilities:
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(I) w2 =
99K

B1D1= b and w4 =
99K

C1A1= bcbab;

(II) w2 =
99K

B1C1= cac and w4 =
99K

D1A1= aca.

Figure 18. Prinipal word of the type abac.

The �rst ase is not possible sine w4 is of length 5 (and w1 = abac is not

prinipal. In the seond ase we have LC(w2 + w4) = (3a, 0b, 3c) and the ode is

not balaned.

The �nal onlusion is that there are no balaned odes with a prinipal word

of length four.

8.5. Charateristi word abc is not possible. In other words we laim

that the word dabcd does not appear in a balaned 4-bit Gray ode Γ. Suppose

the opposite. We know that {a, b, c} = {1, 2, 3}, so for onreteness (symmetry) let

a = 1, b = 3, c = 2 ( Figure 19).

Figure 19. The ase of the harateristi word abc.

Figure 19 reords what we know so far. For example the soures/sinks (as

indiated) are in the set {Ai, Bi, Ui, Vi}i=0,1. Suppose that U0 is the soure and V0

is the sink.

The only possible (two) ways to omplete Figure 20 on the left to a Gray ode

is depited on the right side of the �gure.

We obtain two Gray odes but neither of them is balaned. The ase when U0

is the sink and V 0
is the soure is similarly ruled out.
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Figure 20. Two possible reonstrution of the ode with the prin-

ipal word abc.

8.6. Prinipal word aba is not possible. Sine the prinipal word w1 = aba
is of length three, all harateristi words are of length three. Observe that either

w3 = aba or w3 = bab.
If w3 = aba then the total letter ount for w1 and w3 is LC(w1, w3) =

(4a, 2b, 0c) whih implies that the total letter ount for w2 and w4 is LC(w2, w4) =
(0a, 2b, 4c). It immediately follows that {w2, w4} = {cac, cbc}. The ase w2 = cbc
is not possible sine aba(d)cbc(d) is a yle so we arrive at the word

aba(d)cac(d)aba(d)cbc(d)

whih is not a Gray ode.

If w3 = bab then the total letter ount for w1 and w3 is LC(w1, w3) = (3a, 3b, 0c)
whih implies that the total letter ount for w2 and w4 is LC(w2, w4) = (0a, 3b, 3c).
It follows that {w2, w4} = {bab, cbc}. The ase w2 = cbc is again not possible sine

aba(d)cbc(d) is a yle so we arrive at the word

aba(d)bab(d)bab(d)cbc(d)

whih is again not a Gray ode.
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