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GENERALIZATIONS OF SOME ZYGMUND-TYPE
INTEGRAL INEQUALITIES FOR POLAR
DERIVATIVES OF A COMPLEX POLYNOMIAL

Abdullah Mir

ABSTRACT. We prove some results for algebraic polynomials in the complex
plane that relate the L”-norm of the polar derivative of a complex polynomial
and the polynomial under some conditions. The obtained results include sev-
eral interesting generalizations of some Zygmund-type integral inequalities for
polynomials and derive polar derivative analogues of some classical Bernstein-
type inequalities for the sup-norms on the unit disk as well.

1. Introduction

Let P, be the class of complex polynomials P(z) := >."'_,a,z" of degree n.
The study of Bernstein-type inequalities that relate the norm of a polynomial to
that of its derivative and their various versions are a classical topic in analysis.
Over a period, these inequalities have been generalized in different domains, in
different norms and for different classes of functions. Here, we study some of the
new inequalities centered around Bernstein-type inequalities that relate the L7-
norm of the polar derivatives and the polynomial under some conditions.

For P € P, and « € C, define

D, P(z) :==nP(z) + (o — 2)P'(2).

Note that D,P(z) is a polynomial of degree at most n — 1. This is the so-called
polar derivative of P(z) with respect to « (see [16]). It generalizes the ordinary
derivative in the following sense:
D,P

lim DaP(2) = P'(2),

a—00 o
uniformly with respect to z for |z2| < R, R > 0.

We can construct a sequence of polar derivatives for P € P, as follows:

Do, P(2) =nP(z) + (a1 — 2)P'(2),
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..Da,P(z)=(n—k+1)Dy,_ Doy, --.Dao, P(2)
+ (ag — 2)(Day_ Doy --- Doy P(2))', k=2,3,...,n.

Dg, D

Q-1 °

The points ay, a9, ..., € C, k =1,2,3,...,n may or may not be distinct. Like
the k' ordinary derivative P(*)(z2) of P(z), the k' polar derivative D,, D
D, P(z) of P(z) is a polynomial of degree at most n — k.

For P € P, we have

Q1 * "

(1.1) mzix|P'(z)| < nm§X|P(z)|

|z|=1 |z|=1
and for every r > 1,

(1.2) {/O% P’(ei9)|rd9}1/r <n{ /027r

Inequality (1)) is a classical result of Bernstein [17], whereas inequality (2] is
due to Zygmund [23]. Arestov [1] proved that (L2) remains true for 0 < r < 1 as
well. If we let r — oo in ([L2)), then we get (ILI). Equality holds in () and (T2
only for P(z) = Az", A # 0. Noting that these extremal polynomials have all zeros
at the origin, so it is natural to seek improvements under appropriate condition
on the zeros of P(z). If we restrict ourselves to the class of polynomials having
no zeros in |z| < 1, then (1) and (TZ) can be improved. In fact, if P € P, and
P(z) #0in |z| < 1, then (LI) and (I2Z) can be respectively replaced by

L 1/r
P a6 .

(1.3) max |P'(2)] < = max |P(z)],
|z]=1 2 |z|=1
2 ) r 1/r 2 . r 1/r
(1.4) {/ P’(ew)‘ do} <nC’T{/ P(e“’)‘ do} :
0 0

where

1 27 r —1/r
1. =< — d .
(1.5) c {% /0 v}

Inequality (3] was conjectured by Erdos and later verified by Lax [15], whereas
(C4) was proved by de-Bruijn [8] for » > 1. Further, Rahman and Schmeisser [21]
have shown that (L4) holds for 0 < r < 1 as well. If we let 7 — oo in inequality
(), we get (L3).

The literature on polynomial inequalities is vast and growing and over the last
four decades many different authors produced a large number of different versions
and generalizations of the above inequalities. Many of these generalizations involve
the comparison of polar derivative D,P(z) with various choices of P(z), a and
other parameters. More information on this topic can be found in the books of
Milovanovié et al. [17] and Marden [16]. Aziz was among the first to extend some
of the above inequalities by replacing the derivative with the polar derivatives of
polynomials. In fact in 1988, Aziz [2] extended (3] to the polar derivative of a
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polynomial and proved that if P € P, and P(z) # 0 in |z| < 1, then for every
a € C with |of > 1
(16) wax | DaP(2)] < 3ol + 1) max | P(2).

= z|=1
Inequality (6) was sharpened by Dewan et al. [9l Theorem 1 for t = k = 1], by
proving that if P € P,, and P(z) # 0 in |z| < 1, then for every a € C with |a] > 1,

n

(1.7) ‘m@ilDaP(Z)l < g {(lal+ 1)|m|§)§|P( 2)| = (o] =1) |HTm |P(2)]}-
As an L" analogue of (L)) and a generalization of (L4]), Aziz and Rather [5] proved
that if P € P, and P(z) # 0 in |z| < 1, then for every a € C with |a| > 1 and

r=1,
27 r 1/r 27 r 1/r
(1.8) {/ DaP(ew)‘ do} < n(lal + 1)cr{/ ‘P(ew)‘ d@} ,
0 0
where here and throughout C, is defined by (3.

Further, the following more general result which besides provides an L™ ana-
logue of (7)) also extends inequality (L)) for » € (0,1) was proved by Mir and
Baba [20]. More precisely, they proved that if P € P,, and P(z) # 0 in |2| < 1,
then for every o, 0 € C with |a| > 1, |§] <1 and r > 0,

(1.9) { /O "

r 1/r
¢ Do P(e?) + %5(@4 - 1)‘ d@}

nC,(|a| + 1){ /O% ‘P(ei")‘rde}l/r,

where here and throughout m = min ;- |P(2)|.

Recently, Mir and Hussain [19] proved the following generalization of (9] by
using a parameter [ and established that if P € P, and P(z) # 0 in |z| < 1, then
for every o, 3,0 € C with |a] > 1, 8] < 1,]6| < 1 and r > 1,

(1.10) {/O%

1)P(ei6)

€i9DaP(ei0) +nﬁh
+ 750 (Jo+ B < e +ﬂw‘) Tde}l/r

2
2
G, (el + 1)+ 8ldel =) { [ - P(e“)\"de}l/r.

(Ial 1) ‘ _
One can see in the literature (for example, refer [14), 18], [19),[22]), the latest research
and development in this direction. Ideally, it is natural to seek integral inequalities
analogous to the above inequalities for the k' polar derivative of polynomials. This
naturally leads us to establish some general Zygmund-type integral inequalities
which in particular yield the above mentioned inequalities and related inequalities
as special cases. Throughout this paper, we use the following notations:

Pi(z) :== Dy, D .Dy, P(2),

mn

Qp_1 -
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Py(

I\

):=P(2), Ai:=aas...o,
Ao, = (lon| = 1)(Jaz| = 1) ... (Joe| — 1),
Ba, = (|aa| + 1)(Jazg| +1) -+ (Jou| + 1),
ng:=nn—1)---(n—t+1).

DEFINITION. Given a polynomial P(z) = YI'_ ayz" € P, we associate with
it the polynomials
_ n n
P(z):=P(2) = Z%z” and Q(z):=2"P(1/2) = Zan_vz”.
v=0 =0
If P(z) =(¢Q(z), where || = 1, then P(z) is said to be self-inversive.

2. Lemmas

In this section, we provide the following lemmas that will be used in the later
sections for proving our main results.

LEMMA 2.1. Let P and @ be two polynomials with Q@ € P, and degP <
deg Q(z). If Q(z) has all its zeros in |z| < 1 and |P(z)| < |Q(2)] for |z] = 1
then for all B,0; € C with || <1, || 21, j=1,2,...,t andt <n—1,

l

ntACEf,
ot
The above lemma is due to Bidkham and Soleiman Mezerji [7]. By applying it
to the polynomials P(z) and 2" min|,—; P(z), we get the following result.

P < [ue) + BHGEQE)| forl > 1

2'Py(2) + B

LEMMA 2.2. If P € P, and P(z) has all its zeros in |z| < 1, then for all
a;,f€Cuwith o] 21, 18] <1, 1<j<t, t<n—1and|z| =1,
ntACH,
ot
LEmMMA 2.3. If P € P,, then for every a € C and r > 0,

{ /027r |DaP(e“’)‘Td9}1/’“ < nlol + 1){ /O27r |P(€i9)|rd9}1/7‘.

The above lemma is due to Aziz and Rather [5].

Aa,
‘tht(z)Jrﬂ P(z)‘ > ny At+ﬂ?’ m.

LEMMA 2.4. If P € P,, and Q(z) = 2"P(1/Z2), then for every r > 0 and 7 real,
2m 27 2m
/ / |P'(e) + Q' ()| dbdy < 27rn’“/ |P(e)|" de.
o Jo 0

The above lemma is due to Aziz and Rather [4].

LEMMA 2.5. If P € P, and P(z) # 0 in |z| < 1, then for all 8,a; € C,
1<j<t, t<n—1with|B] <1, |oj| =21 and|z| =1,

TltAa

9t

(2.1) AP(2) + ﬂ"t;at P(e)| < |2 Qu(z) + 875202
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where Q(z) = 2"P(1/Z2).

PROOF. Recall that P(z) has all zeros in |z| > 1. If P(z) has a zero on
|z| = 1, then m = 0 and the result follows by Lemma 21 in this case. Henceforth,
we suppose that all the zeros of P(z) lie in |z| > 1 and so m > 0. We have
[Am| < |P(2)] on |z| = 1 for any A with || < 1. It follows by Rouche’s theorem
that the polynomial G(z) = P(z) — Am has no zeros in |z| < 1. Therefore, the
polynomial H(z) = 2"G(1/z) = Q(z) — Amz" will have all its zeros in |z| < 1. Also
|G(z)| = |H(%)| for |z| = 1. On applying Lemma [ZT], we get for every 3, o; with
1B <1, ]egl 21,5=1,2,...,tand t <n—1,

niAq, ntAa,
‘zth(z) +5 t2t G(Z)‘ < ‘tht(z) +5 t2t H(z)‘ for |z| > 1.
Equivalently,
neAa, Aq,
(2.2) ‘tht(z) + 5t2—tP(z) — Amn; (zt + B?)’
niAa, < n Aa,
< |2'Qu(2) + B t2t Q(z) — Amnz (At+ﬁ 5t )‘

Since Q(z) has all zeros in |z| < 1 and min ;= |Q(2)| = min|,|= [P(z)| = m, by
Lemma 22] we have

niAa, Ao, n
(2.3) ‘tht(z) + ﬂtQ—tQ(z)‘ > nt‘At + BT‘mM for |2 > 1.

Now, by choosing a suitable argument of A on the right-hand side of [22)), in view
of Z3)), we get for |z| =1,

A A
‘tht(z) + ﬁnt2ta” P(Z)‘ - |)\|mnt’zt +p 2?’
neAa, Ao,
< |2Qu(2) +ﬂt2—tQ(z)‘ — [l e + 852 |
Letting [A| — 1, we get for |z] =1,
tP ntAOftP t AOét
‘z W(2)+ 5 5 (z)‘—mnt‘z +8 5
niAa, Ao,
< #1Quz) + BHEZEQ(2)| - e A+ 55|

which is equivalent to (Z1I). O

LEMMA 2.6. If A, B,C are non-negative real numbers such that B+ C < A,
then for every real number o, |(A — C)e'® + (B + C)| < |Ae'™ + B.

The above lemma is due to Aziz and Shah [6].

LEMMA 2.7. Let z1,z2 be two complex numbers independent of 3, where 3 is
real. Then for r >0,

27 ] 27 )
/ |21+ 22¢’ | dp :/ |lz1] + |22]e™|"dB.
0 0



62 MIR

The above lemma is due to Govil and Kumar [12].

LEMMA 2.8. Ifa,b e C with |b| > |a|, then for r > 0 and v real, we have
27 2m
(2.4) / la+eb|"dy > |a|’“/ |1+ e”‘rd'y.
0 0

PRrROOF. If a = 0, then (24) is obvious. Henceforth, we assume that a # 0.
Now for every real v and ¢ > 1, it can be easily verified that |t + €?| > |1 + 7|
which by using Lemma 2.7 gives

r 2
dy = /
0

27 b 27 r 27 .
/ 1—|—e”—‘ d'y:/ d’y}/ ‘1—1—@”‘ d,
0 a 0 0

which is equivalent to (24)). O

b b .
1+e7|- —‘4_@”
a a

LEMMA 2.9. If P € P, is self-inversive, then for 0 < 6 < 27, we have
[P/(e)] > Z|P(e").
The above lemma is due to Govil and Nyuydinkong [10].

3. Main Results and Proofs

Here, we first prove the following more general result which as special cases
yield some interesting generalizations of (LG6)—(TI0).

THEOREM 3.1. If P € P,, and P(z) # 0 in |z| < 1, then for all 3,6,0; € C
with [B] <1, 0] <1, |laj| 21, 1<j<t, t<n—1andr > 1,

2m T 1/r
it i0 ntAa, 6y, T Aa, | ite Aa,
{/0 e P(e) + BEZA P () + 5<‘At+ﬂ2t e+ 652 )}d@}
T /T
|ﬁ|A0¢t 2 7 T !
(3.1) <Gy (Ba, + o ) O |P(e)|"d0 ) .

PROOF. Recall that P € P,, and P(z) # 0 in |z| < 1. If Q(z) = 2"P(1/2),
then P(z) = 2"Q(1/2) and it can be easily verified that for 0 < 6 < 2,

nP(eie) o eiGP/(eiG) _ ei(nfl)emv
nQ(ew) o eiOQ/(eiG) _ ei(nfl)em.

Hence
nP(e) + enQ(e')
= €0 P/ (i) 4 =10/ (¢ib) 4 iV (eieQ/(ew) + ez‘(nq)em)
= e (P'(e”) +e7Q (")) + "V (Q/(e) + TP (e7)),

which gives
n[P(e) +€7Q(e?)| < [P(e) + Q' ()| + [ + P
(3.2) =2|P'(e") + Q' (e")|.
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Also, we have
|DaP(e”) + €7 DaQ(e”)

= [nP(e”) + (@ = )P (") + 7 (nQ(e") + (a — ei@)@f(ew))‘

= [(nP() — P () 4 e (nQ() — Q' ()

+a(P(e) + Q' ()

= [([@) + e P10 4 a(P(e) + Q! (7))

P'(e”) +¢7Q/ ()|

(3.3) = (|a| + 1)‘P’(ei9) + ein/(ew)"

< [P+ Q)| + o

Further, since F(z) = P(2) + eQ(z) is a polynomial of degree n, so that Fi(z) =
Py(2) + €7Q4(z) is a polynomial of degree at most n —t, t < n — 1, we have, by
repeated application of Lemma 23] for r > 1

27
/ |Do, Doy - Doy F(e)]"d0 < (n — t + 1) (Jau| + 1)"
0

27
x / |Da, 1 Doy, ... Do, F(e?)|"db.
0
Equivalently,
27
(3.4)/ |Da,Da,_, -+ Do, P(e") + €7D, Da,_, -+ Do, Q)| df
0
<(n—t+1)"(Jou| +1)"

27
></ |Da,_,Da,_, .. Do, P(e”) + €7 Dq, Do, _, ... Do, Q)| dO
0

<S—t+1)"(n—t+2)"...(n—1)"(Jag] + 1) (Jou1| + 1) ... (Jaz| + 1)
27
x/ | Do, P(e) + €7 Do, Q(e™)]" df.
0

Integrating both sides of ([34]) with respect to y from 0 to 27, we get, with the help
of Lemma [Z4] and inequality (33)), that for each r > 1,

2T 2m
3 5 / / 119 + ez'yQ 119 | do d’)/

L2n(n—t+1)"(n—t+2)"...(n—1)"n"

2m -
x (|at|+1)T(|at,1|+1)T...(|o<2|+1)T(|a1|+1)r/0 |P(e™)]"df.
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By Lemma[25] we have for each 6, 0 < § < 2rand for all 5,05, 1 < j<t, t<n—1
with |3] <1, |ay| > 1,

. . Aa .
eztGQt(ezO)+6nt2t tQ(ezG)‘

eitGPt( 10) +B Ott P( )‘ <

A , A
- mnt( Ay + ﬂ—;’ — e + ﬂ—;” )
This implies
X a . Aat
eztept( 16) ﬂ tP( )‘ 77L2nt< \, ﬂ ezte ﬂ 5 )

- A
(36) < _ ezt@_i_B%

eitGQt( 19) +6 Oét Q( 19)‘ mny (‘At +6
Taking in Lemma

eitth(eie) +ﬁnt€at Q(eia)’7 B = eitGPt( 19) +6 Oét P( )‘
c_ mng (‘At Aat

gt )

we get B+ C < A — C < A. Hence for every real 7, by using Lemma [Z.6, we get

y )

).

it Ott
T

. , A , ; A
Qi) + B Q)| - T (A + 6—\ — |+ B

. at mn i Aa,
+{€lt€Pt( 19)“‘6 P(e! )“i‘ t(}At‘i‘ﬁ eta‘f'ﬁ?)}‘
' ' niAa, i i i i niAa, i
e”th(ew)Jrﬂ—tQt Qe )| + [ Py(e) + g P(e‘))H.
This implies for each r > 1,
27
(3.7) / |F(0) +e7G(0)]"do
0
27 T
i i niAa, i iv| i i niAa, i
g/o elet(ew)—l—BtQ—tP(e 9)‘ + e Qe 9)+Bt2—tQ(e 9)‘ do,
where
. at mn ; Ao,
F(O) = | P(e) + B2 P+ 0 (|, 4+ gl | - [ + 852,
_ | e i0 Aa, ioy| T @ | ite @
G(0) = [ Qu(e”) + BRE Q)| - T (|8 + 5| - [e + 852 ))-

Integrating both sides of (B with respect to 7 from 0 to 27, we get

27 27
/ / |F(0) + e G(0)]"d dy
0 0
27 27 ) )
g/ {/ ethPt(eth) +B
0 0

ntAatP(eiG)‘ Lt

i iz Aa i "
o Qi) + BT Q)

dv}dﬂ
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U
I

Therefore, it follows by Minkowski’s inequality that

{/QW/2W|F( 1+ éG(0)| dady}w

{/QW/% (P + e Qu(e)) +ﬂntA°”( P(e") +6”Q(ew))‘rd9d~y}

I /f”

MO P() + e (0Que) + 87 ‘Q(66)>‘ dv}dﬂ

eitGPt(eiG) + 6 5

(P + ¢1Que) + gl (P +e7Qee) ‘Tde}dv

1/r

r 1/r
Pi(e) + e”Qt(eie)‘ do d'y}

NAa, 2T 27
+ 152 {//

which gives on using (32), 33) and Lemma [Z4] that for every S with || < 1
r > 1 and ~y real,

(3.8) {/0277 /OQW|F(9)+ei7G(0)|Td9d7}1/r
(27r)1/’“nt{Bm L 18A T }{ /027r |P(ei9)\’"d9}w.

If we take a = F(0) and b = G(), since |b| > |a| from B8, we get from Lemma
28 that

27 27
(3.9) / |F(0) +e"G(0)] dy > (9)|T/ |1+ e dn.
0 0

Integrating both sides of ([B3) with respect to 8 from 0 to 27, we get from (B.8))
that

(3.10) {/OQW|1+e”|rd7/2w|F(9)\Td9}1/r
(Qw)l/rnt{Bat + |5|21t 1 }{ /O27r

Now using the fact that for every 6 € C with |6] < 1

1/r

P(ew) + e”Q(ew)‘TdH dv} ,

P(ew)’rde}l/r.

at omn Aq, ; Aq,
1P () + R o) + T (A + S| - e + 8554])| < IFO))
the inequality (]3:[[) follows from (BI0). O
If we take a1 = a3 = ... = ay = «, then dividing both sides of (BI)) by |a|

and leting |a| — oo, we get the following result.
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COROLLARY 3.1. If P € P, and P(z) # 0 in |z| < 1 then for all 5,0 € C with
BI<L6<1,1<t<n—1andr >1,
mng 1/r
o[ &l - [z 0}

(3.11) {/:W
gntC,«(l—i— 2|f|1>{/0 W|P(ei9)‘rd9}1/r.

Now, we present and discuss some consequences of Theorem 3.1 and Corollary
3.1. First, we point out that inequalities involving polynomials in the sup-norm on
the unit circle in the complex plane are a special case of the polynomial inequalities
involving the integral norm. For example, if we let r — oo in 1) and BII]) and
choose the argument of § suitably with |§| = 1, noting that C, — %, we get the
following results.

COROLLARY 3.2. If P € P,, and P(z) # 0 in |z| < 1, then for all B, € C
with |8 < 1, Jaj| > 1, 1<j <t t<n—1,

eztépt(eza)+ﬂ2_zp(619)+

t PniAa ‘< . |8l Aa,
(312) max |o'Pi(2) + =5 P(2)| < 5 {(Ba+ o )‘Igffgp(zn
A A
B (‘At+62tat _ ‘Zt+62tm )m}

COROLLARY 3.3. If P € P, and P(z) # 0 in |z| < 1 then for all 8 € C with
81<1,1<t<n—1,

(3.13) \r?ffi 2'P(2) + %P( )‘
<0 ) meiren (e g - )

If we take t = 1 in ([BI2), we get the following generalization of (7).

COROLLARY 34. If P € P, and P(z) # 0 in |z| < 1, then for every o, € C
with |B] <1 and |af > 1

+ 22 1a] 1P|

< 5{ (1) +18/(1a] 1)) max|P(2)

~(fo+ HEH - o 2 )

REMARK 3.1. Clearly (3I4) is a generalization of (7). The special case of
Theorem 3.1 for ¢t = 1 gives (LIU). Inequality BI3]) generalizes a result of Aziz
and Dawood [3]. If we take 8 =0 and ¢t =1 in (31]), we obtain (L9) for r > 1.

We now mention the following result that follows by taking 6 =0 and t =1 in
B and provides a generalization of (L.g]).

(3.14) ‘r?‘zl)i‘zDaP()
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COROLLARY 3.5. If P € P, and P(z) # 0 in |z| < 1, then for every o, € C
with |a| 21, |8 <1 and r 2 1,

(3.15) {/OQW

. . r 1/r
¢ Dy P(e”) + nﬁ7(|a|2 1)P(e“’)‘ d@}

2 1/r
<nC((lal +1) + |8](lal —1)){/0 |P(ei)| de} .
REMARK 3.2. If we take 5 = 0 in ([BI3]), then we get ().

For the class of self-inversive polynomials, we prove the following result.

THEOREM 3.2. If P € P, is self-inversive and € C with |8] < 1 and r > 1,
then for any a with |a| > 1,

n 2 ) -
B16)  glal-na-1s0{ [Pt

{
< nCr((|04| +1) +|8](laf — 1)) {/0

and for any o with |a| <1

g1 Ba-teba-n{ [ i) an)

g{/:w
<nC, ((|a| +1)+18](j1 — a|)) { /027r |P(e“’)‘rd9} /r

PROOF. Since P € P, is a self-inversive polynomial, therefore, P(z) = (Q(z),

where |¢| = 1 and Q(z) = z"P(1%) € P,,. Then for any o, 8 € C with |a| > 1,
|8] < 1, we have

1/r

r 1/r
eieDa(eiG) + nﬂ(|a2| * 1)P(610)‘ dﬂ}

2

1/r
|P(ei‘9)rd9}

1/r

r 1/r
eieDa(eiG) + n6(12_ |a|)P(eze)‘ dé’}

(318)  [eDaP() + " (ol - 1)P()| = [2Da@() + (ol - Q)]
and for any |o| < 1, |5] < 1, we have
(319)  |:DuP(:)+ 21~ 1a)P()] = [2DaQ() + 21~ a)Q(2)

for all z € C. The inequalities on the right hand sides of (BI8) and BIT) can be
obtained by proceeding similarly as in the proof of Theorem 3.1 and using (BI8)
and [BI9). To prove the inequalities on the left hand sides of [BI6) and (BIS),
note that for any «, 8 with || > 1, |5] < 1, we have for 0 < 6 < 27,

np

(3.20)  |e?D,P(e?) + = (ol - 1)P(e?)
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> [DaP()] ~ "L (1a] - 1)|P(e)
= 0P/ () + nP(e) — P/(e?)] - o] - D1

> [al [P/ ()] = [nP (") — ¢ P'(e)] — @ﬂal = D[P,

It is easy to verify that for 0 < 6 < 27, |P'(e%)| = [nP(e?) — e P! ('), which on
using in B20) gives
(3.21)

& DaP(e) + "2 (o] = )P > (lal = DIP ()] ~ "L (ja] — 1) P(e)).

Similarly, for || < 1, we have

3:22) [ DaPe) + 2201~ la) P > (1 - o) () - L (1~ ap P,

Inequalities (B2])) and (322]) when combined with Lemma [29] give

¢’ Do P(e”) + %(lal - 1)P(€w)’ > g(lal — 1)1 = |B)|P(?)] for o > 1,
np n

e DaP(e”) + (1=l = [B)IPe?)] for |a] <1,

(1= la)Pe)| >

[\

wherefrom we can obtain the inequalities on the left-hand sides of (B16) and (B.17).
(]

If in BJ0), we divide throughout by |a| and make |a| — oo, then we get the
following result.

COROLLARY 3.6. If P € P, is self-inversive, then for every 8 € C, with |] <1
andr > 1,

oz Sa-in{ [Mirenra < { [7
<o [ Ipeyan)

REMARK 3.3. For 8 = 0, Corollary [3.6] reduces to a result of Govil and Jain
Corollary 1]. Inequalities (3.16]) and ([B.I7) also represent a generalization of a
result due to Aziz and Rather [5, Theorem 3].

Making r — oo in (B23) and noting that C, — % as r — 0o, we get the
following generalization of a result due to O’Hara and Rodriguez [13].

. . nﬁ . T 1/7"
ezHP/(ezH) + 7P(eze)’ d@}

1/r

COROLLARY 3.7. If P € P, is self-inversive, then for any |B| < 1, we have

5 (1= 18) max |P(2)] < max |2P'(2) +n§P<z> < 51+ 1B max |P(2)]
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