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CLASSIFICATION OF VARIANTS

OF PARTIAL BRAUER MONOIDS

Ivana �ur�ev Brkovi¢

Abstrat. A variant of a semigroup S with respet to an element a ∈ S is

the semigroup Sa = (S, ⋆a), where x ⋆a y = xay for any x, y ∈ S. Here, a is

the sandwih element of Sa
. In this artile, we study variants of the partial

Brauer monoid PBn for n ∈ N. We give the lassi�ation of these variants in

the ase when the rank of the sandwih element is nonzero.

1. Introdution

The idea of a sandwih operation is a natural one in semigroup theory. Namely,

it arises in relation to Rees matrix semigroups, whih are the building bloks of �nite

semigroups. Sandwih semigroups - semigroups de�ned by suh an operation, �rst

appeared in Lyapin's 1960 monograph [37℄. However, it was not until the 1980's

that variants were named and investigated by Hikey [25,26℄. He used them to

provide a natural interpretation of the famed Nambooripad's partial order [48℄ on

a regular semigroup. In 2001, Khan and Lawson found another appliation: they

used variants as a means for introduing an alternative to the group of units in some

lasses of non-monoidal regular semigroups [34℄. This was followed by a number of

artiles on the topi of variants and sandwih semigroups [6,7,12�14,33,45,52�54℄,

and a hapter in the monograph [21℄. These results proved to be appliable in

other �elds as well, as sandwih operations naturally arise in representation theory

[22,47℄, ategory theory [46℄, topology [38,39℄, automata theory [4,5℄, lassial

groups [3℄, omputational algebra [18℄, and more.

In this artile, the theme of variants is ombined with another theme � par-

titions and diagrams (visual representations of partitions). Diagram ategories

and algebras are ubiquitous in representation theory [24,41℄, statistial mehan-

is [29,30,40,51℄, knot theory [27,28,31,32,49℄ and more. Due to their importane

and wide range of appliations, they have indued signi�ant interest, whih has

led to ineption of important ideas, suh as approahing diagram algebras via di-

agram monoids and twisted semigroup algebras [2,9,15,16,24,36,55℄. This was
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bene�ial for the theory of semigroups as well, as diagram monoids have interest-

ing strutural and ombinatorial properties. In terms of struture, they are losely

related to ertain transformation semigroups and are natural examples of regular

∗-semigroups. On the other hand, their ombinatorial struture opened new di-

retions for researh in the area of ombinatorial semigroup theory [9,11,19℄. In

partiular, partial Brauer algebras and monoids have reently reeived muh atten-

tion [1,9,11,17,20,23,35,42�44℄ and alongside their planar ounterparts, Motzkin

algebras and monoids, are an emerging topi in urrent researh e�orts.

Classi�ation of variants of a semigroup is a natural goal, one that presents

itself beause of the very de�nition of a variant. In 2003 and 2004 respetively,

Tsyaputa lassi�ed variants of the full transformation monoid over a �nite set Tn

[52℄, and its ounterpart ontaining partial maps, PTn [53℄. In 2018, Dolinka and

East lassi�ed sandwih semigroups of linear transformations [8℄, thereby overing

variants of Mn(F) (the semigroup of all n × n matries over a �eld F), as well.

Finally, in [12℄, the authors lassi�ed sandwih semigroups of Brauer diagrams,

whih inludes variants of the Brauer monoid Bn, as well. In this artile, we

ontinue the theme by onsidering variants of the partial Brauer monoid PBn. The

artile is organised as follows. In Setion 2, we introdue the notions and notation

needed for understanding the rest of the artile. In Setion 3, we present the

notions spei� to partitions and diagrams, and we develop a toolbox for dealing

with partial Brauer partitions. Setion 4 ontains the rux of the artile, where

we present the ombinatorial analysis from whih we infer the reurrene relation

desribing the number of L-lasses (R-lasses) in a regularD-lass of a variant PB
α
n .

Furthermore, in Lemma 4.4, we prove an inequality whih is vital for proving the

main result, Theorem 4.1, where we lassify the variants of the form PB
α
n, where

the sandwih element α has non-zero rank. The remaining ase, when the rank of

the sandwih element is zero, is onsidered in Setion 5.

2. Preliminaries

Let S be a semigroup. Reall that Green's preorders on S are de�ned, for

x, y ∈ S by

x 6R y ⇔ xS1 ⊆ yS1, x 6L y ⇔ S1x ⊆ S1y, x 6J y ⇔ S1xS1 ⊆ S1yS1,

where S1
is the monoid obtained from S by adjoining an identity element 1, if

neessary. Then, Green's relations of S are de�ned as follows: for K ∈ {R,L, J},
we de�ne K= 6K ∩ >K, and we ombine these to obtain H = R ∩ L and D =
R ◦ L = L ◦ R. These relations are learly equivalenes. For x ∈ S, and forK ∈ {R,
L,H,D, J}, let Kx denote the K-lass of S ontaining x.

For T ⊆ S, let E(T ) = {x ∈ T : x = x2} denote the set of all idempotents of

S that belong to T . An element x ∈ S is regular if x = xyx and y = yxy for some

y ∈ S, and Reg(S) denotes the set of all regular elements in S. It is well known

that for x ∈ Reg(S) we have Dx ⊆ Reg(S).
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It is easily seen that any semigroup homomorphism preserves Green's lasses

and maps idempotents to idempotents, as well as regular elements to regular ele-

ments. If S is a monoid with identity 1, let G(S) = {x ∈ S : (∃y ∈ S) xy = yx = 1}
denote the group of units of S.

Next, let S be a semigroup, and onsider the variant Sa = (S, ⋆a), where
x⋆a y = xay for x, y ∈ S. To avoid onfusion, we denote the Green's relations of Sa

by Ra
, La

, Ha
, Da

and Ja. Similarly, for eah K ∈ {R,L,H,D, J} and eah x ∈ S,
Ka

x denotes the Ka
-lass of Sa

ontaining x. As in [13℄, we de�ne the P-sets of Sa
:

P a
1 = {x ∈ S : xaRx} P a

3 = {x ∈ S : axa Jx}

P a
2 = {x ∈ S : axLx} P a = P a

1 ∩ P a
2

These sets shape the Green's lasses of Sa
, as proved in [8, Theorem 2.13℄ (the

partial semigroup in the proof is simply the semigroup S). We state the result for

onveniene.

Theorem 2.1. Let S be a semigroup with a ∈ S. In the variant Sa
, we have

(i) Ra
x =

{

Rx∩ P a
1 , if x ∈ P a

1

{x}, if x ∈ SrP a
1 ,

(ii) La
x =

{

Lx∩ P a
2 , if x ∈ P a

2

{x}, if x ∈ SrP a
2 ,

(iii) Ha
x =

{

Hx, if x ∈ P a

{x}, if x ∈ SrP a,

(iv) Da
x =















Dx∩ P a, if x ∈ P a

La
x, if x ∈ P a

2 rP a
1

Ra
x, if x ∈ P a

1 rP a
2

{x}, if x ∈ Sr(P a
1 ∪ P a

2 ),

(v) Ja
x =

{

Jx∩ P a
3 , if x ∈ P a

3

Da
x, if x ∈ SrP a

3 .

If x ∈ S r P a
, then Ha

x = {x} is a non-group Ha
-lass in Sa

.

3. Partial Brauer monoids

Let N = {0, 1, 2, . . .} denote the set of all natural numbers. For an integer n > 1
write [n] = {1, . . . , n}, and write [0] = ∅. For A ⊆ N, let A′ = {a′ : a ∈ A}. Now,
for n ∈ N, let PBn denote the set of all partitions of the set [n] ∪ [n]′ into bloks

of size at most 2. A partition α ∈ PBn may be visually presented in the form of a

diagram, onsisting of two rows of n verties orresponding the elements of [n] and
[n]′ (inreasing from left to right), where the vertex i is diretly above the vertex

i′, and the elements of the same blok are onneted by a line drawn inside the

retangle formed by these verties. In Figure 1, we present suh diagrams for the

partitions:

α = {{1, 5}, {2}, {3, 2′}, {4}, {6, 5′}, {7, 7′}, {1′, 6′}, {3′, 4′}} ∈ PB7,

β = {{1, 2}, {3, 2′}, {4}, {5, 7}, {6, 6′}, {1′, 3′}, {4′, 7′}, {5′}} ∈ PB7.

It is easily seen that the diagram representing a partial Brauer partition is unique in

terms of verties and edges it ontains (whih is not neessarily true for partitions

of other types). Note that we identify the elements of the symmetri group Sn with

the orresponding elements of the group of units G(PBn).
Bloks ontaining elements of both sets ([n] and [n]′) are alled transversals.

All other bloks are non-transversals. Non-singleton, non-transversal bloks are

alled hooks (upper or lower, if their elements belong to [n] or [n]′, respetively).
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The number of transversals in α is the rank of α, denoted rank(α). Further, for

α ∈ PBn, we de�ne the domain, odomain, kernel, okernel and the sets of all

nontransversal upper and lower bloks:

dom(α) = {x ∈ [n] : x belongs to a transversal of α},

codom(α) = {x ∈ [n] : x′
belongs to a transversal of α},

ker(α) = {(x, y) ∈ [n]× [n] : x and y belong to the same blok of α},

coker(α) = {(x, y) ∈ [n]× [n] : x′
and y′ belong to the same blok of α},

NU (α) = {X ∈ α : X is an upper non-transversal blok of α},

NL(α) = {X ∈ α : X ′
is a lower non-transversal blok of α}.

For example, in the partition α from Figure 1, we have rank(α) = 3, dom(α) =
{3, 6, 7}, codom(α) = {2, 5, 7}, and the non-trivial kernel lass (the only upper

hook) is {1, 5}, while the non-trivial okernel lasses (i.e., the lower hooks) are

{1, 6} and {3, 4}.
For n ∈ N and partitions α, β ∈ PBn, we de�ne the produt diagram Π(α, β)

in the following way:

• we modify the diagram representing α by renaming eah lower vertex

x′ ∈ [n]′ to x′′
, hene obtaining the graph α↓ on [n] ∪ [n]′′;

• we modify the diagram representing β by renaming eah upper vertex

x ∈ [n] to x′′
, hene obtaining the graph β↑

on [n]′′ ∪ [n];
• we identify the verties of the set [n]′′ in α↓ with the orresponding verties

of [n]′′ in β↑
, and obtain the graph Π(α, β).

Finally, the produt partition αβ of α and β is the partial Brauer partition on

[n]∪[n]′ de�ned in the following way: for distint i, j ∈ [n]∪[n]′ we have {i, j} ∈ αβ
if, and only if, verties i and j in Π(α, β) are onneted by a path. In Figure 1, we

provide an example illustrating this alulation.

α =

β =
−→ −→ = αβ

Figure 1. Multipliation of partitions α and β via the produt

diagram Π(α, β).

In addition to these standard notions, we will also need some novel ones, in

order to present our results e�etively. As in [12℄, we say an equivalene ε is a 1-
2-equivalene if eah ε-lass has size at most 2. We introdue a new term, tailored

to partial Brauer partitions. Let ε be an equivalene on a set T , and let X ⊆ T .
The pair (ε,X) is a PB-pair on T , if ε is a 1-2-equivalene, and eah element of

X belongs to a singleton ε-lass. Note that any PB-pair on [n] is a kernel-domain

pair (ker(α), dom(α)), for some α ∈ PBn (and similarly, there exists β ∈ PBn suh

that (coker(β), codom(β)) is the targeted pair). Thus, the elements of X are alled

the domain elements of the PB-pair, and |X | is the rank of the PB-pair.
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Let (ε1, X1) and (ε2, X2) be PB-pairs on a set T and onsider (ε1 ∨ ε2, Z),
where

Z = {(x, y) ∈ X1 ×X2 : x and y belong to the same lass of ε1 ∨ ε2}.

We say that (ε1 ∨ ε2, Z) is the join of the PB-pairs (ε1, X1) and (ε2, X2), and we

denote it (ε1, X1) ∨ (ε2, X2). Note that, in general, the join of two PB-pairs is not

a PB-pair. The set Z is alled the domain of the join, and |Z| is the rank of the

join, denoted rank((ε1, X1) ∨ (ε2, X2)). Note that the rank of the join does not

depend on the order of PB-pairs (in other words, the join (ε2, X2) ∨ (ε1, X1) has
the same rank). Furthermore, eah element of X1 (X2) ours in at most one pair

of Z, as ε1 and ε2 are 1-2-equivalenes, and elements of the domains belong to

singleton lasses of the orresponding equivalene. Just as a PB-pair represents a

half of some partition, the join of PB-pairs represents identifying verties in some

produt diagram (where ε1 ∨ ε2 is the resulting equivalene on the middle row and

Z ontains the terminal verties of the paths that will determine the transversals

of the produt).

To visually present a PB-pair (ε,X) on a �nite set T , we will use the same

tehnique as for diagrams. We arrange |T | verties in a row, and identify them with

the elements of T (if T = [n] for some n ∈ N, we arrange them in the asending

order). Then, elements belonging to the same ε-lass are onneted by a line drawn

above the verties. Finally, eah of the elements of the domain is the starting point

of an upward straight line. E�etively, it means drawing a half-diagram, as in

Figure 2.

Figure 2. A visual presentation of a PB-pair.

We may also visually present the join of two PB-pairs. This will orrespond to

the middle part of a produt diagram. Namely, in the join of the PB-pairs (ε1, X1)
and (ε2, X2) on a set T , the �rst PB-pair is drawn in the way desribed above and

the seond one is drawn on the same set of verties, but all the lines orresponding

to the ε2-onnetions and elements of X2 will be drawn below the verties, as in

Figure 3. Clearly, the elements of the domain of the join orrespond to the domain

Figure 3. A visual presentation of the join of two PB-pairs.

paths - paths onneting elements of X1 and X2 (inluding the trivial paths, as

well). Suh a path onnets an upward straight line and a downward straight line,

while the rest of the path is made up by hooks. In fat, suh a omponent of the
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graph is of form

(P)

u
ε2←−→ w1

ε1←−→ · · ·
ε2←−→ w2k−1

ε1←−→ v,

for some u ∈ X1, v ∈ X2, k > 1 and w1, . . . , w2k−1 ∈ [n],

(If u = v, we have a trivial domain path.) Note that all the verties w1, . . . , w2k−1

belong to a non-singleton ε1-lass and to a non-singleton ε2-lass.
This graphial onstrution is quite similar to graphs Λ(α) and Γα in [9℄ and

[10℄, respetively. In both ases the graph was to determine whether α is an

idempotent, whih boils down to whether rank(α2) = rank(α). Here, our graphs

will be used to determine if rank(αξ) = rank(α), whih is a more general problem.

In our disussion, we will rely on the notions and onlusions made here, even

without expliitly mentioning the visual presentations.

4. Variants of PBn

Let n ∈ N and let α ∈ PBn. Put r = rankα and onsider the variant PB
α
n .

In [12, Proposition 5.7℄ it was proved that

(4.1)

Pα
1 = {ξ ∈ PBn : rank(ξα) = rank(ξ)},

Pα
2 = {ξ ∈ PBn : rank(αξ) = rank(ξ)},

Reg(PBα
n) = Pα = Pα

3 = {ξ ∈ PBn : rank(ξα) = rank(αξ) = rank(ξ)}

= {ξ ∈ PBn : rank(αξα) = rank(ξ)}.

Furthermore, we have

Proposition 4.1. If ξ ∈ Pα = Reg(PBα
n), then

(i) Rα
ξ = Rξ ∩ Pα = {σ ∈ Pα : ker(σ) = ker(ξ), and dom(σ) = dom(ξ)},

(ii) Lα
ξ = Lξ∩Pα = {σ ∈ Pα : coker(σ) = coker(ξ), and codom(σ) = codom(ξ)},

(iii) Dα
ξ = Dξ ∩ Pα = {σ ∈ Pα : rank(σ) = rank(ξ)}.

Thus, the regular Jα = Dα
-lasses of PB

α
n are preisely the sets

Dα
k = Dk ∩ Pα = {ξ ∈ Pα : rank(ξ) = k} for eah 0 6 k 6 r.

These form a hain under the usual ordering of Jα-lasses: Dα
k 6 Dα

l ⇔ k 6 l.

Proof. Part (iii) follows from [12, Proposition 5.8℄. We prove only (i), as the

proof for (ii) is dual. Let ξ ∈ Pα
. Sine Rα

ξ ⊆ Dα
ξ ⊆ Reg(PBα

n) = Pα
, Theorem

2.1(i) gives

Rα
ξ = Rα

ξ ∩ Pα = Rξ ∩ Pα
1 ∩ Pα = Rξ ∩ Pα.

The last equality in (i) follows from [12, Theorem 4.9(iv)℄. The statement about

the regular Dα
-lasses was proved in [12, Proposition 5.8(i)℄. �

Now, we onsider a regular Dα
-lass, with the aim to alulate the number of

Lα
-lasses in it. Let 0 6 q 6 r = rank(α), and onsider an Lα

-lass in Dα
q . By

Lemma 4.1(ii), suh a lass is uniquely determined by the properties of the lower

row of its elements (the okernel-odomain ombination). If we want to enumerate

these lasses, we need to know whih okernel-odomain pairs our in elements of

Dα
q . Suh a pair is a PB-pair on [n] = {1, . . . , n}.



CLASSIFICATION OF VARIANTS OF PARTIAL BRAUER MONOIDS 7

In order to alulate the number of these PB-pairs, we will introdue additional

notation. For m ∈ N and 0 6 k 6 m with k ≡ m (mod 2), let us �x the equivalene
εm,k with lasses {1}, . . . , {k}, {k + 1, k + 2}, . . . , {m − 1,m}. Furthermore, for

m, k, t, q ∈ N, let µ(m, k, t, q) be the number of PB-pairs (η,X) suh that |X | = q
and rank((εm,k, [t])∨ (η,X)) = q. If the equivalene εm,k is unde�ned, or (εm,k, [t])
is not a PB-pair, we �x µ(m, k, t, q) = 0. Note that, by symmetry, µ(m, k, t, q) is also
the number of PB-pairs (η,X) suh that |X | = q and the rank of (η,X)∨ (εm,k, [t])
is q. Now, we may prove the following two lemmas.

Lemma 4.1. Let n ∈ N and α ∈ PBn. Put r = rankα and let k denote the

number of singleton lasses in ker(α). For 0 6 q 6 r, in the variant PB
α
n, we have

|Dα
q /L

α| = µ(n, k, r, q).

Proof. Let 0 6 q 6 r = rank(α). As we noted above, |Dα
q /L

α| is the number

of all PB-pairs on [n] that our as okernel-odomain pairs in the elements of

Dα
q . Let (η,X) be suh a PB-pair. Firstly, note that |X | = q, sine Dα

q ontains

only elements of rank q. Seondly, note that the join (η,X) ∨ (ker(α), dom(α))
has rank q. Let us elaborate. Sine η = coker(ξ) and X = codom(ξ) for some

ξ ∈ Pα ⊆ Pα
1 , from (4.1) follows rank(ξα) = rank(ξ), whih means that the join

(η,X) ∨ (ker(α), dom(α)) has rank |X |.
Thirdly, we show that eah PB-pair (η,X) on [n] suh that

(a) |X | = q, and (b) the join (η,X) ∨ (ker(α), dom(α)) has rank q,

ours as a okernel-odomain pair of an element from Dα
q . Let (η,X) be a PB-

pair on [n] that satis�es these requirements. Let β ∈ Dα
q , and onsider a partition

γ ∈ PBn with

ker(γ) = ker(β), dom(γ) = dom(β), and coker(γ) = η, codom(γ) = X.

(suh a partial Brauer partition learly exists). Then, the �rst two properties and

Proposition (4.1) imply γ ∈ Pα
2 (beause rank(αβ) = rank(β), so rank(αγ) =

rank(γ)). Similarly, the last two properties and (4.1) imply γ ∈ Pα
1 (beause

the join (η,X) ∨ (ker(α), dom(α)) has rank q). Thus, we have γ ∈ Pα
. Sine

rank(γ) = |X | = q, from Proposition 4.1 we dedue γ ∈ Dα
q .

We have proved that |Dα
q /L

α| is the number of all PB-pairs on [n] satisfying
(a) and (b). We laim that the number of suh pairs is µ(m, k, r, q). Reall that k
denotes the number of singletons in the partition orresponding ker(α). Note that
the PB-pairs (ker(α), dom(α)) and (εn,k, [r]) have equal ranks and their equivalenes
have the same number of singletons. Thus, there exists a bijetion φ ∈ Sn mapping

dom(α) to [r], and the lasses of ker(α) to the lasses of εn,k. Hene, for a PB-pair

(η,X) on [n] satisfying (a) and (b), we may de�ne a PB-pair (ηφ, Xφ) on [n] with
ηφ = {(xφ, yφ) : (x, y) ∈ η} and Xφ = {xφ : x ∈ X}. Sine φ maps dom(α) to [r],
and sine it maps the lasses of ker(α) to the lasses of εn,k, the rank of the join

(ηφ, Xφ)∨(εn,k, [r]) is q. It easily seen that (η,X) 7→ (ηφ, Xφ) is a bijetion mapping

PB-pairs on [n] satisfying (a) and (b) to PB-pairs on [n] of rank q suh that the

rank of their join with (εm,k, [r]) is q. Therefore, |Dα
q /L

α| = µ(m, k, r, q). �

Of ourse, the dual statement immediately follows:
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Lemma 4.2. Let n ∈ N and α ∈ PBn. Put r = rankα and let k denote the

number of singleton lasses in coker(α). For 0 6 q 6 r, in PB
α
n holds:

|Dα
q /R

α| = µ(n, k, r, q).

In the following lemma, we will prove a reurrene desribing the numbers

µ(m, k, r, q).

Lemma 4.3. For n, k, r, q ∈ N, the numbers µ(n, k, r, q) satisfy the following

reurrene:

(i) µ(n, k, r, q) = (n− k)µ(n− 2, k, r, q) + µ(n− 1, k − 1, r − 1, q − 1)

+ µ(n− 1, k − 1, r − 1, q) + (k − r)µ(n− 2, k − 2, r − 1, q)

+ (r − 1)µ(n− 2, k − 2, r − 2, q)

if n > k > r > q > 0 and n ≡ k (mod 2).

(ii) µ(n, k, r, 0) =
∑⌊n

2
⌋

i=0

(

n
2i

)

(2i− 1)!! if n > k > r and n ≡ k (mod 2).
(iiii) µ(n, k, r, q) = 0, otherwise.

Proof. Reall that, for n, k, r, q ∈ N, µ(n, k, r, q) is the number of PB-pairs

(η,X) suh that |X | = q and the rank of the join (εn,k, [r]) ∨ (η,X) is q. Consider
the PB-pair (εn,k, [r]). We may present it visually as in the example in Figure 2.

• If r > q > 0, onsider the element r. The question is: what role an be played

by this element in η? We have �ve ases:

Case 1: The element r is an element of X (the domain of our pair). Then, we

have hosen one of the q elements of X , so the remaining n−1 elements an

be onneted to onstrut a suitable PB-pair in λ(n− 1, k − 1, r − 1, q− 1)
ways.

Case 2: The element r is a member of a singleton η-lass, outside of X . Then,

the remaining n− 1 elements an be onneted to onstrut a suitable PB-

pair in λ(n− 1, k − 1, r − 1, q) ways.
Case 3: The element r is onneted to an element b belonging to a two-

element εn,k-lass (i.e., b ∈ {k + 1, . . . , n}). There are n− k suh elements.

In that ase, these three elements (r, b, and b's pair) may be onsidered as

a single domain element. This element and the remaining n − 3 elements

an be onneted to form a suitable PB-pair in λ(n− 2, k, r, q) ways.
Case 4: The element r is onneted to an element b, whih forms a singleton

εn,k-lass and is outside of [r] (i.e., b ∈ {r + 1, . . . , k}). There are k − r
suh elements. Then, the remaining n − 2 elements an be onneted to

onstrut a suitable PB-pair in λ(n− 2, k − 2, r − 1, q) ways.
Case 5: The element r is onneted to an element b, whih belongs to [r− 1].

Obviously, there are r−1 suh elements). Then, the remaining n−2 elements

an be onneted to onstrut a suitable PB-pair in λ(n− 2, k− 2, r− 2, q)
ways.

These ases are depited in Figure 4. We add up the values in these �ve ases,

and obtain the same reurrene as in the ase (i).

• If q = 0, we �x X = ∅, and ount all the possible 1-2-partitions of the set [n].
Note that the number of two-element lasses an be any number between 0
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and ⌊n
2
⌋. If there are i suh lasses, then the verties belonging to these lasses

an be hosen in

(

n
2i

)

ways (the remaining verties form singleton ε-lasses).
These 2i elements an be paired in (2i−1)!! ways. We obtain the same formula

as in the ase (ii).

• If r < q, there exists no PB-pair that an generate a q-domain join with

(εn,k, [r]). Thus, in this ase we have µ(n, k, r, q) = 0.
• If either n > k > r or n ≡ k (mod 2) is false, then these numbers do not

orrespond to any PB-pair, so in this ase we have µ(n, k, r, q) = 0. This ase
and the previous one orrespond to the part (iii).

So, the numbers µ(n, k, r, q) satisfy the stated reurrene, and the result follows. �

Figure 4. Cases 1�5 in the proof of Lemma 4.3. The onnetions

from εn,k are oloured blak, and those from η are oloured red.

Now, we investigate the properties of the numbers µ(n, k, r, q).

Lemma 4.4. Let n, k, r, q ∈ N with n > k > r > q > 1 and n ≡ k (mod 2). If

n > k + 2, then µ(n, k, r, q) > µ(n, k + 2, r, q).

Proof. Suppose n, k, r, q ∈ N satisfy all the assumptions of the lemma. Again,

reall that µ(n, k, r, q) is the number of PB-pairs (η,X) suh that:

(I) |X | = q and rank((εn,k, [r]) ∨ (η,X)) = q.

Similarly, µ(n, k + 2, r, q) is the number of PB-pairs (η,X) suh that:

(II) |X | = q and rank((εn,k+2, [r]) ∨ (η,X)) = q.

The PB pairs (εn,k, [r]) and (εn,k+2, [r]) are illustrated in Figure 5, using an exam-

ple.

Figure 5. PB-pairs (ε13,7, [4]) (left) and (ε13,9, [4]) (right). Note
that the only di�erene is the upper hook onneting 8 and 9
(oloured blue) in the �rst pair.

First, we will prove that all PB-pairs on [n] satisfying (II) also satisfy (I). Reall
from the disussion in Setion 3 that the domain elements of the join of two PB-

pairs orrespond to the paths onneting elements of their domains. Thus, in both

ases we onsider the domain paths onneting the elements of [r] and X . Hene,

these paths are of the form P, so none of them ontains elements that belong to

non-domain singletons in either of the fators. Let (η,X) be a PB-pair on [n]
satisfying (II). By the previous disussion, elements k + 1 and k + 2 do not belong

to any of these domain paths in the join (εn,k+2, [r]) ∨ (η,X). So, all the q domain

paths exist also in the join (εn,k, [r])∨ (η,X). Furthermore, the onnetion of k+1
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and k+2 in εn,k does not generate a new domain path in the join (εn,k, [r])∨(η,X),
as we have |X | = q and no element of X an appear in two domain paths, so the

join has at most q domain paths. Thus, we have µ(n, k, r, q) > µ(n, k + 2, r, q).
We need to prove the strit inequality. Consider the PB-pair (η,X), where

X = {1, . . . , q − 1, k + 2} and η is the equivalene on [n] with a unique non-trivial

lass {q, k+1}. It is easily seen that (η,X) is a PB-pair of rank q. In Figure 6, we

present the joins of (η,X) with εn,k and εn,k+2, respetively. Note that the ranks

Figure 6. The joins of PB-pairs (ε13,7, [4]) (left) and (ε13,9, [4])
(right) with the pair (η,X) in the ase q = 3. The onnetions

belonging to the PB-pairs (ε13,7, [4]) and (ε13,9, [4]) are oloured

blak, and those that belong to (η,X) are red.

of these joins are q and q − 1, respetively. Thus, the PB-pair (ξ, Y ) satis�es (I),
but not (II). Therefore, we may onlude that µ(n, k, r, q) > µ(n, k + 2, r, q). �

Note that Lemma 4.4 applies only in the ase when r > 1. Namely, it is false

when r = 0, sine Lemma 4.3(ii) implies that µ(n, k, r, 0) depends only on n. Thus,
the ase r = 0 will be disussed separately. In order to prove the lassi�ation

result for r > 1, we prove the following:

Lemma 4.5. Let n ∈ N, and let α, β ∈ PBn with rank(α) = rank(β). In

addition, write k and l for the number of singleton lasses in ker(α) and ker(β),
respetively. Similarly, write p and w for the number of singleton lasses in coker(α)

and coker(β), respetively. If k = l and p = w, then PB
α
n
∼= PB

β
n.

Proof. Suppose that k = l and p = w. From these equalities and rank(α) =
rank(β), we have β = π1απ2 for some permutations π1, π2 ∈ Sn = G(PBn). Then,

α 7→ π−1
2 απ−1

1 determines an isomorphism PB
α
n → PB

β
n. �

Now, we want to prove the lassi�ation result. In order to to that, we will

need the size of the underlying set of the variant PB
α
n . As in [12℄, we de�ne the

numbers a(k) by a(0) = a(1) = 1 and a(k) = a(k − 1) + (k − 1)a(k − 2) for k > 2.
It is easy to see that a(k) > 1 for all k ∈ N. Thus, a(k) > a(k − 1) for all k > 2.
In [12, Proposition 4.4℄ it was noted that |PBn| = a(2n).

Theorem 4.1. Let m,n ∈ N, and let α ∈ PBm and β ∈ PBn with r =
rank(α) > 1 and s = rank(β) > 1. In addition, write k and l for the number

of singleton lasses in ker(α) and ker(β), respetively. Similarly, write p and w
for the number of singleton lasses in coker(α) and coker(β), respetively. Then

PB
α
m
∼= PB

β
n if and only if m = n, k = l, p = w, and r = s.

Proof. The reverse impliation follows from Lemma 4.5.

Conversely, suppose that PB
α
m
∼= PB

β
n. As |PBm| = a(2m) and |PBn| = a(2n),

and N → N : x 7→ a(2x) is an inreasing funtion, we have m = n. Further,
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by Lemma 4.1, the variants PB
α
m and PB

β
n have r + 1 regular Dα

-lasses and

s+ 1 regular Dβ
-lasses, respetively. Sine isomorphisms preserve regularity and

Green's lasses, we have r = s. By Lemma 4.1, in variants PB
α
m and PB

β
n, for

q = r we have µ(n, k, r, r) = |Dα
r /L

α| and |Dβ
q /L

β | = µ(n, l, r, r), respetively.
Sine r > 1 and isomorphism preserves the number of these L-lasses, Lemma 4.4

gives k = l. Similarly, Lemma 4.2 and Lemma 4.4 give p = w. �

Remark 4.1. Note that, in the proof of Theorem 4.1, we have shown that

PB
α
m
∼= PB

β
n implies m = n and r = s (this part of the proof does not require the

assumption r, s > 1).

5. Sandwih element of rank zero

Our proof of the lassi�ation result does not apply in the ase when the sand-

wih element has rank 0. We onsider this ase separately. It is natural to expet

that the same riterion holds:

Hypothesis 5.1. Let n ∈ N, and let α, β ∈ PBn with rank(α) = rank(β) = 0.
In addition, write k and l for the number of singleton lasses in ker(α) and ker(β),
respetively. Similarly, write p and w for the number of singleton lasses in coker(α)

and coker(β), respetively. Then PB
α
n
∼= PB

β
n if and only if k = l and p = q.

The reverse impliation was proved in Lemma 4.5. However, for the diret

impliation, our previous approah does not work, sine we have µ(n, k, 0, 0) =
µ(n, l, 0, 0) even if k 6= l. Furthermore, sine rank(α) = rank(β) = 0, by (4.1) we

have

Pα
1 = Pα

2 = Pα = {σ ∈ PBn : rank(σ) = 0} = P β = P β
1 = P β

2 ,

whih is the unique regular Dα
- and Dβ

-lass in PB
α
n and PB

β
n, respetively. It

is easily seen that this set is a retangular band, where the sandwih operation

oinides with the original operation (for any sandwih element). Therefore, we

annot hope for any progress by onsidering the regular subsemigroup. In addition,

all the elements of PBn r Pα
form singleton Jα-lasses (Jβ-lasses), whih are

above the regular Dα = Jα-lass (Dβ = Jβ-lass), and no other pair of Jα-lasses

(Jβ-lasses) are related. For this reason, even if k 6= l, the 6J-struture of the

semigroups is the same.

In spite of these similarities, these variants are not neessarily isomorphi. To

show that, we need to onsider the Green's preorders 6Lα
and 6Rα

on PB
α
n. Sine

idn is the left- and right- identity for PBn, [12, Remark 3.8℄ gives

(5.1) σ 6Rα τ ⇔ σ 6R τα and σ 6Rβ τ ⇔ σ 6R τβ,

for σ ∈ Pα
1 = Pα = P β = P β

1 and τ ∈ PBn. From [43, Theorem 8℄ follows the

haraterization of relation 6R in PBn:

(5.2) σ 6R τ ⇔ NU (σ) ⊇ NU (τ)

for σ, τ ∈ PBn. Now, we provide a simple example in whih the di�erene in the

ase k 6= l is easily seen:
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Example 5.1. Let n = 2 and onsider α = and β = . Then, k = 2, l = 0

and p = w = 0. Using (5.1) and (5.2), one an easily verify that Figure 7 depits

the 6Rα
-relations and 6Rβ -relations in PB

α
2 and PB

β
2 , respetively. Sine isomor-

phisms preserve Green's preorders and Green's lasses, we learly have PB
α
2 6∼= PB

β
2 .

Figure 7. The relations among the Rα
-lasses of PB

α
2 (left) and

the relations among the Rβ
-lasses of PB

β
2 (right).

Thus, in order to prove Hypothesis 5.1, one should onsider the distribution of

non-regular Rα
-lasses above the regular ones and symmetrially, the distribution

of non-regular Lα
-lasses above the regular ones.

We give an additional result whih might prove useful in this diretion of in-

vestigation. Reall from [50℄ that a semigroup S is an in�ation of a semigroup T if

T is a subsemigroup of S and there exists a mapping φ : S → T suh that φ(σ) = σ
for σ ∈ T and στ = φ(σ)φ(τ) for σ, τ ∈ S.

Now, we may prove:

Proposition 5.1. Let n ∈ N and let α ∈ PBn with rank(α) = 0. Then, the

variant PB
α
n is the in�ation of the retangular band

(5.3) Reg(PBα
n) = Pα = {σ ∈ PBn : rank(σ) = 0}

along the map φ : PBn → Pα : ξ 7→ ξαξ.

Proof. From the disussion following Hypothesis 5.1 we have (5.3) and it

follows that Pα
is a subsemigroup of PB

α
n. Furthermore, sine rank(α) = 0, it is

easily seen that σασ = σ for any σ ∈ Pα
, and ατα = α for any τ ∈ PBn. Thus, for

σ, τ ∈ PBn we have φ(σ)⋆αφ(τ) = (σασ)α(τατ) = σ(ασατα)τ = σατ = σ⋆ατ. �

It is easily seen that any isomorphism of variants preserves the sizes of the

pre-images under φ of the elements of Pα
. Thus, if variants PB

α
n and PB

β
n have

di�erent sets, ounted with multipliities, of sizes of pre-images under φα : ξ 7→ ξ⋆αξ
and φβ : ξ 7→ ξ ⋆β ξ, respetively, of the set Pα = P β

, they are non-isomorphi.

However, the reverse impliation does not hold. Namely, in Example 5.1, both PB
α
n

and PB
β
n have the same set of sizes of the pre-images under φα and φβ , respetively,

{1, 1, 3, 5}, but are proved to be non-isomorphi.
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