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LINEAR COMBINATIONS OF POLYNOMIALS

WITH THREE-TERM RECURRENCE

Khang Tran and Maverick Zhang

Abstract. We study the zero distribution of the sum of the first n polynomi-
als satisfying a three-term recurrence whose coefficients are linear polynomials.
We also extend this sum to a linear combination, whose coefficients are pow-
ers of az + b for a, b ∈ R, of Chebyshev polynomials. In particular, we find
necessary and sufficient conditions on a, b such that this linear combination is
hyperbolic.

1. Introduction

The sequence of Chebyshev polynomials of the first kind {Tn(z)}∞
n=0 defined

by the recurrence

Tn+1(z) = 2zTn(z) + Tn−1(z)

with T0(z) = 1 and T1(z) = z forms a sequence of orthogonal polynomials whose
zeros are real (i.e., hyperbolic polynomials). The location of zeros of polynomials
satisfying a more general recurrence

(1.1) Rn+1(z) = A(z)Rn(z) + B(z)Rn−1(z)

where A(z), B(z) ∈ C[z] was given in [3]. In [2], the author studied the set of
zeros of a linear combination of Chebyshev polynomials

∑m
k=0 akTn−k(z), m 6 n,

ak ∈ R, and provided a connection between this sequence and the theory of Pisot
and Salem numbers in number theory. In the special case when m = n and ak = 1
∀k, the sum of the first n Chebyshev polynomials connects to Direchlet kernel in
the Fourier analysis. In Section 2 of this paper, we to study the zeros of this sum
(cf. Theorem 2.1) when the sequence of Chebyshev polynomials are replaced by a
more general sequence {Rn(z)} given in (1.1) where A(z) and B(z) are any linear
polynomials with real coefficients.

The sequence of Chebyshev polynomials of the second kind {Un(z)} satisfies
the same recurrence as that of the first kind with the initial condition U0(z) = 1
and U1(z) = 2z. This initial condition can be written in the form U0(z) = 1 and
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U−n(z) = 0, ∀n ∈ N. In Section 3 of this paper, we study the zeros of a linear
combination of Chebyshev polynomials of the second kind whose coefficients are
powers of az + b. In particular, we consider

(1.2) Qn(z) =

n
∑

k=0

(az + b)kUn−k(z), a, b ∈ R.

We find the necessary and sufficient conditions on a and b under which the zeros
of the resulting polynomials are real (cf. Theorem 3.2).

2. Sum of polynomials with three-term recurrence

For a1, b1, a2, b2 ∈ R, a2 6= 0, we let Rn(z) be the sequence of polynomials
satisfying the recurrence

Rn+1(z) = (a1z + b1)Rn(z) + (a2z + b2)Rn−1(z)

with R0(z) = 1 and R−n(z) = 0, ∀n ∈ N. Equivalently the sequence {Rn(z)}∞
n=0 is

generated by
∞
∑

n=0

Rn(z)tn =
1

1 − (a1z + b1)t − (a2z + b2)t2 .

In this section, we study the necessary and sufficient conditions on a1, b1, a2, and
b2 under which all the zeros of the polynomial

∑n
k=0 Rn−k(z) are real. Those

polynomials form a sequence whose generating function is

∞
∑

n=0

n
∑

k=0

Rk(z)tn =

∞
∑

k=0

tk
∞
∑

n=k

Rn−k(z)tn−k

=
1

(1 − t)(1 − (a1z + b1)t − (a2z + b2)t2)
.

With the substitutions t by −t, a2 by −a2, and b2 by −b2, and then substitute
a2z + b2 by z, we reduce the generating function to the form

1

(t + 1)((az + b)t2 + zt + 1)
.

Note that all the substitutions above preserve the reality of the zeros of the gener-
ated sequence of polynomials. We state the main theorem of this section.

Theorem 2.1. Let a, b ∈ R. The zeros of all the polynomials Pn(z) generated

by

(2.1)

∞
∑

n=0

Pn(z)tn =
1

(t + 1)((az + b)t2 + zt + 1)

are real if and only if b > 1 + 2|a|. Under this condition the zeros of Pn(z) lie on

(2.2)
(

2a − 2
√

a2 + b, 2a + 2
√

a2 + b
)

and are dense there as n → ∞.
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Proof. Suficience We assume b > 1 + 2|a|. To prove that the zeros of Pn(z)
lie on (2.2), we count the number of real zeros of Pn(z) on this interval and show
that this number is at least the degree of this polynomial which is given by the
lemma below.

Lemma 2.1. For each n ∈ N, the degree of Pn(z) is at most n.

Proof. We collect the coefficients in t of the denominator of the right-hand
side of (2.1) and obtain the recurrence

Pn(z) = −(z + 1)Pn−1(z) − ((a + 1)z + b)Pn−2(z) − (az + b)Pn−3(z)

where P0(z) = 1 and P−n(z) = 0, ∀n ∈ N. The lemma follows from induction. �

To count the number of real zeros of P (z), we construct two auxiliary real-
valued functions z(θ) and τ(θ) on θ ∈ (0, π). The first function is defined as

(2.3) z(θ) = 2a cos2 θ − 2 cos θ
√

a2 cos2 θ + b.

By the quadratic formula, z(θ) satisfies

(2.4) z(θ)2 − 4az(θ) cos2 θ − 4b cos2 θ = 0.

We will show later that there are n values of θ ∈ (0, π), each of which yields a
zero of Pn(z) on (2.2) via z(θ). The lemma below ensures a bijective correspondence
between θ and z(θ).

Lemma 2.2. The function z(θ) is increasing on (0, π) and it maps this interval

onto the interval
(

2a − 2
√

a2 + b, 2a + 2
√

a2 + b
)

.

Proof. To show z(θ) is increasing, we compute its derivative

dz

dθ
= −4a cos θ sin θ +

4a2 cos2 θ sin θ + 2b sin θ√
a2 cos2 θ + b

and see that it suffices to show

2a2 cos2 θ + b > 2|a cos θ|
√

a2 cos2 θ + b.

The left-hand side is positive and the squares of both sides reduce the inequality to
b2 > 0, which shows that z(θ) is increasing. We complete the lemma by computing

the limits limθ→0 z(θ) = 2a − 2
√

a2 + b and limθ→π z(θ) = 2a + 2
√

a2 + b. �

To define the second function τ(θ), we need the following lemma.

Lemma 2.3. For any θ ∈ (0, π), we have az(θ) + b > 0.

Proof. From Lemma 2.2, it suffices to show that b+2a2 > 2|a|
√

a2 + b. Since
we know the left-hand side is positive by b > 1 + 2|a|, we obtain the inequality
above by squaring both sides. �

From Lemma 2.3, we define the functions

τ(θ) =
1

√

az(θ) + b
, t1(θ) = τ(θ)e−iθ , t2(θ) = τ(θ)eiθ

on θ ∈ (0, π).
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Lemma 2.4. For any θ ∈ (0, π), the two zeros of

(2.5) (az(θ) + b)t2 + z(θ)t + 1

are t1(θ) and t2(θ).

Proof. We verify that τ(θ)e±iθ satisfy Vieta’s formulas. Indeed, we have

t1(θ)t2(θ) = τ(θ)2 =
1

az(θ) + b
,(2.6)

t1(θ) + t2(θ) = 2τ(θ) cos θ =
2 cos θ

√

az(θ) + b
.

From (2.3), we note that z(θ) cos θ < 0 since b > 0. As a consequence, we obtain

(2.7)
2 cos θ

√

az(θ) + b
=

−z(θ)

az(θ) + b

by squaring both sides and applying (2.4). �

The lemma below shows that for each θ ∈ (0, π), the two zeros of (2.5) lie inside
the unit ball.

Lemma 2.5. For any θ ∈ (0, π), we have |τ(θ)| < 1.

Proof. From (2.6), (2.7), and (2.3), it suffices to show
√

a2 cos2 θ + b > 1 + a cos θ.

If the right-hand side is negative, the inequality is trivial. If not, we square both
sides and the inequality follows from b > 1 + 2|a| > 1 + 2a cos θ. �

For each θ ∈ (0, π), the Cauchy differentiation formula gives

Pn(z(θ)) =
1

2πi

�

|t|=ǫ

1

(t + 1)((az(θ) + b)t2 + z(θ)t + 1)tn+1 dt

=
1

2πi

�

|t|=ǫ

1

(az(θ) + b)(t + 1)(t − t1(θ))(t − t2(θ))tn+1 dt.

We recall that az(θ) + b 6= 0 by Lemma 2.3. If we integrate the integrand over the
circle Reit, 0 6 t 6 2π, and let R → ∞, then the integral approaches 0. Thus the
sum of Pn(z(θ)) and the residue of the integrand at the three simple poles −1, t1(θ)
and t2(θ) is 0. We compute these residues and deduce that −(az(θ) + b)Pn(z(θ))
equals to

(−1)n+1

(1 + t1(θ))(1 + t2(θ))
+

1

t1(θ)n+1(1 + t1(θ))(t1(θ) − t2(θ))

+
1

tn+1
2 (θ)(1 + t2(θ))(t2(θ) − t1(θ))

.

We multiply this expression by (1 + t1(θ))(1 + t2(θ))τ(θ)n+1 , which is nonzero
∀θ ∈ (0, π), and conclude θ is a zero of Pn(z(θ)) if and only if it is a zero of

(−1)n+1τ(θ)n+1 +
1 + τ(θ)eiθ

(τ(θ)e−iθ − τ(θ)eiθ)e−i(n+1)θ
+

1 + τ(θ)e−iθ

(τ(θ)eiθ − τ(θ)e−iθ)ei(n+1)θ
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or equivalently a zero of

(−1)n+1τ(θ)n+1 − sin((n + 1)θ)/τ(θ) + sin((n + 2)θ)

sin θ
.

With the trigonometric identity sin(n+2)θ = sin((n+1)θ) cos θ+cos((n+1)θ) sin θ,
we write the expression above as

(2.8) (−1)n+1τ(θ)n+1 − cos((n + 1)θ) − sin((n + 1)θ)(cos θ + 1/τ(θ))

sin θ
.

We note that if θ = kπ
n+1 , 1 6 k 6 n, then the sign of (2.8) is (−1)k+1 since

τ(θ) < 1 by Lemma 2.5. By the intermediate value theorem, (2.8) has at least n−1
solution on (π/(n + 1), nπ/(n + 1)). We also note that as θ → 0, the sign of (2.8)
is negative since sin((n + 1)θ)/ sin θ approaches n + 1 and τ(θ) < 1. Thus (2.8)
has another zero on (0, π/(n + 1)). From Lemma 2.2, each zero in θ of (2.8) gives

exactly one zero in z of Pn(z) on
(

2a − 2
√

a2 + b, 2a + 2
√

a2 + b
)

. Thus all the
zeros of Pn(z) lie on the interval above by the fundamental theorem of algebra and
Lemma 2.1. The density of the zeros of Pn(z) as n → ∞ on this interval follows
directly from the density of the solutions of (2.8) and the continuity of z(θ).

Necessity In this necessary direction, we will show that if either (1) b 6 −1
or (2) −1 < b < 1 + 2|a|, then not all polynomials Pn(z) are hyperbolic. By [1,
Theorem 1.5], it suffices to find z∗ ∈ C r R such that the zeros of

(2.9) (t + 1)((az∗ + b)t2 + z∗t + 1)

are distinct and the two smallest (in modulus) zeros of this polynomial have the
same modulus. Note that every small neighborhood of such z∗ will contain a zero
of Pn(z) for all large n and consequently Pn(z) is not hyperbolic for all large n.
For more details on this application of the theorem, see [4].

For the first case b 6 −1, we let θ∗ be any angle with a2 cos2 θ∗ < −b and let
τ∗ be any zero of bτ2 −2aτ cos θ∗ −1. Note that τ∗ /∈ R since a2 cos2 θ∗ + b < 0 and
consequently τ∗2 /∈ R by the definition of τ∗. With the note that 2aτ∗ cos θ∗ + 1 is
nonreal (and thus nonzero), we choose

z∗ =
−2bτ∗ cos θ∗

2aτ∗ cos θ∗ + 1

which is nonreal since 1/z∗ /∈ R. From the definitions of τ∗, θ∗, and z∗ above, the

two solutions of (az∗ + b)t2 + z∗t + 1 = 0 are τ∗e±iθ∗

since they satisfy Vieta’s
formulas

τ∗2 =
1

az∗ + b
, 2τ∗ cos θ∗ = − z∗

az∗ + b
.

Since τ∗ and τ∗ are solutions of bτ2 − 2aτ cos θ∗ − 1, we have τ∗τ∗ = |τ∗|2 =
−1/b 6 1. Thus the two smallest (in modulus) zeros of (2.9) equal in modulus and
we complete the case b 6 −1.

We now consider the case −1 < b < 1 + 2|a|. We will find z∗ /∈ R so that
the smaller (in modulus) zero of (az∗ + b)t2 + z∗t + 1 lie on the unit circle. The
inequality |2|a| − b|| < 1 implies that 1 + 2|a| > |b| > |b| · |2|a| − b| and consequently

1 − b2 + 2|a| + 2b|a| > 0.
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We conclude there is θ∗ ∈ (0, π) sufficiently close to 0 when a > 0 or close to π
when a < 0 such that b2 − 2ab cosθ∗ < 1 + 2a cos θ∗. With this choice of θ∗, we
have

(2.10)
|beiθ∗ − a|
|aeiθ∗ + 1| =

b2 + a2 − 2ab cosθ

a2 + 1 + 2a cos θ
< 1.

We define

z∗ =
−1 − be2iθ∗

ae2iθ∗ + eiθ∗

and write

(2.11) (az∗ + b)t2 + z∗t + 1

as z∗(at2 + t) + bt2 + 1 to conclude that eiθ∗

is a zero of this polynomial. Since the
product of the two zeros of this polynomial is 1/(az∗ + b), we claim that the other
zero of this polynomial is more than 1 in modulus by showing that

1

|az∗ + b| > 1.

Indeed, from the definition of z∗, this inequality is equivalent to (2.10). We note

that z∗ /∈ R since a solution of (2.11) is eiθ∗

/∈ R and the other solution is more
than 1 in modulus. �

3. Linear combination of Chebyshev polynomials

The goal of this section is to study necessary and sufficient conditions under
which the zeros of (1.2) are real. The sequence {Qn(z)} in (1.2) is generated by

∞
∑

n=0

Qn(z)tn =

∞
∑

n=0

n
∑

k=0

(az + b)kUn−k(z)tn

=
∞
∑

k=0

(az + b)ktk
∞
∑

n=k

Un−k(z)tn−k

=
1

(1 + (az + b)t)(1 − 2zt + t2)
.

With the substitution z by −z/2 and then −a/2 by a, it suffice to study the
hyperbolicity of the sequence generated of polynomials by

1

(1 + (az + b)t)(1 + zt + t2)
.

As a small digression of the main goal, we will prove the following theorem which
states that the positivity of the t2-coefficient in the factor 1 + zt + t2 is important
to ensure the hyperbolicity of the generated sequence of polynomials.

Theorem 3.1. Suppose a, b, c ∈ R where c 6= 0. If c 6 0, then not all the

polynomials Pn(z) generated by

1

((az + b)t + 1)(ct2 + zt + 1)
.
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are hyperbolic.

We note that if c = 0, the sequence of generated polynomials satisfies a three-
term recurrence and their zeros have been studied in [3]. Under the condition c > 0,
with the substitution t → t/

√
c, we can assume c = 1. The following theorem settles

the necessary and sufficient conditions for the hyperbolicity of (1.2).

Theorem 3.2. Suppose a, b ∈ R. The zeros of all the polynomials Pn(z) gen-

erated by

(3.1)

∞
∑

n=0

Pn(z)tn =
1

((az + b)t + 1)(t2 + zt + 1)
.

are real if and only if |b| 6 1 − 2|a|. Moreover when |b| 6 1 − 2|a|, the zeros of

Pn(z) lie on (−2, 2) and are dense there as n → ∞.

Proof of Theorem 3.1. In the case c < 0, with the substitution t → t/
√

|c|,
it suffices to show that for any a, b ∈ R, not all the polynomials generated by

1

((az + b)t + 1)(−t2 + zt + 1)

are hyperbolic. Recall a consequence of [1, Theorem 1.5] that we will need to find
z∗ /∈ R so that the two smallest zeros of

((az∗ + b)t + 1)(−t2 + z∗t + 1)

equal in modulus.
In the case |b| < 1, we choose z∗ = iy∗ where

0 < y∗ < min

(√
1 − b2

|a| , 2

)

if a 6= 0 and 0 < y∗ < 2 if a = 0. The two zeros of −t2 + z∗t + 1,

iy∗ ±
√

4 − y∗2

2

lie on the unit circle and thus their modulus is less than
1

|az∗ + b| =
1

√

a2y∗2 + b2
.

For the remainder of Section 3.1, we assume |b| > 1. To make a suitable choice
for z∗, we consider the following lemma.

Lemma 3.1. With the principal cut, there exists θ∗ 6= kπ, k ∈ Z, such that

|b| +
√

b2 + 4a2 − 4aeiθ∗

> |2a − 2eiθ∗ |.
Proof. We note that b2 + 4a2 > 4|a| since 4|a|(1 − |a|) 6 1 6 |b|. Thus with

the principle cut, the function

f(z) :=
|b| +

√
b2 + 4a2 − 4az

2a − 2z
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is meromorphic on the open unit ball with the possible pole at z = a if |a| < 1. To
prove this lemma, we will find z /∈ R and |z| = 1 such that |f(z)| > 1.

We note that if |a| > 1, then f(z) is analytic on the unit ball and

|f(0)| =
|b| +

√
b2 + 4a2

2|a| > 1.

Thus by the maximum modulus principle |f(z)| > 1 for some |z| = 1. We can
choose such z /∈ R by the continuity of f(z).

On the other hand if |a| < 1, then the Cauchy integral formula implies that

�

|z|=1
|f(z)||dz| >

∣

∣

∣

∣

∣

�

|z|=1
f(z)dz

∣

∣

∣

∣

∣

= 2π|b| > 2π.

Consequently |f(z)| > 1 for some |z| = 1 or |f(z)| = 1 for all |z| = 1 and the lemma
follows. �

We now define

z∗ =
−2ab + beiθ∗

+ sign(b)eiθ∗
√

b2 + 4a2 − 4aeiθ∗

2a2 − 2aeiθ∗

where θ∗ is given in Lemma 3.1. With this definition, z∗ is a solution of

(a2 − aeiθ∗

)z2 + (2ab − beiθ∗

)z + b2 − e2iθ∗

= 0

from which we deduce that

(3.2) − eiθ∗

az∗ + b
= − 2a − 2eiθ∗

−b + sign(b)
√

b2 + 4a2 − 4aeiθ∗

is a zero in t of

−t2 + z∗t + 1.

The modulus of (3.2) is the same as the modulus of the zero in t of (az∗ + b)t + 1
which is at most 1 by the definition of θ∗. This modulus is larger than the modulus
of the other zero of −t2 + z∗t + 1 since the product of two zeros of this polynomial
is −1. We finish the proof of Theorem 3.1 by noting that z∗ /∈ R since the two
zeros of −t2 + z∗t + 1 are neither real nor complex conjugate. �

Proof of Theorem 3.2. Sufficience Let {Pn(z)} be the sequence of polyno-
mials defined in (3.1) where |b| 6 1 − 2|a|. The proof of the following lemma is the
same as that of Lemma 4 in [4]. For brevity, we omit the proof in this paper.

Lemma 3.2. For each b ∈ [−1, 1], let Sb be a dense subset of

(3.3)

[ |b| − 1

2
,

1 − |b|
2

]

and n ∈ N be fixed. If for any a ∈ Sb, the zeros of Pn(z) lie on (−2, 2), then the

same conclusion holds for any a in (3.3) .
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Suppose |b| 6 1−2|a|. From Lemma 3.2, it suffices to consider a 6= 0. We define
the monotone function z(θ) = −2 cos θ on (0, π) and note that for each θ ∈ (0, π)
the two zeros of t2 + z(θ)t + 1 are e±iθ. We consider the function

t0(θ) =
−1

az(θ) + b
, θ ∈ (0, π),

which has a vertical asymptote at θ = cos−1(b/2a) if |b| < 2|a|. For any θ ∈ (0, π)
such that 2a cos θ 6= b, the Cauchy differentiation formula gives

Pn(z(θ)) =
1

az(θ) + b

�

|t|=ǫ

dt

(t − t0(θ))(t − eiθ)(t − e−iθ)tn+1 .

After computing the residue of the integrand at the three nonzero simple poles
t0(θ), e±iθ, and letting the radius of the integral approach infinity, we apply similar
computations in (2.8) to conclude that θ ∈ (0, π), 2a cos θ 6= b, is a zero of Pn(z(θ))
if and only if it is a zero of

(3.4)
−1

t0(θ)n+1 + cos((n + 1)θ) +
(cos θ − t0(θ)) sin((n + 1)θ)

sin θ
.

From Lemma 3.2, it suffices to consider |b| 6= 2|a|. We note that the limits of (3.4)
as θ → 0 and θ → π are

n + 2 +
n + 1

b − 2a
+ (−1)n(b − 2a)n+1,(3.5)

(−1)n+1(n + 2) + (−1)n

(

n + 1

b + 2a
+ (b + 2a)n+1

)

(3.6)

respectively.
In the case |b| > 2|a|, (3.4) is a continuous function of θ on (0, π) and its sign

at θ = kπ/(n + 1), for 1 6 k 6 n, is (−1)k since

|t0(θ)| >
1

2|a| + |b| > 1.

By the intermediate value theorem, we obtain at least n − 1 zeros of (3.4) on
(π/(n + 1), nπ/(n + 1)). If b > 0, then (3.5) is positive since 0 < b − 2a 6 1 and we
obtain at least another zero of (3.4) on (0, π/(n + 1)). On the other hand, if b < 0,
then the inequalities

−1 < b + 2a < 0

imply that the sign of (3.6) is (−1)n+1 and we have at least another zero of (3.4)
on (nπ/(n + 1), π). We conclude that when |b| > 2|a|, (3.4) has at least n zeros on
(0, π), each of which yields a zero of Pn(z) on the interval (−2, 2) by the map z(θ).
Thus all the zeros of Pn(z) lie on (−2, 2) by the fundamental theorem of algebra.

We now consider the case |b| < 2|a|. As a function of θ on (0, π), (3.4) has
a vertical asymptote at θ = cos−1(b/2a) since t0(θ) does. By Lemma 3.2, we can
assume

cos−1 b

2a
6= kπ

n + 1
, 1 6 k 6 n.
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Thus for some 0 6 k0 6 n, the open interval

(3.7)

(

k0

n + 1
π,

k0 + 1

n + 1
π

)

contains cos−1(b/2a). We note that this interval may or may not contain a zero of
(3.4). In the case a < 0, we observe that (3.5) is positive and the sign of (3.6) is
(−1)n+1. Thus there are at least n zeros of (3.4) on the n intervals

(kπ/(n + 1), (k + 1)π/(n + 1)), for 0 6 k 6 n and k 6= k0

and we conclude that all the zeros of Pn(z) lie on (−2, 2) by the same argument
as in the previous case. On the other hand, if a > 0, then the limits (3.4) as θ
approaches the left and right of cos−1(b/2a) are

lim
θ→cos−1(b/2a)−

sin((n + 1)θ)

b − 2a cos(θ)
= (−1)k0+1∞

and

lim
θ→cos−1(b/2a)+

sin((n + 1)θ)

b − 2a cos(θ)
= (−1)k0∞,

respectively. If k0 6= 0 and k0 6= n, then we conclude that (3.7) contains at least
two zeros of (3.4). Thus we obtain at least n zeros of this expression on the n − 1
intervals (kπ/(n+1), (k +1)π/(n+1)), for 1 6 k < n. In the case k0 = 0 or k0 = n,
(3.7) contains at least one zero of (3.4) and thus there are at least n zeros of (3.4)
on the n intervals (kπ/(n + 1), (k + 1)π/(n + 1)), for 1 6 k < n and k = k0.

Necessity Here we assume |b| + 2|a| > 1 and show that not all zeros of Pn(z)
defined in (3.1) are real when n is large. From [1, Theorem 1.5], it suffices to find
z /∈ R so that |t0| = |t1| 6 |t2| where

(3.8) t0 := − 1

az + b

and t1 and t2 are the two zeros of 1 + zt + t2. To motivate the choice of z, we
provide heuristic arguments by noticing that t1t2 = 1 and letting

(3.9) t1 = t0eiθ = − eiθ

az + b

(3.10) t2 = −e−iθ(az + b).

The equation 1 + zt2 + t2
2 = 0 yields

(az + b)2 − zeiθ(az + b) + e2iθ = 0

or equivalently

(3.11) (a2 − aeiθ)z2 + (2ab − beiθ)z + b2 + e2iθ = 0.

With a choice of branch cut which will be specified later, the equation above has
two solutions

z =
−2ab + beiθ ± eiθ

√
b2 − 4a2 + 4aeiθ

2a2 − 2aeiθ

and the corresponding values for az + b are
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(3.12) az + b =
−beiθ ± eiθ

√
b2 − 4a2 + 4aeiθ

2a − 2eiθ
.

For a formal proof of the necessary condition, we consider the following cases.

Case 1: |a| 6 1. We have the inequality

b2 − 4a2 + 4|a| − (|b| + 2|a| − 2)2 = 4(1 − |a|)(2|a| + |b| − 1) > 0.

with equality if and only if |a| = 1. This implies

b2 − 4a2 + 4|a| > 0,(3.13)
√

b2 − 4a2 + 4|a| + |b| > ||b| + 2|a| − 2| + |b| > |2|a| − 2|(3.14)

with equality if and only if |a| = 1 and b = 0. We define θ ∈ (0, π) sufficiently close
to 0 or π such that eiθ is close to sign a if a 6= 0. If a = 0, we pick any θ ∈ (0, π).
With this choice of θ and the principal cut, we let

(3.15) z =















−2ab+beiθ−sign b.eiθ
√

b2−4a2+4aeiθ

2a2−2aeiθ if ab 6= 0,
ieiθ√

a2−aeiθ
if b = 0,

b2+e2iθ

beiθ if a = 0.

With this choice of z, (3.11) holds and consequently t1 and t2 defined in (3.9) and
(3.10) are the zeros of 1 + zt + t2. If a = 0, then

(3.16) |t0| = |t1| < |t2|
since |b| > 1. If b = 0 then the inequalities |a| 6 1 and (3.13) imply that |a| = 1.
As a consequence, (3.16) follows from (3.8), (3.9), (3.10), and (3.15). Finally, if
ab 6= 0, then from (3.12) and (3.14), we conclude |az + b| approaches

|b| +
√

b2 − 4a2 + 4|a|
2 − 2|a| > 1

as eiθ → sign(a). Thus from (3.9) and (3.10) there is θ ∈ (0, π) sufficiently close
to 0 or π such that |t0| = |t1| < |t2|. We also note that z /∈ R since if z ∈ R, then
the fact that t1, t2 /∈ R by (3.9) and (3.10) implies t1 = t2 which contradicts to
|t1| < |t2|.

Case 2: |a| > 1 and |b| < 1. By the intermediate value theorem there is
y ∈ (0, ∞) such that

2
√

a2y2 + b2 −
√

y2 + 4 − y = 0

since the left-hand side is 2|b| − 2 < 0 when y = 0 and its limit is ∞ when y → ∞.
With the choice z = iy, we have

|t0| =
1

|az + b| =
1

√

a2y2 + b2

and the modulus of the smaller zero of t2 + iyt + 1 is
√

y2 + 4 − y

2
=

2
√

y2 + 4 + y
= |t0|.
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Case 3: |b| > 1 and |a| > 1. If 2 + |b| > 2|a|, then with the same choice of θ
and z and the same argument as in the first case, this case follows from

∣

∣

√

b2 − 4a2 + 4aeiθ + |b|
∣

∣ > |b| > 2|a| − 2.

We now consider 2 + |b| 6 2|a|. We square both sides of 2|a| − 2 > |b| to obtain

b2 − 4a2 6 4 − 8|a| < −4|a|
which implies that, with the cut [0, ∞), the function

f(z) :=
−b +

√
b2 − 4a2 + 4az

2a − 2z

is analytic on a small region containing the closed unit ball. From the maximum
modulus principle and the fact that

|f(0)| =

∣

∣−b +
√

b2 − 4a2
∣

∣

|2a| = 1,

we conclude that there is θ ∈ R so that |f(eiθ)| > 1. With this θ, we let

z =
−2ab + beiθ + eiθ

√
b2 − 4a2 + 4aeiθ

2a2 − 2aeiθ

and apply (3.8), (3.9), (3.10), and (3.12) to conclude |t0| = |t1| < |t2|. The fact
that z /∈ R follows from the same argument as in the previous case. �

References

1. A. Sokal, Chromatic roots are dense in the whole complexplane, Combin. Probab. Comput.
13(2) (2004), 221–261.

2. D. Stankov, On linear combinations of Chebyshev polynomials, Publ. Inst. Math. (Beograd)
(N.S.) 97(111) (2015), 57–67.

3. K. Tran, Connections between discriminants and the root distribution of polynomials with

rational generating function, J. Math. Anal. Appl. 410 (2014), 330–340.
4. K. Tran, A. Zumba, Zeros of polynomials with four-term recurrence, Involve, J. Math. 11(3)

(2018), 501–518.

Department of Mathematics (Received 16 09 2019)
California State University, Fresno
California
U.S.A.
khangt@mail.fresnostate.edu

Department of Mathematics
University of California, Berkeley
California
U.S.A.
maverickzhang@berkeley.edu


	1. Introduction
	2. Sum of polynomials with three-term recurrence
	3. Linear combination of Chebyshev polynomials
	References

