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CERTAIN COEFFICIENT INEQUALITIES ASSOCIATED

WITH HANKEL DETERMINANT FOR A SPECIFIC

SUBFAMILY OF HOLOMORPHIC MAPPINGS

Vamshee Krishna Deekonda and Shalini Dasumahanthi

Abstract. We introduce a new subfamily of holomorphic functions and at-
tempt to estimate an upper bound for the Hankel determinant of the second
and third kind for the normalized regular mapping f , a member of this class.

1. Introduction

Let A represent the family of mappings f of the type

(1.1) f(z) = z +

∞
∑

t=2

atz
t

in U = {z ∈ C : 1 > |z|}, denotes the open unit disc and S is the subfamily
of A, possessing univalent (schlit) mappings. Pommerenke [15] characterized the
rth-Hankel determinant of order n, for f with r, n ∈ N = {1, 2, 3, . . .} namely

(1.2) Hr,n(f) =
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, (a1 = 1).

The Fekete–Szegö functional is obtained for r = 2 and n = 1 in (1.2), denoted
by H2(1). Further, sharp bounds to the functional |H2,2(f)|, obtained for r = 2
and n = 2 in (1.2), called as Hankel determinant of order two, given by

H2,2(f) =

∣
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∣

= a2a4 − a23,

In recent years, research on estimation of an upper bound (UB) to |H2,2(f)|
has been focused on by many authors. The exact estimates of |H2,2(f)| for the
functions namely, bounded turning, starlike and convex functions, subfamilies of
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S, symbolized as Re, S∗ and K respectively fulfilling the conditions Re f ′(z) > 0,

Re
{

zf ′(z)
f(z)

}

> 0 and Re
{

1+ zf ′′(z)
f ′(z)

}

> 0 in the unit disc U , were proved by Janteng

et al. [9,10] and derived the bounds as 4/9, 1, and 1/8 respectively. Choosing r = 2
and n = p + 1 in (1.2), we obtain the Hankel determinant of second order for the
p-valent function (see [20]), given by

H2,(p+1)(f) =
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∣
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∣

= ap+1ap+3 − a2p+2,

The case r = 3 seems to be much tough than r = 2. A small number of papers
have been dedicated to the study of the third order Hankel determinant denoted
by H3,1(f), obtained for r = 3 and n = 1 in (1.2), namely

(1.3) H3,1(f) =
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∣
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∣
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a2 a3 a4
a3 a4 a5
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∣

∣

∣

∣

∣

= a1(a3a5 − a24) + a2(a3a4 − a2a5) + a3(a2a4 − a23),

The concept of estimation of an upper bound for |H3,1(f)| was firstly introduced
and studied by Babalola [4], who tried to estimate for this functional to the classes
R, S∗ and K, obtained as follows.

(i) f ∈ S∗ ⇒ |H3,1(f)| 6 16.
(ii) f ∈ K ⇒ |H3,1(f)| 6 0.714.
(iii) f ∈ R ⇒ |H3,1(f)| 6 0.742.

As a result of the paper from Babalola [4], many articles containing results
associated with the Hankel determinant of order 3 and 4 for specific subfamilies
of holomorphic functions were obtained (see [1–3,5,13,16,18]). Motivated with
the results obtained by the authors specified here, those who are working in this
direction, for our study here, we are attempting to introduce and interpret a new
subfamily of holomorphic functions, derive an upper bound (UB) to the functionals
H2,3(f) =

∣

∣

a3 a4

a4 a5

∣

∣ = a3a5 − a24 and H3,1(f) for the mapping f belongs to the class
defined as below.

Definition 1.1. A mapping f ∈ A to be in S∗Ks(β) (0 6 β 6 1), if

(1.4) Re
[ 2{zf ′(z) + βz2f ′′(z)}

(1− β){f(z)− f(−z)}+ β{zf ′(z) + zf ′(−z)}

]

> 0, z ∈ U .

For β = 0 and β = 1 in (1.4), we get S∗Ks(0) = S∗

s , consisting of starlike f

ets. with regard to symmetric points, interpreted and studied by Sakaguchi [17]
and S∗Ks(1) = Ks, consisting of convex f ets. about symmetric points, interpreted
and studied by Das and Singh [6] respectively.

In proving our results, the required sharp estimates specified below, given in
the form of Lemmas, which holds suitable for f ets. possessing positive real part.

The collection P , of all functions g, each is called as Caratheodòry function [7]
of the form, g(z) = 1 +

∑

∞

t=1 ctz
t, holomorphic in U and Re g(z) > 0 for z ∈ U .
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Lemma 1.1. [8] If g ∈ P, then the estimate |ci−µcjci−j | 6 2, holds for i, j ∈ N,

with i > j and µ ∈ [0, 1].

Lemma 1.2. [12] If g ∈ P, then the estimate |ci−cjci−j | 6 2, holds for i, j ∈ N,

with i > j.

Lemma 1.3. [14] If g ∈ P, then |ct| 6 2, for t ∈ N; equality occurs for the

function h(z) = 1+z
1−z

, z ∈ U .

Lemma 1.4. [21] If g ∈ P, then |c2c4 − c23| 6 4− 1
2 |c2|

2 + 1
4 |c2|

3.

We prove our results, following the procedure from Libera and Zlotkiewicz [11].

2. Important Outcomes

Theorem 2.1. If f ∈ S∗Ks(β) (0 6 β 6 1), then

|H3,1(f)| 6
[−8β6 + 240β5 + 734β4 + 782β3 + 377β2 + 84β + 7

4(1 + β)2(1 + 2β)3(1 + 3β)2(1 + 4β)

]

.

Proof. For f ∈ S∗Ks(β), there exists a function g ∈ P such that

(2.1)
[ 2{zf ′(z) + βz2f ′′(z)}

(1 − β){f(z)− f(−z)}+ β{zf ′(z) + zf ′(−z)}

]

= g(z).

Equivalently

2{zf ′(z) + βz2f ′′(z)} = [(1− β){f(z)− f(−z)}+ β{zf ′(z) + zf ′(−z)}]g(z).

Putting the values for f , f ′, f ′′ and g, this simplifies to

(2.2) [2(1 + β)a2 + 3(1 + 2β)a3z + 4(1 + 3β)a4z
2 + 5(1 + 4β)a5z

3 + · · · ]

= [c1 + {c2 + (1 + 2β)a3}z + {c3 + (1 + 2β)c1a3}z
2

+ {c4 + (1 + 2β)c2a3 + (1 + 4β)a5}z
3 + · · · ].

Comparing the coefficients of z0, z1, z2and z3 respectively in (2.2), we obtain

(2.3) a2 =
c1

2(1 + β)
; a3 =

c2

2(1 + 2β)
; a4 =

(2c3 + c1c2)

8(1 + 3β)
; a5 =

(2c4 + c22)

8(1 + 4β)

and substituting these values into (1.3), after simplifying, we get

H3,1(f) =
[ c2c4

8(1 + 2β)(1 + 4β)
−

(−4β2 + 4β + 1)c32
16(1 + 2β)3(1 + 4β)

−
c23

16(1 + 3β)2
(2.4)

+
(−2β2 + 3β + 1)c1c2c3

16(1 + β)(1 + 2β)(1 + 3β)2
−

c21c4

16(1 + β)2(1 + 4β)

+
(−8β4 − 10β3 + 13β2 + 8β + 1)c21c

2
2

64(1 + β)2(1 + 2β)(1 + 3β)2(1 + 4β)

]

.

On grouping the suitable terms in (2.4), we have

H3,1(f) =
[ c4(c2 − c21)

16(1 + β)2(1 + 4β)
−

c3

16(1 + 3β)2

{

c3 −
(1 + β)

(1 + β)(1 + 2β)
c1c2

}

(2.5)
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+
(−4β2 + 4β + 1)c2(c4 − c22)

16(1 + 2β)3(1 + 4β)
−

c2

8(1 + 3β)2

{

c4 −
β(1− β)

(1 + β)(1 + 2β)
c1c3

}

+
(−8β4 − 10β3 + 13β2 + 8β + 1)c21c

2
2

64(1 + β)2(1 + 2β)(1 + 3β)2(1 + 4β)

+
(−36β4 + 12β3 + 29β2 + 10β + 1)c2c4

16(1 + 2β)3(1 + 3β)2(1 + 4β)

]

.

Applying the triangle inequality in (2.5), we obtain

|H3,1(f)| 6
[ |c4||c2 − c21|

16(1 + β)2(1 + 4β)
+

|c3|

16(1 + 3β)2

∣

∣

∣
c3 −

(1 + β)

(1 + β)(1 + 2β)
c1c2

∣

∣

∣
(2.6)

+
(−4β2 + 4β + 1)|c2||c4 − c22|

16(1 + 2β)3(1 + 4β)
+

|c2|

8(1 + 3β)2

∣

∣

∣
c4 −

β(1 − β)

(1 + β)(1 + 2β)
c1c3

∣

∣

∣

+
(−8β4 − 10β3 + 13β2 + 8β + 1)|c1|

2|c2|
2

64(1 + β)2(1 + 2β)(1 + 3β)2(1 + 4β)

+
(−36β4 + 12β3 + 29β2 + 10β + 1)|c2||c4|

16(1 + 2β)3(1 + 3β)2(1 + 4β)

]

.

By using Lemmas 1.1, 1.2 and 1.3 in inequality (2.6), it reduces to

|H3,1(f)| 6
[ 1

4(1 + β)2(1 + 4β)
+

1

4(1 + 3β)2
+

(−4β2 + 4β + 1)

4(1 + 2β)3(1 + 4β)

+
1

2(1 + 3β)2
+

(−8β4 − 10β3 + 13β2 + 8β + 1)

4(1 + β)2(1 + 2β)(1 + 3β)2(1 + 4β)

+
(−36β4 + 12β3 + 29β2 + 10β + 1)

4(1 + 2β)3(1 + 3β)2(1 + 4β)

]

.

Further simplification gives

�(2.7) |H3,1(f)| 6
[−8β6 + 240β5 + 734β4 + 782β3 + 377β2 + 84β + 7

4(1 + β)2(1 + 2β)3(1 + 3β)2(1 + 4β)

]

.

Remark 2.1. Choosing β = 0 in (1.4), we get S∗Ks(0) = S∗

s , for which from
(2.7), we obtain |H3,1(f)| 6

7
4 .

Remark 2.2. For β = 1 in (1.4), we obtain S∗Ks(1) = Ks, in this case from
(2.7), we get |H3,1(f)| 6

277
4320 .

These two results are far better than those in Vamshee Krishna et al. [19].

Theorem 2.2. If f ∈ S∗Ks(β) (0 6 β 6 1), then

|H2,3(f)| = |a3a5 − a24| 6
[ 1

(1 + 2β)(1 + 4β)

]

.

Proof. Putting the values of a3, a4 and a5 from (2.3) into H2,3(f), we get

H2,3(f) =
1

16

[ 2

(1 + 2β)(1 + 4β)
c2c4 +

1

(1 + 2β)(1 + 4β)
c32 −

1

(1 + 3β)2
c23
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−
1

4(1 + 3β)2
c21c

2
2 −

1

(1 + 3β)2
c1c2c3

]

,

which is equivalent to

H2,3(f) =
1

16

[ (c2c4 − c23)

(1 + 3β)2
+

c22
(1 + 2β)(1 + 4β)

{

c2 −
(1 + 2β)(1 + 4β)

4(1 + 3β)2
c21

}

+
c2

(1 + 2β)(1 + 4β)

{

c4 −
(1 + 2β)(1 + 4β)

(1 + 3β)2
c1c3

}

+
{ 1

(1 + 2β)(1 + 4β)
−

1

(1 + 3β)2

}

c2c4

]

,

Further, we have

H2,3(f) =
1

16

[ (c2c4 − c23)

(1 + 3β)2
+

c22
(1 + 2β)(1 + 4β)

{

c2 −
(1 + 2β)(1 + 4β)

4(1 + 3β)2
c21

}

+
c2

(1 + 2β)(1 + 4β)

{

c4 −
(1 + 2β)(1 + 4β)

(1 + 3β)2
c1c3

}

+

{

4β2

(1 + 2β)(1 + 3β)2(1 + 4β)

}

c2c4

]

.

Applying the same method as we carried in Theorem 2.1 and then using Lemmas
1.2, 1.3, and 1.4, we obtain the result of Theorem 2.2. �

Remark 2.3. Choosing β = 0 in Theorem 2.2, we obtain

|H2,3(f)| = |a3a5 − a24| 6 1,

it coincides with Zaprawa [21]. From this result, we conclude that the UB is the
same for the classes S∗Ks(0) = S∗

s and with a2 = 0 for the class S∗. The extremal
function at this stage is

f(z) =
z

1− z2
= z + z3 + z5 + · · · .

Remark 2.4. For β = 1 in Theorem 2.2, we get |H2,3(f)| = |a3a5 − a24| 6
1
15 ,

it coincides with that of Zaprawa [21]. From this result, we observe that the UB is
same for the classes S∗Ks(1) = Ks and with a2 = 0 for the class K. The extremal
function in this context is

f(z) = log

(

√

1 + z

1− z

)

= z +
1

3
z3 +

1

5
z5 + · · · .
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