
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 110(124) (2021), 11–27 DOI: https://doi.org/10.2298/PIM2123011D

A THEORY OF VARIATIONS

VIA P-STATISTICAL CONVERGENCE

Kamil Demirci, Dragan Djurčić,

Ljubiša D. R. Kočinac, and Sevda Yıldız

Abstract. We introduce some notions of variation using the statistical con-
vergence with respect to power series method. By the use of the notions of
variation, we prove criterions that can be used to verify convergence without
using limit value. Also, some results that give relations between P -statistical
variations are studied.

1. Introduction

The subject of regular variation was initiated by Jovan Karamata in 1930 in
his pioneering paper [21] (see also [20,22,23]). The theory deals with asymptotic
analysis of divergent processes and the results are very important in Tauberian
theorems. The Karamata theory was released by Bingham et al. whose book [4] is
a nice exposition of the subject (see also [18,25,29]). The concept of rapid variation
was defined and investigated by de Haan [19] in his 1970 thesis. These two concepts
motivated significant developments in asymptotic analysis. Another concept is O-
regularly varying sequences. This concept with the theory of regularly varying
functions that first appeared in [3] (see also [9]). Bojanić and Seneta [5] have
showed that Karamata’s original theory of regularly varying functions is similar
to the theory of regularly varying sequences. They also studied the properties of
regularly varying sequences without proofs. Djurčić and Božin [10] showed similar
connection for the concept O-regularly varying functions and sequences.

The idea of statistical convergence first appeared (under the name “almost
convergence”) in the first edition (1935) of the famous monograph [34] of Zygmund.
In an explicit form statistical convergence was introduced, independently, by Fast
in [15] and Steinhaus in [31], in 1951. There are many variants of statistical
convergence in the literature. Recently, Ünver and Orhan in [33] introduced another
interesting convergence method called statistical convergence with respect to a
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power series or shortly Pp-statistical convergence. Ünver and Orhan have showed
that statistical convergence and Pp-statistical convergence are different from each
other.

On the other side, Di Maio et al. introduced and studied the statistical rapid
convergence in [8]. It was the first paper dealing with variations by using sta-
tistical convergence. More recently, Dutta and Das [14] have continued such an
investigation of variation via statistical convergence. Our aim here is to define and
study Pp-statistical analogues of these concepts. We find out criterions that can be
used to verify convergence without using limit value. Also, some results that give
relations among Pp-statistical variations are studied.

2. Preliminaries

We shall be concerned initially with certain properties related to the statistical
convergence and the convergence in the sense of power series method of a sequence
x = {xn}.

Note 2.1. In what follows x = {xn}, y = {yn}, z = {zn} will denote sequences
of positive real numbers. Sometimes we simply write x or {xn} instead of x = {xn}.

As usually, N and R denote the set of natural numbers and real numbers,
respectively. By 2N and 2N + 1 denote the sets of even and odd natural numbers,
respectively, and by N0 the set N ∪ {0}.

2.1. Statistical convergence. Let E be a subset of N. The natural density

of E, denoted by δ(E), is given by

δ(E) := lim
k→∞

1

k
|{n 6 k : n ∈ E}|

whenever the limit exists, where |.| denotes the cardinality of a set [28].
A sequence x = {xn} is statistically convergent to ℓ provided that for every

ε > 0,

lim
k→∞

1

k
|{n 6 k : |xn − ℓ| > ε}| = 0

that is,

Ek(ε) := {n 6 k : |xn − ℓ| > ε}

has its natural density zero. This is denoted by st-limn xn = ℓ [7, 15, 27, 31]. It
is worth noting that every convergent sequence (in the usual sense) is statistically
convergent to the same limit, while a statistically convergent sequence need not be
convergent.

2.2. Power series method. In what follows p = {pn} will be a given non-
negative real sequence such that p0 > 0 and the corresponding power series

p(u) :=
∞

∑

n=0

pnun

has a radius of convergence Rp with 0 < Rp 6 ∞.
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The power series methods, include both Abel and Borel methods, are well
known and are more effective than ordinary convergence. We turn now to these
methods.

Let x = {xn} be a sequence of positive real numbers. If the limit

lim
0<u→R−

p

1

p(u)

∞
∑

n=0

pnunxn = ℓ

exists then we say that x is convergent in the sense of power series method [26,30].
It is worth to point out that the method is regular if and only if lim0<u→R−

p

pnun

p(u)

= 0 for every n (see, e.g. [6]).

Remark 2.1. Let us notice first that in the case of Rp = 1, it is not difficult
see that if pn = 1 and pn = 1

n+1 , the power series methods coincide with the
Abel summability method and the logarithmic summability method, respectively.
Furthermore, in the case of Rp = ∞ and pn = 1

n! , the power series method coincides
with the Borel summability method.

In this article the power series method is always assumed to be regular.

2.3. Statistical power series method. Ünver and Orhan [33] have recently
introduced Pp-statistical convergence.

Definition 2.1. [33] Let p = {pn} be a given sequence. A real sequence
x = {xn} is Pp-strongly convergent to ℓ if

lim
0<u→R−

p

1

p(u)

∞
∑

n=0

pnun|xn − ℓ| = 0.

Definition 2.2. [33] Let E ⊂ N0. If the limit

δPp
(E) := lim

0<u→R−

p

1

p(u)

∑

n∈E

pnun

exists, then δPp
(E) is said to be the Pp-density of E.

Notice that, from the definition, it follows that 0 6 δPp
(E) 6 1 whenever it

exists.

Definition 2.3. [33] A sequence x = {xn} is statistically convergent with

respect to power series method (given by a sequence p), shortly, Pp-statistically
convergent, to ℓ provided that for any ε > 0

lim
0<u→R−

p

1

p(u)

∑

n∈Eε

pnun = 0,

where Eε = {n ∈ N0 : |xn − ℓ| > ε}, that is δPp
(Eε) = 0 for any ε > 0.

In this case we write stPp- lim xn = ℓ.

The notion of statistically Cauchy sequence has been first introduced by Fridy
in [16]. In the following definitions we give the notion of Pp-statistically Cauchy
sequence, and the notion of Pp-statistical boundedness of sequences.
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Definition 2.4. A sequence x = {xn} is a Pp-statistically Cauchy sequence

provided that for every ε > 0 there exists a number N such that

lim
0<u→R−

p

1

p(u)

∞
∑

n=0

pnunχ({n ∈ N0 : |xn − xN | > ε}) = 0.

Definition 2.5. A sequence x = {xn} is Pp-statistically bounded if for some
M > 0 it holds δPp

({n : |xn| > M}) = 0.

The notions of statistical limit superior and statistical limit inferior have been
introduced by Fridy and Orhan [17]. Now, in view of this study, we can introduce
the concepts of Pp-statistical limit superior and Pp-statistical limit inferior. The
Pp-statistical limit superior of a sequence x = {xn}, denoted by stPp − lim sup xn,
is defined by

stPp − lim sup xn =

{

sup Bx, if Bx 6= ∅,
−∞, if Bx = ∅,

where Bx := {b ∈ R : δPp
({n : xn > b}) > 0 or does not exist in R}. Similarly, the

Pp-statistical limit inferior of {xn} denoted by stPp − lim inf xn, is defined by

stPp − lim inf xn =

{

inf Cx, if Cx 6= ∅,
+∞, if Cx = ∅,

where Cx := {c ∈ R : δPp
({n : xn < c}) > 0 or does not exist in R}.

Clearly,
stPp − lim inf xn 6 stPp − lim sup xn.

Also, x = {xn} is Pp-statistically bounded and stPp − lim xn = ℓ if and only if
stPp − lim inf xn = stPp − lim sup xn = ℓ.

Theorem 2.1. If β = stPp − lim sup xn is finite, then for every ε > 0

(2.1) δPp
({n : xn > β − ε}) 6= 0 and δPp;({n : xn > β + ε}) = 0.

Conversely, if (2.1) hold for every positive ε, then β = stPp − lim sup xn.

Theorem 2.2. If stPp − lim xn = ℓ1, stPp − lim yn = ℓ2, then:

(a) stPp − lim(xn + yn) = ℓ1 + ℓ2.

(b) stPp − lim(xnyn) = ℓ1ℓ2.

2.4. Regular and rapid variations. Now, we pause to collect some basic
concepts and notations about variations.

Here and throughout the paper L is always assumed to be a positive function
and (as we have already mentioned) x = {xn} is always assumed to be a positive
real sequence.

Definition 2.6. [4] Let L be a measurable function, defined on [a, ∞), a > 0.
Then we say that L is regularly varying provided that for each ζ > 0

lim
x→∞

L(ζx)

L(x)
= h(ζ) < ∞.

If (ζ) = 1 for each ζ > 0, then L is called slowly varying.
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It is known that the function h(ζ) is a power ζρ for some ρ ∈ R; the number ρ
is called the index of variability of L.

Definition 2.7. [4] A sequence x = {xn} is regularly varying provided that

lim
n→∞

x[ζn]

xn
= k(ζ) < ∞ for all ζ > 0.

If k(ζ) = 1 for each ζ > 0, then x is called slowly varying.

It is known (see [4]) that k(ζ) = ζρ for some ρ ∈ R; ρ is called the index of

variability of x.
By RVs (resp. SVs) we denote the class of regularly varying (resp. slowly

varying) sequences, and RVs,ρ stands for the class of regularly varying sequences of
index of variability ρ.

Definition 2.8. [13, 32] A sequence x = {xn} is in the class Tr(RVs) of
translationally regularly varying sequences provided that for each ζ > 1

lim
n→∞

x[n+ζ]

xn
= r(ζ) < ∞.

Theorem 2.3. [13, 24] If x = {xn} ∈ Tr(RVs), then r(ζ) = eρ[ζ] for some

ρ ∈ R.

The number ρ in the previous theorem is called the index of variability of x.
The symbol Tr(RVs,ρ) stands for the class all sequences in Tr(RVs) of index of
variability ρ.

Definition 2.9. [3] A measurable function L defined on [a, ∞), a > 0, is said
to be O-regularly varying provided that for each ζ > 0

lim sup
x→∞

L(ζx)

L(x)
= v(ζ) < ∞.

The function v(ζ), ζ > 0, is said to be the index function of L.

Definition 2.10. [3] A sequence x = {xn} is said to be O-regularly varying

provided that, for each ζ > 0

lim sup
n→∞

x[ζn]

xn
= t(ζ) < ∞.

It is evident from the definitions that every regularly varying sequence is O-
regularly varying, but the converse may not be true (see [9]).

Denote by ORVs the class of all O-regularly varying sequences.
The main features and various aspects of O)-regularly varying functions and

sequences can be found in [1,2,9,10].
A measurable function L defined on [a, ∞), a > 0, is rapidly varying of index

of variability ∞ provided that for each ζ > 1 it satisfies limx→∞
L(ζx)
L(x) = ∞.

L is said to be rapidly varying of index of variability −∞ provided that for
each ζ > 1 it satisfies limx→∞

L(ζx)
L(x) = 0.
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Definition 2.11. [11, 12] A sequence x = {xn} belongs to the class Rs,∞ of
rapidly varying sequences of index of variability ∞ provided that for each ζ > 1

lim
n→∞

x[ζn]

xn
= ∞,

or, equivalently

lim
n→∞

x[ζn]

xn
= 0 for 0 < ζ < 1.

A sequence x = {xn} is rapidly varying of index of variability −∞ provided that
for each ζ > 1 the following condition is satisfied

lim
n→∞

x[ζn]

xn
= 0.

Denote by Rs,−∞ the class of rapidly varying sequences of index of variability −∞.

3. Pp-statistical regular variations

In this section we define and study Pp-statistical regular variations for sequences
considering Pp-statistical analogues of regular variation, translational regular vari-
ation, O-regular variation.

3.1. Pp-statistical regular variation.

Definition 3.1. We say that a sequence x = {xn} is in the class PpSRVs of
Pp-statistically regularly varying sequences provided that

stPp − lim
x[ζn]

xn
= kps(ζ) < ∞ for all ζ > 0.

From the definition, it is easy to verify that every regularly varying sequence is
Pp-statistically regularly varying, but the converse may not be true as the following
example shows.

Example 3.1. Consider the sequence x = {xn} defined by

xn =

{

e
√

n, n ∈ 2N,
1, n ∈ 2N + 1.

Also, let the power series method is given with the sequence

pn =

{

0, n ∈ 2N,
1, n ∈ 2N + 1.

First observe that δPp
(2N+ 1) = 1 (and δPp

(2N) = 0), and that for the sequence p,
Rp = 1.

We have stPp − lim xn = 1.
Further, we have that for any ε > 0

lim
u→1−

1

p(u)

∑

{n∈N0:|
x[ζn]

xn
−l|>ε}

pnun = 0.

This means that x is a Pp-statistically regularly varying sequence. However, since
limn→∞

x[ζn]

xn
does not exist, x is not a regularly varying sequence.
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Definition 3.2. It is said that a sequence x = {xn} is a Pp-statistically regu-

larly varying Cauchy sequence provided that for every ε > 0 there exists a number
N (depending on ε) such that for each ζ > 0

lim
0<u→R−

p

1

p(u)

∞
∑

n=0

pnunχ
({

n ∈ N0 :
∣

∣

∣

x[ζn]

xn
−

x[ζN ]

xN

∣

∣

∣
> ε

})

= 0.

Our first result concerns regular variation and can be used to verify convergence
without using limit value.

Theorem 3.1. For a sequence x the following conditions are equivalent:

(a) x is a Pp-statistically regularly varying sequence;

(b) x is a Pp-statistically regularly varying Cauchy sequence;

(c) x is a sequence for which there is a regularly varying sequence y such that

δPp
({n ∈ N0 :

x[ζn]

xn
6=

y[ζn]

yn
}) = 0 for each ζ > 0.

Proof. Everywhere in the proof of this theorem we suppose that ζ > 0 is
arbitrary and fixed.

(a) ⇒ (b) Let stPp − lim
x[ζn]

xn
= kps(ζ) and ε > 0. Then

δPp

({

n ∈ N0 :
∣

∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

∣
<

ε

2

})

= 1.

Choose N = N(ε) so that |
x[ζN ]

xN
− kps(ζ)| < ε

2 . The triangle inequality now yields

δPp

({

n ∈ N0 :
∣

∣

∣

x[ζn]

xn
−

x[ζN ]

xN

∣

∣

∣
< ε

})

= 1.

Since ε was arbitrary, x is a Pp−statistically regularly varying Cauchy sequence.

(b) ⇒ (c) Choose N so that the closed interval I = [
x[ζN ]

xN
−1,

x[ζN ]

xN
+1] contains

x[ζn]

xn
for n belonging to the set of all k satisfying δPp

({k ∈ N0 :
x[ζk]

xk
∈ I}) = 1.

Also, choose M so that the interval I ′ = [
x[ζM]

xM
− 1

2 ,
x[ζM]

xM
+ 1

2 ] contains
x[ζn]

xn
for

n belonging to the set of all k satisfying δPp
({k ∈ N0 :

x[ζk]

xk
∈ I ′}) = 1. We

claim that I1 = I ∩ I ′ contains
x[ζn]

xn
for n belonging to the set of all k for which

δPp
({k ∈ N0 :

x[ζk]

xk
∈ I1}) = 1.

Since
{

n ∈ N0 :
x[ζn]

xn
/∈ I1

}

=
{

n ∈ N0 :
x[ζn]

xn
/∈ I

}

∪
{

n ∈ N0 :
x[ζn]

xn
/∈ I ′

}

,

we have

δPp

({

n ∈ 0N0 :
x[ζ]

xn
/∈ I1

})

6 δPp

({

n ∈ N0 :
x[ζn]

xn
/∈ I

})

+ δPp

({

n ∈ N0 :
x[ζn]

xn
/∈ I ′

})

= 0.

Therefore, I1 is a closed interval of length less than or equal to 1 which contains
x[ζn]

xn
for n belonging to the set of all k with δPp

({k ∈ N0 :
x[ζk]

xk
∈ I1}) = 1.

We proceed by choosing N ′1 so that I ′′ = [
x[ζN′]

xN′

− 1
4 ,

x[ζN′]

xN′

+ 1
4 ] contains

x[ζn]

xn

belonging to the set of all k satisfying δPp
({k ∈ N0 :

x[ζk]

xk
∈ I ′′}) = 1 and by a
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similar argument I2 = I1 ∩ I ′′ contains
x[ζn]

xn
for n from the set of all k satisfying

δPp
({k ∈ N0 :

x[ζk]

xk
∈ I2}) = 1, and I2 has length not greater than 1

2 .
Continuing in this way, we inductively can construct a sequence {Im}∞

m=1 of
closed intervals having the properties:

(i) for each m, Im+1 ⊆ Im;
(ii) the length of Im is less than or equal to 21−m;
(iii) Im contains

x[ζn]

xn
for n belonging to the set of all k satisfying

δPp

({

k ∈ N0 :
x[ζk]

xk
∈ Im

})

= 1.

By the well-known Nested Intervals Theorem there exists a real number, say, µ
such that {µ} =

⋂∞
m=1 Im. By construction of Im’s we can choose an increasing

sequence {Pm}∞
m=1 such that

(3.1)
1

p(u)

∞
∑

n=0

pnunχ
({

n ∈ N0 : n > Pm,
x[ζn]

xn
/∈ Im

})

<
1

m
.

Define a subsequence z of x consisting of all terms xn such that

n > P0 and Pm < n 6 Pm+1 then
x[ζn]

xn
/∈ Im.

Let y = {yn} defined by

y[ζn]

yn
=

{

µ, if xn is a term of z,
x[ζn]

xn
, otherwise.

Then for each ζ > 0, limn→∞
y[ζn]

yn
= µ. For if Pm < n and 0 < 1

m < ε, then either

xn is a term of z, namely,
y[ζn]

yn
= µ, or

y[ζn]

yn
=

x[ζn]

xn
∈ Im and |

y[ζn]

yn
− µ| is not

greater than the length of Im.
Next, we assert that

x[ζn]

xn
=

y[ζn]

yn
for n that belongs to the set of all k satisfying

δPp
({k ∈ N0 :

x[ζk]

xk
=

y[ζk]

yk
}) = 1. We note at this point that for Pm < n 6 Pm+1,

we have
{

n ∈ N0 :
x[ζn]

xn
6=

y[ζn]

yn

}

⊆
{

n ∈ N0 :
x[ζn]

xn
/∈ Im

}

.

This implies

1

p(u)

∞
∑

n=0

pnunχ
({

n ∈ N0 :
x[ζn]

xn
6=

y[ζn]

yn

})

6
1

p(u)

∞
∑

n=0

pnunχ
({

n ∈ N0 :
x[ζn]

xn
/∈ Im

})

<
1

m
(by (3.1)).

Taking 0 < u → R−
p , we get

lim
0<u→R−

p

1

p(u)

∞
∑

n=0

pnunχ
({

n ∈ N0 :
x[ζn]

xn
6=

y[ζn]

yn

})

= 0,

i.e.,
x[ζn]

xn
=

y[ζn]

yn
for n in the set of all k such that δPp

({

k ∈ N0 :
x[ζk]

xk
=

y[ζk]

yk

})

= 1.
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(c) ⇒ (a) Let (c) be satisfied, i.e.
x[ζn]

xn
=

y[ζn]

yn

for n in the set of all k satisfying

δPp

({

n ∈ N0 :
x[ζk]

xk
=

y[ζk]2

yk

})

= 1 and lim
n→∞

y[ζk]

yk
= kps(ζ).

Let ε > 0. Then
{

n ∈ N0 :
∣

∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

∣
> ε

}

⊆
{

n ∈ N0 :
x[ζn]

xn
6=

y[ζn]

yn

}

∪
{

n ∈ N0 :
∣

∣

∣

y[ζn]

yn
− kps(ζ)

∣

∣

∣
> ε

}

Therefore, δPp

({

n ∈ N0 :
∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣ > ε
})

= 0, which means that x is a
Pp-statistically regularly varying sequence. �

By Theorem 3.1 and observation after Definition 2.7, it is straightforward to
get the following result.

Corollary 3.1. If a sequence x is such that stPp
− lim

x[ζn]

xn
= kps(ζ), ζ > 0,

then x has a subsequence y = {yn} such that limn→∞
y[ζn]

yn
= kps(ζ) and kps(ζ) =

ζρ, for some ρ ∈ R.

Now, we give a decomposition theorem for Pp-statistically regularly varying
sequences.

Theorem 3.2. The following conditions for a sequence x are equivalent:

(a) stPp − lim
x[ζn]

xn
= kps(ζ) < ∞ for each ζ > 0;

(b) There are sequences y = {yn} and z = {zn} such that
x[ζn]

xn
=

y[ζn]

yn
+

z[ζn]

zn
,

limn→∞
y[ζn]

yn
= kps(ζ) and δPp

(

supp
z[ζn]

zn

)

= 0, where supp(z) =
{

n ∈

N0 :
z[ζn]

zn
6= 0

}

.

Proof. Throughout the proof we assume that ζ > 0 is arbitrary (and fixed).
(a) ⇒ (b) Since (a) is satisfied, there exists a set K = {n0 < n1 < n2 < · · · <

nk < . . . } ⊂ N with δPp
(K) = 1, such that limn→∞

x[ζn]

xn
= kps(ζ). Now define the

sequence y = {yn} as

(3.2)
y[ζn]

yn
=

{

x[ζn]

xn
, n ∈ K,

kps(ζ), n ∈ N0 r K.

It can be easily seen that limn→∞
y[ζn]

yn
= kps(ζ). Further, put

z[ζn]

zn
=

x[ζn]

xn
−

y[ζn]

yn
,

n ∈ N0. It is evident from {n ∈ N0 :
x[ζn]

xn
6=

y[ζn]

yn
} ⊂ N0 rK and δPp

(N0 rK) = 0,

we have δPp
({n ∈ N0 :

z[ζn]

zn
6= 0}) = 0. It follows that δPp

(

supp
z[ζn]

zn

)

= 0 and
x[ζn]

xn
=

y[ζn]

yn
+

z[ζn]

zn
.

(b) ⇒ (a) Now suppose that there exist two sequences y = {yn} and z = {zn}
such that

x[ζn]

xn
=

y[ζn]

yn
+

z[ζn]

zn
, limn→∞

y[ζn]

yn
= kps(ζ) and δPp

(

supp
z[ζ]

zn

)

= 0, where

supp(z) = {n ∈ N0 :
z[ζn]

zn
6= 0}. We will prove that stPp − lim

x[ζn]

xn
= kps(ζ).
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Define K = {nk} to be a subset of N0 such that K = {n ∈ N0 :
z[ζn]

zn
= 0}. Since

δPp

(

supp
z[ζn]

zn

)

= 0, we have δPp
(K) = 1, hence

x[ζn]

xn
=

y[ζn]

yn
if n ∈ K. Thus, we

conclude that there exists a set K = {n0 < n1 < n2 < . . . } with δPp
(K) = 1 such

that limk→∞
x[ζnk]

xnk

= kps(ζ). Hence, we get the result. �

Corollary 3.2. Let x = {xn} be a sequence of positive real numbers. Then,

stPp − lim
x[ζn]

xn
= kps(ζ), ζ > 0, if and only if there exist y = {yn} and z = {zn}

such that
x[ζn]

xn
=

y[ζn]

yn
+

z[ζn]

zn
, limn→∞

y[ζn]

yn
= kps(ζ) and stPp − lim

z[ζn]

zn
= 0.

Proof. Let
z[ζn]

zn
=

x[ζn]

xn
−

y[ζn]

yn
, where {yn} is the sequence defined by (3.2).

Then limn→∞
y[ζn]

yn
= kps(ζ) and Theorem 2.2, we conclude that stPp

−lim
z[ζn]

zn
= 0.

Let
x[ζn]

xn
=

y[ζn]

yn
+

z[ζn]

zn
, where limn→∞

y[ζn]

yn
= kps(ζ) and stPp− lim

z[ζn]

zn
= 0. Since

stPp − lim
y[ζn]

yn
= kps(ζ), then by Theorem 2.2 we get stP − lim

x[ζn]

xn
= kps(ζ). �

By Theorem 2.1, we get the following result.

Theorem 3.3. If η(ζ) = stPp − lim sup
x[ζn]

xn
is finite for each ζ > 0, then for

every ε > 0

(3.3) δPp

({

n :
x[ζn]

xn
> η(ζ) − ε

})

6= 0 and δPp

({

n :
x[ζn]

xn
> η(ζ) + ε

})

= 0.

Conversely, if (3.3) holds for every positive ε, then η(ζ) = stPp − lim sup
x[ζn]

xn
for

each ζ > 0.

Theorem 3.4. If γ(ζ) = stPp − lim inf
x[ζn]

xn
is finite for each ζ > 0, then for

every ε > 0

(3.4) δPp

({

n :
x[ζn]

xn
< γ(ζ) + ε

})

6= 0 and δPp

({

n :
x[ζn]

xn
< γ(ζ) − ε

})

= 0.

Conversely, if (3.4) holds for every positive ε, then γ(ζ) = stPp − lim inf
x[ζn]

xn
for

each ζ > 0.

Definition 3.3. A sequence x = {xn} is Pp-statistically RV-bounded provided
that for each ζ > 0 there is a number B such that δPp

({

n :
x[ζn]

xn
> B

})

= 0.

Theorem 3.5. The Pp-statistically RV-bounded sequence x is Pp-statistically

regularly varying if and only if

stPp − lim inf
x[ζn]

xn
= stPp − lim sup

x[ζn]

xn
for ζ > 0.

Proof. Let η(ζ) = stPp − lim sup
x[ζn]

xn
for each ζ > 0 and γ(ζ) = stPp −

lim inf
x[ζn]

xn
for each ζ > 0. Assume that stPp − lim

x[ζn]

xn
= kps(ζ) and ε > 0. Then

δPp

({

n ∈ N0 :
∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣ > ε
})

= 0, so δPp

({

n :
x[ζn]

xn
> kps(ζ) + ε

})

= 0,

which implies η(ζ) 6 kps(ζ), ζ > 0. We also have δPp

({

n :
x[ζn]

xn
< kps(ζ)−ε

})

= 0,
which implies that kps(ζ) 6 γ(ζ), ζ > 0. Therefore η(ζ) 6 γ(ζ), ζ > 0. Using
the fact that γ(ζ) 6 η(ζ) always holds, we can conclude that η(ζ) = γ(ζ) for each
ζ > 0.
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Next, suppose that η(ζ) = γ(ζ), ζ > 0, and define kps(ζ) = γ(ζ), ζ > 0. If
ε > 0, then from (3.3) and (3.4) of Theorem 3.3 and Theorem 3.4, respectively, we
have

δPp

({

n :
x[ζn]

xn
> kps(ζ) +

ε

2

})

= 0 and δPp

({

n :
x[ζn]

xn
< kps(ζ) −

ε

2

})

= 0.

Hence, stPp − lim
x[ζn]

xn
= kps(ζ). �

3.2. Pp-statistical translational regular variation. In this subsection we
define Pp-statistically translationally regularly varying sequences, give some exam-
ples and prove results relate to this kind of sequences.

Definition 3.4. We say that a sequence x = {xn} belongs to the class
PpSTr(RVs) of Pp-statistically translationally regularly varying sequences provided
that for each ζ > 1

stPp − lim
x[n+ζ]

xn
= rps(ζ) < ∞.

It is clear from the definition that if a sequence is in the class Tr(RVs), then it
belongs to the class PpSTr(RVs). However, by the following example, the converse
is not true in general.

Example 3.2. Consider the sequence x = {xn} defined by

xn =

{

n!, n ∈ 2N,
1, n ∈ 2N + 1.

Take the sequence p = {pn} defined by

pn =

{

0, n ∈ 2N,
1, n ∈ 2N + 1.

Clearly, Rp = 1, and rps(ζ) = 1.
For ζ > 1 and ε > 0 set

Eε =
{

n ∈ N0 :
∣

∣

∣

x[ζ+n]

xn
− 1

∣

∣

∣
> ε

}

.

Since for ζ > 1

lim
u→1−

1

p(u)

∑

n∈Eε

pnun = 0

we obtain
stPp − lim

x[n+ζ]

xn
= 1,

that is, the sequence x is Pp-statistically translationally regularly varying. As for
ζ > 1 limn→∞

x[n+ζ]

xn
does not exist, the sequence x is not translationally regularly

varying.

Definition 3.5. It is said that a sequence x = {xn} is a Pp-statistically trans-

lationally regularly varying Cauchy sequence if for each ε > 0 there exists a number
N = N(ε) such that for each ζ > 0

lim
0<u→R−

1

p(u)

∞
∑

n=0

pnunχ
({

n ∈ N0 :
∣

∣

∣

x[n+ζ]

xn
−

x[N+ζ]

xN

∣

∣

∣
> ε

})

= 0.
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We omit the proof of the following theorem because it is similar to the proof
of Theorem 3.1

Theorem 3.6. For a sequence x the following conditions are equivalent:

(a) x is a Pp-statistically translationally regularly varying sequence;

(b) x is a Pp-statistically translationally regularly varying Cauchy sequence;

(c) x is a sequence for which there is translationally regularly varying sequence

y such that δPp

({

n ∈ N0 :
x[ζ+n]

xn
6=

y[ζ+n]

yn

})

= 0 for each ζ > 1.

It is a simple matter to see that, by Theorem 3.6 and Theorem 2.3, we have
the following result.

Corollary 3.3. If a sequence x = {xn} is Pp-statistically translationally reg-

ularly varying to rps(ζ), ζ > 1, then x has a subsequence y = {yn} which is trans-

lationally regularly varying to rps(ζ) and rps(ζ) = eρ[ζ], ζ > 1, for some ρ ∈ R.

By PpSTr(RVs,ρ) we denote the class of all Pp-statistically translationally reg-
ularly varying sequences of index of variability ρ.

The following theorem is a Pp-statistical generalization of [13, 3.6].

Theorem 3.7. A sequence x = {xn} ∈ PpSTr(RVs,ρ), ρ ∈ R, if and only if

xn = x0 · e
∑

n−1

i=0
ai , n > 1,

where {an} is a real sequence such that stPp − lim ean = eρ and a0 > 0.

Proof. Let x = {xn} ∈ PpSTr(RVs,ρ), ρ ∈ R. Immediate, by Corollary 3.3,
we get

stPp − lim
xn+1

xn
= rps(1) = eρ < ∞,

which means that there is a sequence {bn} of positive real numbers such that

stPp − lim bn = rps(1) and
xn+1

xn
= bn, n ∈ N0.

Also, for n > 0, we have xn+1 = bnxn = bnbn−1 . . . b0x0. Now, putting ai = ln bi,
i ∈ N0, we have stPp − lim ean = stPp − lim bn = eρ, and for each n ∈ N0 we get

xn+1 = x0 · e
∑

n

i=0
ai namely, for each n > 1

xn = x0 · e
∑

n−1

i=0
ai , where stPp − lim ean = eρ.

For the converse part, we assume that xn = x0 · e
∑

n−1

i=0
ai , n > 1, where

stPp − lim ean = eρ holds. Then, we have

rps(1) = stPp − lim
xn+1

xn
= stPp − lim ean = eρ.

Therefore, for each ζ > 1

stPp − lim
x[n+ζ]

xn
= rps(ζ) = eρ[ζ].

Hence, x = {xn} ∈ PpSTr(RVs,ρ). �
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3.3. Pp-statistical O-regular variation. This subsection deals with Pp-
statistically O-regular variation for sequences.

Definition 3.6. We say that a sequence x = {xn} is Pp-statistically O-

regularly varying provided that for each ζ > 0

stPp − lim sup
x[ζn]

xn
= tps(ζ) < ∞.

By PpSORVs we denote the class of all Pp-statistically O-regularly varying
sequences.

It is easy to verify that

lim inf
n→∞

xn 6 stPp − lim inf xn 6 stPp − lim sup xn 6 lim sup
n→∞

xn.

Moreover, every O-regularly varying sequence is also Pp-statistically O-regularly
varying. Example 3.1 shows that the converse need not be true.

Problem 3.1. Find out a suitable definition of Pp-statistically O-regularly

varying Cauchy sequences. Would a theorem similar to Theorem 3.1 hold in such

a case?

4. Pp-statistical rapid variation

In this section we discuss Pp-statistical rapid variation in the spirit of the
previous section.

Definition 4.1. It is said that a sequence x = {xn} is Pp-statistically rapidly

varying of index of variability ∞ provided that for each ζ ∈ (0, 1)

stPp − lim
x[ζn]

xn
= 0.

The symbol PpSRs,∞ stands for the class of Pp-statistically rapidly varying
sequences of index of variability ∞.

Example 4.1. There is Pp-statistically rapidly varying sequence of index of
variability ∞ which is not rapidly varying (of index of variability ∞).

The power series corresponding to the sequence p = {pn} defined by

pn =

{

0, n ∈ 2N,
1, n ∈ 2N + 1.

has the radius of convergence Rp = 1. We prove that the sequence x = {xn}
defined by

xn =

{

n, n ∈ 2N,
en, n ∈ 2N + 1

is a required sequence. For 0 < ζ < 1 and any ε > 0 we have

lim
u→1−

1

p(u)

∑

{n∈N0:
x[ζn]

xn
>ε}

pnun = 0,
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i.e.

stPp − lim
x[nζ]

xn
= 0, 0 < ζ < 1.

Therefore, the sequence x is Pp-statistically rapidly varying. Since for ζ ∈ (0, 1)
limn→∞

x[ζn]

xn
does not exist, the sequence x is not rapidly varying.

Definition 4.2. It is said that a sequence x = {xn} is a Pp-rapidly varying

Cauchy sequence if for each ε > 0 there exists a number N = N(ε) such that for
each ζ ∈ (0, 1)

lim
0<u→R−

p

1

p(u)

∞
∑

n=0

pnunχ
({

n ∈ N0 :
∣

∣

∣

x[ζn]

xn
−

x[ζN ]

xN

∣

∣

∣
> ε

})

= 0.

By a small modification in the proof of Theorem 3.1 one can prove the following
result.

Theorem 4.1. For a sequence x the following conditions are equivalent:

(a) x is a Pp-statistically rapidly varying sequence;

(b) x is a Pp-statistically rapidly varying Cauchy sequence;

(c) x is a sequence for which there is a rapidly varying sequence y such that

δPp

({

n ∈ N0 :
x[ζn]

xn
6=

y[ζn]

yn

})

= 0 for each ζ ∈ (0, 1).

5. Relation between Pp-statistical variation and Pp-strong variation

In this final section we introduce the definition of Pp-strongly q-regularly vary-
ing sequences and give a relation between Pp-statistically regularly varying se-
quences and Pp-strongly q-regularly varying sequences.

Definition 5.1. Let q be a positive real number. Then a sequence x = {xn}
is said to be a Pp-strongly q-regularly varying sequence if for each ζ > 0 it satisfies
the condition

lim
0<u→R−

p

1

p(u)

∞
∑

n=0

pnun
∣

∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

∣

q

= 0.

We denote the set of all Pp-strongly q-regularly varying sequences by sPpRVs,q.

Remark 5.1. If 0 < q1 6 q2 < ∞, then sPpRVs,q2
⊆ sPpRVs,q1

and sPpRVs,q ∩
RVb∞ = sPpRVs,1 ∩ RVb∞, where RVb∞ is the space of all RV-bounded sequences
of positive real numbers.

The main result in this section is the following theorem.

Theorem 5.1. Let q be a positive real number. Then:

(a) If a sequence x = {xn} is Pp-strongly q-regularly varying, then it is Pp-

statistically regularly varying;

(b) sPpRVs,q ∩ RVb∞ = PpSRVs ∩ RVb∞.

Proof. In the proof of the theorem we suppose that ζ > 0 is arbitrary and
fixed.
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(a) Let Eε(q) =
{

n ∈ N0 :
∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

q
> ε

}

. Since x is Pp-strongly
q-regularly varying, we have

0 = lim
0<u→R−

p

1

p(u)

∞
∑

n=0

pnun
∣

∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

∣

q

= lim
0<u→R−

p

1

p(u)

{

∑

n∈Eε(q)

pnun
∣

∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

∣

q

+
∑

n/∈Eε(q)

pnun
∣

∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

∣

q
}

> lim
0<u→R−

p

1

p(u)

∑

n∈Eε(q)

pnunε.

Therefore, x is Pp-statistically regularly varying.

(b) Denote Fε(q) =
{

n ∈ N0 :
∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣ >
(

ε
2

)
1
q
}

. Since x is a RV-

bounded sequence, M =
∣

∣

x[ζn]

xn

∣

∣ +
∣

∣kps(ζ)
∣

∣, ζ > 0, is finite.
Since x is also a Pp-statistically regularly varying sequence, for all u ∈ (0, Rp)

we have
1

p(u)

∑

n∈Fε(q)

pnun <
ε

2M q
.

Now, for all u ∈ (0, Rp), for each ζ > 0 we have

1

p(u)

∞
∑

n=0

pnun
∣

∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

∣

q

=
1

p(u)

{

∑

n∈Fε(q)

pnun
∣

∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

∣

q

+
∑

n/∈Fε(q)

pnun
∣

∣

∣

x[ζn]

xn
− kps(ζ)

∣

∣

∣

q
}

<
1

p(u)
p(u)

ε

2M q
M q +

1

p(u)
p(u)

ε

2
= ε.

Hence, x is Pp-strongly q-regularly varying. �
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