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A RELATION BETWEEN POROSITY

CONVERGENCE AND PRETANGENT SPACES

Maya Altınok and Mehmet Küçükaslan

Abstract. The convergence of porosity is one of the relatively new concept in
Mathematical analysis. It is completely structurally different from the other
convergence concepts. Here we give a relation between porosity convergence
and pretangent spaces.

1. Introduction

The notion of convergence, as one of the fundamental concepts in Mathematical
analysis, has many generalizations such as statistical convergence [14, 23], ideal
convergence [21], convergence in measure [26], A-convergence for a matrix A [15,
19, 20], etc. Unlike all types of convergences given in the literature with different
forms, porosity convergence as relatively new is defined in [2]. The basis of this
study lies in redefinition of the porosity notion from a point in [0, ∞) to infinity in
natural numbers [3].

Porosity notion appeared in the papers of Denjoy [7,8] and Khintchine [18] and,
Dolzenko [9]. It has many applications such as in theory of free boundarie [16],
generalized subharmonic functions [11], complex dynamics [22], quasisymmetric
maps [25], infinitesimal geometry [5] and some other areas of mathematics.

Let us remember the definitions of right upper porosity for subsets of real
numbers at zero. Let E ⊂ R

+, then the right upper porosity of E at 0 is defined as

p+(E) = lim sup
h→0+

λ(E, h)

h

where λ(E, h) is the length of the largest open subinterval of (0, h) that contains
no point of E [24].

The notion of right lower porosity of E at 0 is defined similarly.
In [3] the definition of porosity which was given for the subsets of real numbers,

have been redefined for the subsets of natural numbers by using a special function
which is called scaling function.
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Let µ : N → R
+ be a strictly decreasing function such that limn→∞ µ(n) = 0

and let A be a subset of N. Now, let us recall from [3] that upper and lower porosity
of A at infinity as follows

p̄µ(A) := lim sup
n→∞

λµ(A, n)

µ(n)
, p

µ
(A) := lim inf

n→∞

λµ(A, n)

µ(n)

where

λµ(A, n) := sup
{

|µ(n(1)) − µ(n(2))| : n 6 n(1) < n(2), (n(1), n(2)) ∩ A = ∅
}

.

From the definitions of upper and lower porosity of a subset of N at infinity,
we have the following trivial result [3].

Remark 1.1. [3] If A is a finite subset of N, that is |A| < ∞, then, for
every n ∈ N, λµ(A, n) is the length of the largest open subinterval of (0, µ(n)) that

contains no point of µ(A) and has a form (µ(n(2)), µ(n(1))) with µ(n(1)) < µ(n(2)).
For the case of finite A we evidently have λµ(A, n) = µ(n) for all sufficiently large n.
Consequently the equality p̄µ(A) = p

µ
(A) = 1 holds with every scaling function µ

for all A ⊆ N with |A| < ∞.

Thoughtout this paper, we will use only the right upper porosity and the fol-
lowing terminology. A set A ⊆ N is called

(i) porous at infinity if p̄µ(A) > 0;
(ii) strongly porous at infinity if p̄µ(A) = 1;
(iii) nonporous at infinity if p̄µ(A) = 0.

Let us rcall the definition of porosity convergence:

Definition 1.1. [2] Let x̃ = (xn)n∈N be a real valued sequence. We say that,
x̃ is p̄µ convergent to l if for each ε > 0,

p̄µ(Aε) > 0 and p̄µ(Ac
ε) = 0

where Aε := {n : |xn − l| > ε} and Ac
ε is the complement of the set Aε. It is

denoted by x̃ → l(p̄µ).

Let us note that the second condition in Definition 1.1 is necessary for only
uniqueness of p̄µ-limit.

In [2], it is particularly shown that p̄µ-convergence is a regular summability
method for real (or complex) valued sequences.

Our aim is to establish the relationship between porosity convergence and pre-
tangent space of the set µ(Aε) ∪ {0} ⊂ [0, ∞).

The concept of pretangent space was defined by Dovgoshey and Martio in
[12,13] for the first time. After this basic studies, tangent spaces are the focus of
research [1,6,10].

Now, let us recall construction of pretangent spaces to E in the particular case
when E ⊂ R

+. Let r̃ = (rn)n∈N be a sequence of positive real numbers such that
limn→∞ rn = 0. The sequence r̃ will be called a normalizing sequence. We define
the set

Ẽ :=
{

x̃ = (xn) : xn ∈ E, ∀n ∈ N and lim
n→∞

xn = 0
}

.
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Definition 1.2. [3] Two sequences x̃ = (xn)n∈N ∈ Ẽ and ỹ = (yn)n∈N ∈ Ẽ
are mutually stable w.r.t. r̃ if the following limit

(1.1) |x̃ − ỹ|r̃ := lim
n→∞

|xn − yn|

rn

exists and is finite.

A family F̃ ⊆ Ẽ is called self-stable (w.r.t. r̃) if each pair of sequences x̃, ỹ ∈ F̃
are mutually stable. A family F̃ ⊆ X̃ is called maximal self-stable if F̃ is self-stable
and for an arbitrary z̃ ∈ Ẽ either z̃ ∈ F̃ or there is a sequence x̃ ∈ F̃ such that x̃
and z̃ are not mutually stable.

Proposition 1.1. [12,13] Let E ⊆ R
+ be a pointed set with the marked point

0 ∈ E. Then, for every normalizing sequence r̃ = (rn)n∈N, there exists a maximal

self-stable family Ẽ0,r̃ such that 0̃ := (0, . . . , 0, 0, . . . ) ∈ Ẽ0,r̃.

Consider a function |., .|r̃ : Ẽ0,r̃ × Ẽ0,r̃ → [0, ∞) such that |x̃, ỹ|r̃ = |x̃ − ỹ|r̃ is
defined by (1.1). Obviously, it is nonnegative, symmetric and satisfies the triangle
inequality |x̃ − ỹ|r̃ 6 |x̃ − z̃|r̃ + |z̃ − ỹ|r̃ for all x̃, ỹ, z̃ ∈ Ẽ0,r̃. Therefore, (Ẽ0,r̃, |., .|r̃)
is a pseudometric space.

Definition 1.3. [12,13] Let Ẽ0,r̃ be a maximal self-stable family. A pretan-
gent space to E ⊆ R

+ (at the point 0 ∈ E w.r.t. r̃) is the metric identification of a
pseudometric space (Ẽ0,r̃, |., .|r̃).

Because the notion of pretangent space is important for the paper, we shall
describe the metric identification construction (see, for example, [17]). Define a
binary relation ∼ on Ẽ0,r̃ by x̃ ∼ ỹ if and only if |x̃ − ỹ|r̃ = 0. It is clear that ∼

is an equivalence relation. Let us denote by ΩE
0,r̃ the set of equivalence classes in

Ẽ0,r̃ under ∼. For an arbitrary α, β ∈ ΩE
0,r̃, we set

ρ(α, β) := |x̃ − ỹ|r̃, x̃ ∈ α, ỹ ∈ β.

The function ρ is a well-defined metric on ΩE
0,r̃. By definition, (ΩE

0,r̃, ρ) is the metric

identification of (Ẽ0,r̃, |., .|r̃).

Lemma 1.1. The equality

(1.2) Ω̄R
+

0,r̃ = R
+

holds for any normalizing sequence r̃.

Proof. Let us note that 0 ∈ Ω̄R
+

0,r̃ to prove (1.2). If x̃ := (hrn)n∈N for any h ∈
(0, ∞), then we obviously have limn→∞ hrn/rn = h. By [3, Corollary 2.5] we obtain

x̃ ∈ R̃
+
0,r̃ is a maximal self-stable family corresponding to ΩR

+

0,r̃ . The statements

h ∈ Ω̄R
+

0,r̃ is fulfilled by [3, Proposition 2.6]. Consequently, (1.2) holds. �

Definition 1.4. Let A and B be any subsets of R+. We shall write A � B, if
for every sequence (an)n∈N ∈ Ã r {0̃}, there is a sequence (tn)n∈N ∈ B̃ r {0̃}, such
that limn→∞ an/tn = 1 holds [3].
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2. Main results

Let x̃ = (xn) be a real valued sequence and µ : N → R
+ be a scaling function.

Consider the sets Aµ
ε := µ(Aε) ∪ {0} ⊂ [0, ∞) and Acµ

ε := µ(Ac
ε) ∪ {0} ⊂ [0, ∞)

where Aε := {k : |xk − l| > ε} for any ε > 0.

Theorem 2.1. The following statements are equivalent.

(i) The sequence x̃ = (xn) is not p̄µ-convergent to l. i.e.,

(2.1) x 9 l(p̄µ), n → ∞.

(ii) The equality

(2.2) Ω̄
Aµ

ε
0,r̃ = R

+

holds for every normalizing sequence r̃.

(iii) There exists a subsequence r̃′ of normalizing sequence r̃ such that the

pretangent space Ω̄
Aµ

ε

0,r̃′ includes a dense subset of (0, 1).

Proof. (i) ⇒ (ii) Assume that x 9 l(p̄µ), n → ∞. Then, the set Aε is a
nonporous subset of N at infinity for every ε. So, the set Aε has infinitely many
elements, and it can be represented as Aε = {n1, n2, . . . , nk, nk+1, . . . } where (nk)
is strictly increasing sequence of natural numbers.

Since p̄µ(Aε) = 0, then from [3, Proposition 3.5] ve have that

(2.3) lim
k→∞

µ(nk+1)

µ(nk)
= 1.

Let t̃ = {tm}m∈N be a sequence of positive reals such that limm→∞ tm = 0. For
every m ∈ N, define the number k(m) as follows k(m) := min{k ∈ N : µ(nk) 6 tm}.
Then, the double inequalities

(2.4) µ(nk(m)) 6 tm < µ(nk(m)−1)

hold for all sufficiently large m. It follows from (2.3) and (2.4) that

1 6 lim inf
m→∞

tm

µ(nk(m))
6 lim sup

m→∞

tm

µ(nk(m))
6 lim sup

m→∞

µ(nk(m)−1)

µ(nk(m))
= 1

holds. Hence, we conclude that limm→∞
tm

µ(nk(m)) = 1 holds. Since (tm) ⊂ R
+ and

µ(nk(m))) ⊂ µ(Aε) ∪ {0}, then we have

(2.5) R
+ � µ(Aε) � Aµ

ε � R
+.

Let r̃ = (rn)n∈N be any normalizing sequence. By considering (2.5) with [3, Propo-

sition 2.9] we have Ω̄
Aµ

ε
0,r̃ = Ω̄R

+

0,r̃ . Consequently, from Lemma 1.1, (2.2) holds.

(ii) ⇒ (iii) is trivial. Let prove (iii) ⇒ (i). Now assume that (iii) holds.
Using [3, Theorem 3.6] we obtain that

(2.6) p̄(Aµ
ε ) = 0.

Since p̄(Aµ
ε ) = p̄(µ(Aε)), then equality (2.6) implies that p̄(µ(Aε)) = 0. By the

equality of p̄(µ(E)) = p̄µ(E) for E ⊆ N, we have p̄(µ(Aε)) = p̄µ(Aε). Consequently
(2.1) holds. �
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Theorem 2.2. The following statements are equivalent.

(i) The sequence x̃ = (xn) is (p̄µ)−convergent to l. i.e., xn → l(p̄µ).
(ii) There is a normalizing sequence r̃ and an interval (a, b) ⊆ (0, 1) with

|a − b| > 0 such that the equalities Ω̄
Aµ

ε

0,r̃′ ∩ (a, b) = ∅ and Ω̄
Acµ

ε

0,r̃′ = R
+ holds

for every r̃′ and ε > 0.

Proof. Let us assume that xn → l(p̄µ) holds. So, p̄µ(Aε) > 0 and p̄µ(Ac
ε) = 0

hold for any ε > 0. From [3, Theorem 3.4] we have p̄(µ(Aε)) > 0 and p̄(µ(Ac
ε)) = 0.

Also, it is clear that p̄(Aµ
ε ) > 0 and p̄(Acµ

ε ) = 0 hold. If we use [3, Theorems 2.1
and 2.12], then we obtain that (i) ⇔ (ii). �

Corollary 2.1. Let x̃ = (xn) be a real valued sequence. If xn → l(p̄µ), then

tehre exists a normalizing sequence r̃ such that R
+
r Ω̄

Aµ
ε

0,r̃′ 6= ∅ holds.

3. Some examples

In this section we give two examples as application of last section. We take
here µ(n) = 1

n as a scaling function only for simplicity.

Example 3.1. Consider the sequence x̃ = ((−1)n) for n ∈ N. It is clear that
it is not porosity convergent i.e., (−1)n

9 1(p̄µ) and (−1)n
9 −1(p̄µ). So, from

Theorem 2.1 we have

(3.1) Ω̄
Aµ

ε

0,r̃′ = R
+ and Ω̄

A
′µ
ε

0,r̃′ = R
+

for Aε = {n : |(−1)n − 1| > ε} and A′

ε = {n : |(−1)n − (−1)| > ε}, respectively.
Indeed, Aε = NO and A′

ε = NE . So, (3.1) hold. The third condition of Theorem
2.1 is obvious from second.

Example 3.2. Consider the sequence x̃ = ( 1
n ) for n ∈ N. It is clear that

xn → 0(p̄µ) because xn → 0, n → ∞. So, from Theorem 2.2 we can infer that

(3.2) Ω̄
Aµ

ε

0,r̃′ ∩ (a, b) = ∅ and Ω̄
Acµ

ε

0,r̃′ = R
+

for (a, b) ⊆ (0, 1) where Aε = {n : 1
n > ε} and Ac

ε is the complement of Aε.
Indeed, let ε = 1/2. From the definition of porosity convergence the set A1/2 =

{n : 1
n > 1

2 } is porous at infinity. Also the set Ac
1/2 = {n : 1

n < 1
2 } is nonporous at

infinity.
Aµ

1/2 = µ(A1/2) ∪ {0} is a finite set and 0 is not an accumulation point of this

set. So, Ω̄
Aµ

1/2

0,r̃′ = {0}. Therefore, Ω̄
Aµ

1/2

0,r̃′ ∩ (a, b) = ∅ for any interval (a, b) ⊆ (0, 1).

Acµ
1/2 = µ(Ac

1/2) ∪ {0} = µ(N) ∪ {0} = R
+. Then Ω̄

Acµ

1/2

0,r̃′ = Ω̄R
+

0,r̃′ = R
+ is

obtained.
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