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CLASSIFICATION OF VARIANTS

OF PARTIAL BRAUER MONOIDS

Ivana �ur�ev Brkovi¢

Abstra
t. A variant of a semigroup S with respe
t to an element a ∈ S is

the semigroup Sa = (S, ⋆a), where x ⋆a y = xay for any x, y ∈ S. Here, a is

the sandwi
h element of Sa
. In this arti
le, we study variants of the partial

Brauer monoid PBn for n ∈ N. We give the 
lassi�
ation of these variants in

the 
ase when the rank of the sandwi
h element is nonzero.

1. Introdu
tion

The idea of a sandwi
h operation is a natural one in semigroup theory. Namely,

it arises in relation to Rees matrix semigroups, whi
h are the building blo
ks of �nite

semigroups. Sandwi
h semigroups - semigroups de�ned by su
h an operation, �rst

appeared in Lyapin's 1960 monograph [37℄. However, it was not until the 1980's

that variants were named and investigated by Hi
key [25,26℄. He used them to

provide a natural interpretation of the famed Nambooripad's partial order [48℄ on

a regular semigroup. In 2001, Khan and Lawson found another appli
ation: they

used variants as a means for introdu
ing an alternative to the group of units in some


lasses of non-monoidal regular semigroups [34℄. This was followed by a number of

arti
les on the topi
 of variants and sandwi
h semigroups [6,7,12�14,33,45,52�54℄,

and a 
hapter in the monograph [21℄. These results proved to be appli
able in

other �elds as well, as sandwi
h operations naturally arise in representation theory

[22,47℄, 
ategory theory [46℄, topology [38,39℄, automata theory [4,5℄, 
lassi
al

groups [3℄, 
omputational algebra [18℄, and more.

In this arti
le, the theme of variants is 
ombined with another theme � par-

titions and diagrams (visual representations of partitions). Diagram 
ategories

and algebras are ubiquitous in representation theory [24,41℄, statisti
al me
han-

i
s [29,30,40,51℄, knot theory [27,28,31,32,49℄ and more. Due to their importan
e

and wide range of appli
ations, they have indu
ed signi�
ant interest, whi
h has

led to in
eption of important ideas, su
h as approa
hing diagram algebras via di-

agram monoids and twisted semigroup algebras [2,9,15,16,24,36,55℄. This was
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bene�
ial for the theory of semigroups as well, as diagram monoids have interest-

ing stru
tural and 
ombinatorial properties. In terms of stru
ture, they are 
losely

related to 
ertain transformation semigroups and are natural examples of regular

∗-semigroups. On the other hand, their 
ombinatorial stru
ture opened new di-

re
tions for resear
h in the area of 
ombinatorial semigroup theory [9,11,19℄. In

parti
ular, partial Brauer algebras and monoids have re
ently re
eived mu
h atten-

tion [1,9,11,17,20,23,35,42�44℄ and alongside their planar 
ounterparts, Motzkin

algebras and monoids, are an emerging topi
 in 
urrent resear
h e�orts.

Classi�
ation of variants of a semigroup is a natural goal, one that presents

itself be
ause of the very de�nition of a variant. In 2003 and 2004 respe
tively,

Tsyaputa 
lassi�ed variants of the full transformation monoid over a �nite set Tn

[52℄, and its 
ounterpart 
ontaining partial maps, PTn [53℄. In 2018, Dolinka and

East 
lassi�ed sandwi
h semigroups of linear transformations [8℄, thereby 
overing

variants of Mn(F) (the semigroup of all n × n matri
es over a �eld F), as well.

Finally, in [12℄, the authors 
lassi�ed sandwi
h semigroups of Brauer diagrams,

whi
h in
ludes variants of the Brauer monoid Bn, as well. In this arti
le, we


ontinue the theme by 
onsidering variants of the partial Brauer monoid PBn. The

arti
le is organised as follows. In Se
tion 2, we introdu
e the notions and notation

needed for understanding the rest of the arti
le. In Se
tion 3, we present the

notions spe
i�
 to partitions and diagrams, and we develop a toolbox for dealing

with partial Brauer partitions. Se
tion 4 
ontains the 
rux of the arti
le, where

we present the 
ombinatorial analysis from whi
h we infer the re
urren
e relation

des
ribing the number of L-
lasses (R-
lasses) in a regularD-
lass of a variant PB
α
n .

Furthermore, in Lemma 4.4, we prove an inequality whi
h is vital for proving the

main result, Theorem 4.1, where we 
lassify the variants of the form PB
α
n, where

the sandwi
h element α has non-zero rank. The remaining 
ase, when the rank of

the sandwi
h element is zero, is 
onsidered in Se
tion 5.

2. Preliminaries

Let S be a semigroup. Re
all that Green's preorders on S are de�ned, for

x, y ∈ S by

x 6R y ⇔ xS1 ⊆ yS1, x 6L y ⇔ S1x ⊆ S1y, x 6J y ⇔ S1xS1 ⊆ S1yS1,

where S1
is the monoid obtained from S by adjoining an identity element 1, if

ne
essary. Then, Green's relations of S are de�ned as follows: for K ∈ {R,L, J},
we de�ne K= 6K ∩ >K, and we 
ombine these to obtain H = R ∩ L and D =
R ◦ L = L ◦ R. These relations are 
learly equivalen
es. For x ∈ S, and forK ∈ {R,
L,H,D, J}, let Kx denote the K-
lass of S 
ontaining x.

For T ⊆ S, let E(T ) = {x ∈ T : x = x2} denote the set of all idempotents of

S that belong to T . An element x ∈ S is regular if x = xyx and y = yxy for some

y ∈ S, and Reg(S) denotes the set of all regular elements in S. It is well known

that for x ∈ Reg(S) we have Dx ⊆ Reg(S).
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It is easily seen that any semigroup homomorphism preserves Green's 
lasses

and maps idempotents to idempotents, as well as regular elements to regular ele-

ments. If S is a monoid with identity 1, let G(S) = {x ∈ S : (∃y ∈ S) xy = yx = 1}
denote the group of units of S.

Next, let S be a semigroup, and 
onsider the variant Sa = (S, ⋆a), where
x⋆a y = xay for x, y ∈ S. To avoid 
onfusion, we denote the Green's relations of Sa

by Ra
, La

, Ha
, Da

and Ja. Similarly, for ea
h K ∈ {R,L,H,D, J} and ea
h x ∈ S,
Ka

x denotes the Ka
-
lass of Sa


ontaining x. As in [13℄, we de�ne the P-sets of Sa
:

P a
1 = {x ∈ S : xaRx} P a

3 = {x ∈ S : axa Jx}

P a
2 = {x ∈ S : axLx} P a = P a

1 ∩ P a
2

These sets shape the Green's 
lasses of Sa
, as proved in [8, Theorem 2.13℄ (the

partial semigroup in the proof is simply the semigroup S). We state the result for


onvenien
e.

Theorem 2.1. Let S be a semigroup with a ∈ S. In the variant Sa
, we have

(i) Ra
x =

{

Rx∩ P a
1 , if x ∈ P a

1

{x}, if x ∈ SrP a
1 ,

(ii) La
x =

{

Lx∩ P a
2 , if x ∈ P a

2

{x}, if x ∈ SrP a
2 ,

(iii) Ha
x =

{

Hx, if x ∈ P a

{x}, if x ∈ SrP a,

(iv) Da
x =















Dx∩ P a, if x ∈ P a

La
x, if x ∈ P a

2 rP a
1

Ra
x, if x ∈ P a

1 rP a
2

{x}, if x ∈ Sr(P a
1 ∪ P a

2 ),

(v) Ja
x =

{

Jx∩ P a
3 , if x ∈ P a

3

Da
x, if x ∈ SrP a

3 .

If x ∈ S r P a
, then Ha

x = {x} is a non-group Ha
-
lass in Sa

.

3. Partial Brauer monoids

Let N = {0, 1, 2, . . .} denote the set of all natural numbers. For an integer n > 1
write [n] = {1, . . . , n}, and write [0] = ∅. For A ⊆ N, let A′ = {a′ : a ∈ A}. Now,
for n ∈ N, let PBn denote the set of all partitions of the set [n] ∪ [n]′ into blo
ks

of size at most 2. A partition α ∈ PBn may be visually presented in the form of a

diagram, 
onsisting of two rows of n verti
es 
orresponding the elements of [n] and
[n]′ (in
reasing from left to right), where the vertex i is dire
tly above the vertex

i′, and the elements of the same blo
k are 
onne
ted by a line drawn inside the

re
tangle formed by these verti
es. In Figure 1, we present su
h diagrams for the

partitions:

α = {{1, 5}, {2}, {3, 2′}, {4}, {6, 5′}, {7, 7′}, {1′, 6′}, {3′, 4′}} ∈ PB7,

β = {{1, 2}, {3, 2′}, {4}, {5, 7}, {6, 6′}, {1′, 3′}, {4′, 7′}, {5′}} ∈ PB7.

It is easily seen that the diagram representing a partial Brauer partition is unique in

terms of verti
es and edges it 
ontains (whi
h is not ne
essarily true for partitions

of other types). Note that we identify the elements of the symmetri
 group Sn with

the 
orresponding elements of the group of units G(PBn).
Blo
ks 
ontaining elements of both sets ([n] and [n]′) are 
alled transversals.

All other blo
ks are non-transversals. Non-singleton, non-transversal blo
ks are


alled hooks (upper or lower, if their elements belong to [n] or [n]′, respe
tively).
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The number of transversals in α is the rank of α, denoted rank(α). Further, for

α ∈ PBn, we de�ne the domain, 
odomain, kernel, 
okernel and the sets of all

nontransversal upper and lower blo
ks:

dom(α) = {x ∈ [n] : x belongs to a transversal of α},

codom(α) = {x ∈ [n] : x′
belongs to a transversal of α},

ker(α) = {(x, y) ∈ [n]× [n] : x and y belong to the same blo
k of α},

coker(α) = {(x, y) ∈ [n]× [n] : x′
and y′ belong to the same blo
k of α},

NU (α) = {X ∈ α : X is an upper non-transversal blo
k of α},

NL(α) = {X ∈ α : X ′
is a lower non-transversal blo
k of α}.

For example, in the partition α from Figure 1, we have rank(α) = 3, dom(α) =
{3, 6, 7}, codom(α) = {2, 5, 7}, and the non-trivial kernel 
lass (the only upper

hook) is {1, 5}, while the non-trivial 
okernel 
lasses (i.e., the lower hooks) are

{1, 6} and {3, 4}.
For n ∈ N and partitions α, β ∈ PBn, we de�ne the produ
t diagram Π(α, β)

in the following way:

• we modify the diagram representing α by renaming ea
h lower vertex

x′ ∈ [n]′ to x′′
, hen
e obtaining the graph α↓ on [n] ∪ [n]′′;

• we modify the diagram representing β by renaming ea
h upper vertex

x ∈ [n] to x′′
, hen
e obtaining the graph β↑

on [n]′′ ∪ [n];
• we identify the verti
es of the set [n]′′ in α↓ with the 
orresponding verti
es

of [n]′′ in β↑
, and obtain the graph Π(α, β).

Finally, the produ
t partition αβ of α and β is the partial Brauer partition on

[n]∪[n]′ de�ned in the following way: for distin
t i, j ∈ [n]∪[n]′ we have {i, j} ∈ αβ
if, and only if, verti
es i and j in Π(α, β) are 
onne
ted by a path. In Figure 1, we

provide an example illustrating this 
al
ulation.

α =

β =
−→ −→ = αβ

Figure 1. Multipli
ation of partitions α and β via the produ
t

diagram Π(α, β).

In addition to these standard notions, we will also need some novel ones, in

order to present our results e�e
tively. As in [12℄, we say an equivalen
e ε is a 1-
2-equivalen
e if ea
h ε-
lass has size at most 2. We introdu
e a new term, tailored

to partial Brauer partitions. Let ε be an equivalen
e on a set T , and let X ⊆ T .
The pair (ε,X) is a PB-pair on T , if ε is a 1-2-equivalen
e, and ea
h element of

X belongs to a singleton ε-
lass. Note that any PB-pair on [n] is a kernel-domain

pair (ker(α), dom(α)), for some α ∈ PBn (and similarly, there exists β ∈ PBn su
h

that (coker(β), codom(β)) is the targeted pair). Thus, the elements of X are 
alled

the domain elements of the PB-pair, and |X | is the rank of the PB-pair.
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Let (ε1, X1) and (ε2, X2) be PB-pairs on a set T and 
onsider (ε1 ∨ ε2, Z),
where

Z = {(x, y) ∈ X1 ×X2 : x and y belong to the same 
lass of ε1 ∨ ε2}.

We say that (ε1 ∨ ε2, Z) is the join of the PB-pairs (ε1, X1) and (ε2, X2), and we

denote it (ε1, X1) ∨ (ε2, X2). Note that, in general, the join of two PB-pairs is not

a PB-pair. The set Z is 
alled the domain of the join, and |Z| is the rank of the

join, denoted rank((ε1, X1) ∨ (ε2, X2)). Note that the rank of the join does not

depend on the order of PB-pairs (in other words, the join (ε2, X2) ∨ (ε1, X1) has
the same rank). Furthermore, ea
h element of X1 (X2) o

urs in at most one pair

of Z, as ε1 and ε2 are 1-2-equivalen
es, and elements of the domains belong to

singleton 
lasses of the 
orresponding equivalen
e. Just as a PB-pair represents a

half of some partition, the join of PB-pairs represents identifying verti
es in some

produ
t diagram (where ε1 ∨ ε2 is the resulting equivalen
e on the middle row and

Z 
ontains the terminal verti
es of the paths that will determine the transversals

of the produ
t).

To visually present a PB-pair (ε,X) on a �nite set T , we will use the same

te
hnique as for diagrams. We arrange |T | verti
es in a row, and identify them with

the elements of T (if T = [n] for some n ∈ N, we arrange them in the as
ending

order). Then, elements belonging to the same ε-
lass are 
onne
ted by a line drawn

above the verti
es. Finally, ea
h of the elements of the domain is the starting point

of an upward straight line. E�e
tively, it means drawing a half-diagram, as in

Figure 2.

Figure 2. A visual presentation of a PB-pair.

We may also visually present the join of two PB-pairs. This will 
orrespond to

the middle part of a produ
t diagram. Namely, in the join of the PB-pairs (ε1, X1)
and (ε2, X2) on a set T , the �rst PB-pair is drawn in the way des
ribed above and

the se
ond one is drawn on the same set of verti
es, but all the lines 
orresponding

to the ε2-
onne
tions and elements of X2 will be drawn below the verti
es, as in

Figure 3. Clearly, the elements of the domain of the join 
orrespond to the domain

Figure 3. A visual presentation of the join of two PB-pairs.

paths - paths 
onne
ting elements of X1 and X2 (in
luding the trivial paths, as

well). Su
h a path 
onne
ts an upward straight line and a downward straight line,

while the rest of the path is made up by hooks. In fa
t, su
h a 
omponent of the
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graph is of form

(P)

u
ε2←−→ w1

ε1←−→ · · ·
ε2←−→ w2k−1

ε1←−→ v,

for some u ∈ X1, v ∈ X2, k > 1 and w1, . . . , w2k−1 ∈ [n],

(If u = v, we have a trivial domain path.) Note that all the verti
es w1, . . . , w2k−1

belong to a non-singleton ε1-
lass and to a non-singleton ε2-
lass.
This graphi
al 
onstru
tion is quite similar to graphs Λ(α) and Γα in [9℄ and

[10℄, respe
tively. In both 
ases the graph was to determine whether α is an

idempotent, whi
h boils down to whether rank(α2) = rank(α). Here, our graphs

will be used to determine if rank(αξ) = rank(α), whi
h is a more general problem.

In our dis
ussion, we will rely on the notions and 
on
lusions made here, even

without expli
itly mentioning the visual presentations.

4. Variants of PBn

Let n ∈ N and let α ∈ PBn. Put r = rankα and 
onsider the variant PB
α
n .

In [12, Proposition 5.7℄ it was proved that

(4.1)

Pα
1 = {ξ ∈ PBn : rank(ξα) = rank(ξ)},

Pα
2 = {ξ ∈ PBn : rank(αξ) = rank(ξ)},

Reg(PBα
n) = Pα = Pα

3 = {ξ ∈ PBn : rank(ξα) = rank(αξ) = rank(ξ)}

= {ξ ∈ PBn : rank(αξα) = rank(ξ)}.

Furthermore, we have

Proposition 4.1. If ξ ∈ Pα = Reg(PBα
n), then

(i) Rα
ξ = Rξ ∩ Pα = {σ ∈ Pα : ker(σ) = ker(ξ), and dom(σ) = dom(ξ)},

(ii) Lα
ξ = Lξ∩Pα = {σ ∈ Pα : coker(σ) = coker(ξ), and codom(σ) = codom(ξ)},

(iii) Dα
ξ = Dξ ∩ Pα = {σ ∈ Pα : rank(σ) = rank(ξ)}.

Thus, the regular Jα = Dα
-
lasses of PB

α
n are pre
isely the sets

Dα
k = Dk ∩ Pα = {ξ ∈ Pα : rank(ξ) = k} for ea
h 0 6 k 6 r.

These form a 
hain under the usual ordering of Jα-
lasses: Dα
k 6 Dα

l ⇔ k 6 l.

Proof. Part (iii) follows from [12, Proposition 5.8℄. We prove only (i), as the

proof for (ii) is dual. Let ξ ∈ Pα
. Sin
e Rα

ξ ⊆ Dα
ξ ⊆ Reg(PBα

n) = Pα
, Theorem

2.1(i) gives

Rα
ξ = Rα

ξ ∩ Pα = Rξ ∩ Pα
1 ∩ Pα = Rξ ∩ Pα.

The last equality in (i) follows from [12, Theorem 4.9(iv)℄. The statement about

the regular Dα
-
lasses was proved in [12, Proposition 5.8(i)℄. �

Now, we 
onsider a regular Dα
-
lass, with the aim to 
al
ulate the number of

Lα
-
lasses in it. Let 0 6 q 6 r = rank(α), and 
onsider an Lα

-
lass in Dα
q . By

Lemma 4.1(ii), su
h a 
lass is uniquely determined by the properties of the lower

row of its elements (the 
okernel-
odomain 
ombination). If we want to enumerate

these 
lasses, we need to know whi
h 
okernel-
odomain pairs o

ur in elements of

Dα
q . Su
h a pair is a PB-pair on [n] = {1, . . . , n}.
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In order to 
al
ulate the number of these PB-pairs, we will introdu
e additional

notation. For m ∈ N and 0 6 k 6 m with k ≡ m (mod 2), let us �x the equivalen
e
εm,k with 
lasses {1}, . . . , {k}, {k + 1, k + 2}, . . . , {m − 1,m}. Furthermore, for

m, k, t, q ∈ N, let µ(m, k, t, q) be the number of PB-pairs (η,X) su
h that |X | = q
and rank((εm,k, [t])∨ (η,X)) = q. If the equivalen
e εm,k is unde�ned, or (εm,k, [t])
is not a PB-pair, we �x µ(m, k, t, q) = 0. Note that, by symmetry, µ(m, k, t, q) is also
the number of PB-pairs (η,X) su
h that |X | = q and the rank of (η,X)∨ (εm,k, [t])
is q. Now, we may prove the following two lemmas.

Lemma 4.1. Let n ∈ N and α ∈ PBn. Put r = rankα and let k denote the

number of singleton 
lasses in ker(α). For 0 6 q 6 r, in the variant PB
α
n, we have

|Dα
q /L

α| = µ(n, k, r, q).

Proof. Let 0 6 q 6 r = rank(α). As we noted above, |Dα
q /L

α| is the number

of all PB-pairs on [n] that o

ur as 
okernel-
odomain pairs in the elements of

Dα
q . Let (η,X) be su
h a PB-pair. Firstly, note that |X | = q, sin
e Dα

q 
ontains

only elements of rank q. Se
ondly, note that the join (η,X) ∨ (ker(α), dom(α))
has rank q. Let us elaborate. Sin
e η = coker(ξ) and X = codom(ξ) for some

ξ ∈ Pα ⊆ Pα
1 , from (4.1) follows rank(ξα) = rank(ξ), whi
h means that the join

(η,X) ∨ (ker(α), dom(α)) has rank |X |.
Thirdly, we show that ea
h PB-pair (η,X) on [n] su
h that

(a) |X | = q, and (b) the join (η,X) ∨ (ker(α), dom(α)) has rank q,

o

urs as a 
okernel-
odomain pair of an element from Dα
q . Let (η,X) be a PB-

pair on [n] that satis�es these requirements. Let β ∈ Dα
q , and 
onsider a partition

γ ∈ PBn with

ker(γ) = ker(β), dom(γ) = dom(β), and coker(γ) = η, codom(γ) = X.

(su
h a partial Brauer partition 
learly exists). Then, the �rst two properties and

Proposition (4.1) imply γ ∈ Pα
2 (be
ause rank(αβ) = rank(β), so rank(αγ) =

rank(γ)). Similarly, the last two properties and (4.1) imply γ ∈ Pα
1 (be
ause

the join (η,X) ∨ (ker(α), dom(α)) has rank q). Thus, we have γ ∈ Pα
. Sin
e

rank(γ) = |X | = q, from Proposition 4.1 we dedu
e γ ∈ Dα
q .

We have proved that |Dα
q /L

α| is the number of all PB-pairs on [n] satisfying
(a) and (b). We 
laim that the number of su
h pairs is µ(m, k, r, q). Re
all that k
denotes the number of singletons in the partition 
orresponding ker(α). Note that
the PB-pairs (ker(α), dom(α)) and (εn,k, [r]) have equal ranks and their equivalen
es
have the same number of singletons. Thus, there exists a bije
tion φ ∈ Sn mapping

dom(α) to [r], and the 
lasses of ker(α) to the 
lasses of εn,k. Hen
e, for a PB-pair

(η,X) on [n] satisfying (a) and (b), we may de�ne a PB-pair (ηφ, Xφ) on [n] with
ηφ = {(xφ, yφ) : (x, y) ∈ η} and Xφ = {xφ : x ∈ X}. Sin
e φ maps dom(α) to [r],
and sin
e it maps the 
lasses of ker(α) to the 
lasses of εn,k, the rank of the join

(ηφ, Xφ)∨(εn,k, [r]) is q. It easily seen that (η,X) 7→ (ηφ, Xφ) is a bije
tion mapping

PB-pairs on [n] satisfying (a) and (b) to PB-pairs on [n] of rank q su
h that the

rank of their join with (εm,k, [r]) is q. Therefore, |Dα
q /L

α| = µ(m, k, r, q). �

Of 
ourse, the dual statement immediately follows:
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Lemma 4.2. Let n ∈ N and α ∈ PBn. Put r = rankα and let k denote the

number of singleton 
lasses in coker(α). For 0 6 q 6 r, in PB
α
n holds:

|Dα
q /R

α| = µ(n, k, r, q).

In the following lemma, we will prove a re
urren
e des
ribing the numbers

µ(m, k, r, q).

Lemma 4.3. For n, k, r, q ∈ N, the numbers µ(n, k, r, q) satisfy the following

re
urren
e:

(i) µ(n, k, r, q) = (n− k)µ(n− 2, k, r, q) + µ(n− 1, k − 1, r − 1, q − 1)

+ µ(n− 1, k − 1, r − 1, q) + (k − r)µ(n− 2, k − 2, r − 1, q)

+ (r − 1)µ(n− 2, k − 2, r − 2, q)

if n > k > r > q > 0 and n ≡ k (mod 2).

(ii) µ(n, k, r, 0) =
∑⌊n

2
⌋

i=0

(

n
2i

)

(2i− 1)!! if n > k > r and n ≡ k (mod 2).
(iiii) µ(n, k, r, q) = 0, otherwise.

Proof. Re
all that, for n, k, r, q ∈ N, µ(n, k, r, q) is the number of PB-pairs

(η,X) su
h that |X | = q and the rank of the join (εn,k, [r]) ∨ (η,X) is q. Consider
the PB-pair (εn,k, [r]). We may present it visually as in the example in Figure 2.

• If r > q > 0, 
onsider the element r. The question is: what role 
an be played

by this element in η? We have �ve 
ases:

Case 1: The element r is an element of X (the domain of our pair). Then, we

have 
hosen one of the q elements of X , so the remaining n−1 elements 
an

be 
onne
ted to 
onstru
t a suitable PB-pair in λ(n− 1, k − 1, r − 1, q− 1)
ways.

Case 2: The element r is a member of a singleton η-
lass, outside of X . Then,

the remaining n− 1 elements 
an be 
onne
ted to 
onstru
t a suitable PB-

pair in λ(n− 1, k − 1, r − 1, q) ways.
Case 3: The element r is 
onne
ted to an element b belonging to a two-

element εn,k-
lass (i.e., b ∈ {k + 1, . . . , n}). There are n− k su
h elements.

In that 
ase, these three elements (r, b, and b's pair) may be 
onsidered as

a single domain element. This element and the remaining n − 3 elements


an be 
onne
ted to form a suitable PB-pair in λ(n− 2, k, r, q) ways.
Case 4: The element r is 
onne
ted to an element b, whi
h forms a singleton

εn,k-
lass and is outside of [r] (i.e., b ∈ {r + 1, . . . , k}). There are k − r
su
h elements. Then, the remaining n − 2 elements 
an be 
onne
ted to


onstru
t a suitable PB-pair in λ(n− 2, k − 2, r − 1, q) ways.
Case 5: The element r is 
onne
ted to an element b, whi
h belongs to [r− 1].

Obviously, there are r−1 su
h elements). Then, the remaining n−2 elements


an be 
onne
ted to 
onstru
t a suitable PB-pair in λ(n− 2, k− 2, r− 2, q)
ways.

These 
ases are depi
ted in Figure 4. We add up the values in these �ve 
ases,

and obtain the same re
urren
e as in the 
ase (i).

• If q = 0, we �x X = ∅, and 
ount all the possible 1-2-partitions of the set [n].
Note that the number of two-element 
lasses 
an be any number between 0
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and ⌊n
2
⌋. If there are i su
h 
lasses, then the verti
es belonging to these 
lasses


an be 
hosen in

(

n
2i

)

ways (the remaining verti
es form singleton ε-
lasses).
These 2i elements 
an be paired in (2i−1)!! ways. We obtain the same formula

as in the 
ase (ii).

• If r < q, there exists no PB-pair that 
an generate a q-domain join with

(εn,k, [r]). Thus, in this 
ase we have µ(n, k, r, q) = 0.
• If either n > k > r or n ≡ k (mod 2) is false, then these numbers do not


orrespond to any PB-pair, so in this 
ase we have µ(n, k, r, q) = 0. This 
ase
and the previous one 
orrespond to the part (iii).

So, the numbers µ(n, k, r, q) satisfy the stated re
urren
e, and the result follows. �

Figure 4. Cases 1�5 in the proof of Lemma 4.3. The 
onne
tions

from εn,k are 
oloured bla
k, and those from η are 
oloured red.

Now, we investigate the properties of the numbers µ(n, k, r, q).

Lemma 4.4. Let n, k, r, q ∈ N with n > k > r > q > 1 and n ≡ k (mod 2). If

n > k + 2, then µ(n, k, r, q) > µ(n, k + 2, r, q).

Proof. Suppose n, k, r, q ∈ N satisfy all the assumptions of the lemma. Again,

re
all that µ(n, k, r, q) is the number of PB-pairs (η,X) su
h that:

(I) |X | = q and rank((εn,k, [r]) ∨ (η,X)) = q.

Similarly, µ(n, k + 2, r, q) is the number of PB-pairs (η,X) su
h that:

(II) |X | = q and rank((εn,k+2, [r]) ∨ (η,X)) = q.

The PB pairs (εn,k, [r]) and (εn,k+2, [r]) are illustrated in Figure 5, using an exam-

ple.

Figure 5. PB-pairs (ε13,7, [4]) (left) and (ε13,9, [4]) (right). Note
that the only di�eren
e is the upper hook 
onne
ting 8 and 9
(
oloured blue) in the �rst pair.

First, we will prove that all PB-pairs on [n] satisfying (II) also satisfy (I). Re
all
from the dis
ussion in Se
tion 3 that the domain elements of the join of two PB-

pairs 
orrespond to the paths 
onne
ting elements of their domains. Thus, in both


ases we 
onsider the domain paths 
onne
ting the elements of [r] and X . Hen
e,

these paths are of the form P, so none of them 
ontains elements that belong to

non-domain singletons in either of the fa
tors. Let (η,X) be a PB-pair on [n]
satisfying (II). By the previous dis
ussion, elements k + 1 and k + 2 do not belong

to any of these domain paths in the join (εn,k+2, [r]) ∨ (η,X). So, all the q domain

paths exist also in the join (εn,k, [r])∨ (η,X). Furthermore, the 
onne
tion of k+1
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and k+2 in εn,k does not generate a new domain path in the join (εn,k, [r])∨(η,X),
as we have |X | = q and no element of X 
an appear in two domain paths, so the

join has at most q domain paths. Thus, we have µ(n, k, r, q) > µ(n, k + 2, r, q).
We need to prove the stri
t inequality. Consider the PB-pair (η,X), where

X = {1, . . . , q − 1, k + 2} and η is the equivalen
e on [n] with a unique non-trivial


lass {q, k+1}. It is easily seen that (η,X) is a PB-pair of rank q. In Figure 6, we

present the joins of (η,X) with εn,k and εn,k+2, respe
tively. Note that the ranks

Figure 6. The joins of PB-pairs (ε13,7, [4]) (left) and (ε13,9, [4])
(right) with the pair (η,X) in the 
ase q = 3. The 
onne
tions

belonging to the PB-pairs (ε13,7, [4]) and (ε13,9, [4]) are 
oloured

bla
k, and those that belong to (η,X) are red.

of these joins are q and q − 1, respe
tively. Thus, the PB-pair (ξ, Y ) satis�es (I),
but not (II). Therefore, we may 
on
lude that µ(n, k, r, q) > µ(n, k + 2, r, q). �

Note that Lemma 4.4 applies only in the 
ase when r > 1. Namely, it is false

when r = 0, sin
e Lemma 4.3(ii) implies that µ(n, k, r, 0) depends only on n. Thus,
the 
ase r = 0 will be dis
ussed separately. In order to prove the 
lassi�
ation

result for r > 1, we prove the following:

Lemma 4.5. Let n ∈ N, and let α, β ∈ PBn with rank(α) = rank(β). In

addition, write k and l for the number of singleton 
lasses in ker(α) and ker(β),
respe
tively. Similarly, write p and w for the number of singleton 
lasses in coker(α)

and coker(β), respe
tively. If k = l and p = w, then PB
α
n
∼= PB

β
n.

Proof. Suppose that k = l and p = w. From these equalities and rank(α) =
rank(β), we have β = π1απ2 for some permutations π1, π2 ∈ Sn = G(PBn). Then,

α 7→ π−1
2 απ−1

1 determines an isomorphism PB
α
n → PB

β
n. �

Now, we want to prove the 
lassi�
ation result. In order to to that, we will

need the size of the underlying set of the variant PB
α
n . As in [12℄, we de�ne the

numbers a(k) by a(0) = a(1) = 1 and a(k) = a(k − 1) + (k − 1)a(k − 2) for k > 2.
It is easy to see that a(k) > 1 for all k ∈ N. Thus, a(k) > a(k − 1) for all k > 2.
In [12, Proposition 4.4℄ it was noted that |PBn| = a(2n).

Theorem 4.1. Let m,n ∈ N, and let α ∈ PBm and β ∈ PBn with r =
rank(α) > 1 and s = rank(β) > 1. In addition, write k and l for the number

of singleton 
lasses in ker(α) and ker(β), respe
tively. Similarly, write p and w
for the number of singleton 
lasses in coker(α) and coker(β), respe
tively. Then

PB
α
m
∼= PB

β
n if and only if m = n, k = l, p = w, and r = s.

Proof. The reverse impli
ation follows from Lemma 4.5.

Conversely, suppose that PB
α
m
∼= PB

β
n. As |PBm| = a(2m) and |PBn| = a(2n),

and N → N : x 7→ a(2x) is an in
reasing fun
tion, we have m = n. Further,
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by Lemma 4.1, the variants PB
α
m and PB

β
n have r + 1 regular Dα

-
lasses and

s+ 1 regular Dβ
-
lasses, respe
tively. Sin
e isomorphisms preserve regularity and

Green's 
lasses, we have r = s. By Lemma 4.1, in variants PB
α
m and PB

β
n, for

q = r we have µ(n, k, r, r) = |Dα
r /L

α| and |Dβ
q /L

β | = µ(n, l, r, r), respe
tively.
Sin
e r > 1 and isomorphism preserves the number of these L-
lasses, Lemma 4.4

gives k = l. Similarly, Lemma 4.2 and Lemma 4.4 give p = w. �

Remark 4.1. Note that, in the proof of Theorem 4.1, we have shown that

PB
α
m
∼= PB

β
n implies m = n and r = s (this part of the proof does not require the

assumption r, s > 1).

5. Sandwi
h element of rank zero

Our proof of the 
lassi�
ation result does not apply in the 
ase when the sand-

wi
h element has rank 0. We 
onsider this 
ase separately. It is natural to expe
t

that the same 
riterion holds:

Hypothesis 5.1. Let n ∈ N, and let α, β ∈ PBn with rank(α) = rank(β) = 0.
In addition, write k and l for the number of singleton 
lasses in ker(α) and ker(β),
respe
tively. Similarly, write p and w for the number of singleton 
lasses in coker(α)

and coker(β), respe
tively. Then PB
α
n
∼= PB

β
n if and only if k = l and p = q.

The reverse impli
ation was proved in Lemma 4.5. However, for the dire
t

impli
ation, our previous approa
h does not work, sin
e we have µ(n, k, 0, 0) =
µ(n, l, 0, 0) even if k 6= l. Furthermore, sin
e rank(α) = rank(β) = 0, by (4.1) we

have

Pα
1 = Pα

2 = Pα = {σ ∈ PBn : rank(σ) = 0} = P β = P β
1 = P β

2 ,

whi
h is the unique regular Dα
- and Dβ

-
lass in PB
α
n and PB

β
n, respe
tively. It

is easily seen that this set is a re
tangular band, where the sandwi
h operation


oin
ides with the original operation (for any sandwi
h element). Therefore, we


annot hope for any progress by 
onsidering the regular subsemigroup. In addition,

all the elements of PBn r Pα
form singleton Jα-
lasses (Jβ-
lasses), whi
h are

above the regular Dα = Jα-
lass (Dβ = Jβ-
lass), and no other pair of Jα-
lasses

(Jβ-
lasses) are related. For this reason, even if k 6= l, the 6J-stru
ture of the

semigroups is the same.

In spite of these similarities, these variants are not ne
essarily isomorphi
. To

show that, we need to 
onsider the Green's preorders 6Lα
and 6Rα

on PB
α
n. Sin
e

idn is the left- and right- identity for PBn, [12, Remark 3.8℄ gives

(5.1) σ 6Rα τ ⇔ σ 6R τα and σ 6Rβ τ ⇔ σ 6R τβ,

for σ ∈ Pα
1 = Pα = P β = P β

1 and τ ∈ PBn. From [43, Theorem 8℄ follows the


hara
terization of relation 6R in PBn:

(5.2) σ 6R τ ⇔ NU (σ) ⊇ NU (τ)

for σ, τ ∈ PBn. Now, we provide a simple example in whi
h the di�eren
e in the


ase k 6= l is easily seen:
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Example 5.1. Let n = 2 and 
onsider α = and β = . Then, k = 2, l = 0

and p = w = 0. Using (5.1) and (5.2), one 
an easily verify that Figure 7 depi
ts

the 6Rα
-relations and 6Rβ -relations in PB

α
2 and PB

β
2 , respe
tively. Sin
e isomor-

phisms preserve Green's preorders and Green's 
lasses, we 
learly have PB
α
2 6∼= PB

β
2 .

Figure 7. The relations among the Rα
-
lasses of PB

α
2 (left) and

the relations among the Rβ
-
lasses of PB

β
2 (right).

Thus, in order to prove Hypothesis 5.1, one should 
onsider the distribution of

non-regular Rα
-
lasses above the regular ones and symmetri
ally, the distribution

of non-regular Lα
-
lasses above the regular ones.

We give an additional result whi
h might prove useful in this dire
tion of in-

vestigation. Re
all from [50℄ that a semigroup S is an in�ation of a semigroup T if

T is a subsemigroup of S and there exists a mapping φ : S → T su
h that φ(σ) = σ
for σ ∈ T and στ = φ(σ)φ(τ) for σ, τ ∈ S.

Now, we may prove:

Proposition 5.1. Let n ∈ N and let α ∈ PBn with rank(α) = 0. Then, the

variant PB
α
n is the in�ation of the re
tangular band

(5.3) Reg(PBα
n) = Pα = {σ ∈ PBn : rank(σ) = 0}

along the map φ : PBn → Pα : ξ 7→ ξαξ.

Proof. From the dis
ussion following Hypothesis 5.1 we have (5.3) and it

follows that Pα
is a subsemigroup of PB

α
n. Furthermore, sin
e rank(α) = 0, it is

easily seen that σασ = σ for any σ ∈ Pα
, and ατα = α for any τ ∈ PBn. Thus, for

σ, τ ∈ PBn we have φ(σ)⋆αφ(τ) = (σασ)α(τατ) = σ(ασατα)τ = σατ = σ⋆ατ. �

It is easily seen that any isomorphism of variants preserves the sizes of the

pre-images under φ of the elements of Pα
. Thus, if variants PB

α
n and PB

β
n have

di�erent sets, 
ounted with multipli
ities, of sizes of pre-images under φα : ξ 7→ ξ⋆αξ
and φβ : ξ 7→ ξ ⋆β ξ, respe
tively, of the set Pα = P β

, they are non-isomorphi
.

However, the reverse impli
ation does not hold. Namely, in Example 5.1, both PB
α
n

and PB
β
n have the same set of sizes of the pre-images under φα and φβ , respe
tively,

{1, 1, 3, 5}, but are proved to be non-isomorphi
.
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