THE BUCKLING OF THIN CYLINDRICAL SHELLS
UNDER AXIAL COMPRESSION*

by
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SUMMARY — The value of the compressive stress at which a thin
circular cylindrical shell becomes unstable was worked out theoretically by
Southwell. Suhsequent experimental results, however, indicated that this result
was appreciably too high, and von Karman and Tsien [4] have shown
that a thin cylindrical shell can be maintained in a buckled state by a com-
pressive load considerably smaller than that previously predicted by theory.

The present paper is an extension of the work of von Karman and
Tsien, and shows that the smallest load which will keep a thin circular cylin-
"drical shell in a buckled condition is about one third of that given by Southwell.

1. INTRODUCTION

The value of the compressive stress at which a thin circular cylindrical
shell becomes unstable has been worked out theoretically by Southwell [1].
Subsequent experimental results, however, have indicated that this value
is appreciably too high and that the form of distortion which occurs in
practice differs from that assumed in theory. In the latter the buckles are
alternately inwards and outwards and of equal size, whereas in experiment,
buckling is always directed inwards and the buckles are of diamond shape.

In recent years much work has been done on this problem in Ame-
rica, where Lundquist [2] and Donnell [3] have concluded that the
buckling of a cylindrical shell is greatly influenced by initial irregularities,
and the value obtained by Southwell is therefore only correct for a per-
fectly formed cylinder. As in practice no cylinder is completely free from

* This paper was presented at the Sixth International Congress of Applied Mechanics
held in Parls in September 1946, but has never been published. Much of the material in
this paper has appeared as A.R.C.R. & M. No 2190. Leggett & Tones, The behaviour
of a cylindrical shell under axial compression when the buckling load has been exceeded.
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slight imperfections, they further concluded that the way to obtain a more
satisfactory criterion for instability was to investigate the behaviour of the
cylinder after buckling. Such an investigation has since been made by von
Karman and Tsien [4,5] who have indicated theoretically that a thin
cylindrical shell can be maintained in a buckled state by a compressive
load considerably smaller than that previously predicted by theory. This
paper extends the work of von Karman and Tsien.

2. STATEMENT OF PROBLEM AND METHOD OF SOLUTION

The problem investigated is the initial buckling and post buckling
behaviour of a thin and unstiffened circular cylindrical shell subjected to
uniformly distributed axial compression. It is assumed that the thickness

of the cylinder wall 24 is constant, and that the ratio of
o by | cylinder length / to cylinder radius r, is sufficiently large
for the conditions of support at the ends of the cylinder
to be unimportant. A further and very important assumption
is that the stresses in the shell are always within the elastic
@ range of the material of which the shell is made.
~=5 - The generator, line of curvature, and inward drawn
normal through a point in the middle surface of the unde-
 formed shell are taken as axes. Referred to these, the co-
<:>f‘ ordinate displacements of any point in the middle surface
Pty it are denoted by u, v, w; and the components of strain,

Fig. 1 components of stress, and corresponding stress resultants

by ey, &, Yiy; Ox» Oy» Txy; a0d Ne, Ny, Nyy.

Referred to these same axes, the equilibrium conditions which the
stress resultanfs must satisfy are

*__’.‘.4.__._{,,.0, ]
0x oy M
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—2 + 2L =0, 2
ox dy @
iltw Pw 1 dw
4o = N, =2 ey —— + N[ — + —1, 3
DViw = Ne G + 2Ny 55 ”(r +ay=) @)

where E is Young’s modulus, v is Poisson’s ratio, and D is the flexural
rigidity, i. e. 2ER%/3 (1 —v%). Moreover the following relations hold between
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the displacements, components of strain, and components of stress,
ou 1 [0w\?
s (3

dx 2 \ox
6 = 1[0y @ A
i’ dy 2(ay) r (4)
ny=@+6v dw dw

dy ox | ox oy’
Eg, =0 ~ vy,
Eey =0, - vo,, 5)
Exy =2(1+9) txy.
I the components of stress are related to a stress function ¢ so that
2 2 2
A i NP i (6)
0y? 0x 0y 0x?
equations (1) and (2) are satisfied identically, and the problem reduces to
that of solving, subject to appropriate boundary conditions, the two equations

2 2 2 2 2 2
DVéw = 24 {MQE_Q.?_Q_Q+6_¢_@(<‘1‘_"+_I_)}’ %)
dy? ox? d0xdy 0xdy  0x2\ody? r

Ox

8)

V“qb=E{< 02(1))2 6%6%}__1;"__6_29

dx dy N 5}28—2 roox®’

To obtain an exact solution of these two equations is extremely
difficult, so recourse is had to the following approximate method which
uses a minimum strain energy condition in place of equation (7). A form
for w is chosen, which includes a number of parameters and which is a
good approximation to the type of distortion observed in practice. The
stress function ¢ is obtained from equation (8), and the parameters are
then found by applying the static analogue of Kelvin’s minimum energy
theorem.

The expression assumed for w is

w = A cos My + mx) cos A (y—mx) + B {cos A (y + mx)
+cosh(y—mx)} + C,

where A, B, C, A and m are parameters to be determined. The reason
for choosing this particular form is that, when A and C are zero, (9)
reduces to

&)

w = 2B cos Amx cos Ay, (10)
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which represents a system of axial and circumferential waves, and is the
theoretically exact form of distortion for the case of initial buckling. When
A is equal to B, (9) reduces to

w=4B cos2-§u(y+mx) cosz—-g}i(y— mx) + a constant, (11)

which represents a system of diamond shaped buckles of a kind which is
known to occur when buckling is well developed. The experimental fact
that the cylinder always buckles inwards is taken into account by the
periodic terms in (11) being squared.

Substituting for w in (8), a particular integral for ¢ is

2
- E [A2 ™ cos 2umx cos 22y + AB { €OS AmX COS Ay

4 (14 m2y (1 +m??

2 y4
+ 2m cos Amx cos 3hy + __2m cos 3Amx cos Ay}
(94 m2)? (1+9 m?)?

(12)

cos 2xmx

1 m? A 1
+Bz{—cos21mx . — €OS 2A }~—~—
8 m? * s YT T 8 em

2
_B_2m €08 Amx cos ky],

rAT(1+ mY)

and the complementary function is

T T S R
9 y xy 5 Px

+ ¥ {(As cosh sy + B sinh sy) + y (E; cosh sy + F, sinh sy)} cossx  (13)
s
+ 3 {(Cs cosh sy + Dy sinh sy) + y (Gs cosh sy + H, sinh sy)} sin sx,

where p,, p,, and g,, are the average values of the direct and shear stresses,
and the A’s, B's, C’s, D’s, E’s, F's, G’s and H’s are arbitrary constants.

The expression (13) can now be greatly simplified, for since ¢ must
be periodic and the externally applied load consists solely of forces acting
parallel to the x axis, p, is the only constant which does not vanish,
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From (6) the stresses in the middle surface are as follows:

232 A2 242
Oy = EmEa A% cos 2amx cos 2hy + EAB AmiAE COS Amx €OS Ay
1+ m?)? (1 +m?)2
232 232
18 m* A2 €os Amx ¢cos 3Ay + _2mA €0s 3\mx cos }\y}
(9 +m?)? (1 +9 m2)? -
}\2 2 p2 2
+ % cos 20y — %—— COS AmX COS Ay + Py,
+m*)2r
2 3 2 2 3
Tyy = ENm’ A% sin 2\mx sin 2Ay + EAB{ 427 m sin A mx sin Ay
(1 +m?? (1+m?)?
2 3 2 8
+ S m sin Amx sin 3Ay + _OMM in 3\ mx sin Ay
(9 + m?)? (149 m?)?
8
_ 2EmB sin Amx sin Ay,
(1+m?)?r
EX2m* A2 402 m
6, = ————— €08 2\mx cos 2hy + EAB {———— €08 Mmx COS Ay
T (14m)e (1 +m?)?
2 me 2 4
2Amt Cos Amx cos 3y + wls—}\L cos 3Amx cos ky}
(9 + m?)> (1+9 m?)?
A2 B2 4
+ EN B cos 2amx — g—A cos 2amx — HQJE% €OS Amx COS Ay .
r +m r

From (4), (5) and the above expressions for the stresses, it is possible to
deduce expressions for z and v. They are, however, extremely cumbersome,
so only those terms which are not periodic in x and y are set down in
full in what follows:

A2 m? -
1 }+ terms periodic in x and y, (14)

Px 2
u=x}{— — (A% + 2B*
{E ( )

2
V= {—rg- - % - (A% + 2B?) %} + terms periodic in x and y. (15)

From (14) and (15) there follow two equations. Denoting by e the average
overall compressive strain

. 2 2
%’i ~ (A*+2BY) le S (16)
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and since v is essentially periodic

C vy 2 o A
p E (A% 4 2B%) 1 0. (17)
Equation (16) gives an essential relation betwen p, and e, while (17)
determines C.

The next step is to evaluate the mean strain energy W per unit
area of middle surface of cylinder. According to well established theory
this is given by

— ff[ei+2vexey+e§+ (Cad) Yidexdy+
(1- ) 2
(18)

ff{(a2w azw) _2(1_v)[63w 62(0_( 2w )z}dxdy.
ox? ox2  9y? ox oy

Then from (5) and (6), and since

ff o 0% _( 0w )2 dx dy = 0,
ox% dy? dx dy

W can be expressed in the simplified form
2 2 624) 624) az(p 2
—2(1+ —( ) }d d
E ff[( 8x2 ) ( v)[ dax2  oy? 0x Jy ] T

B 2o e

Introducing the non-dimensional quantltxes o, B, v, 8, 2 and p,, defined
by the relations

A = ah, )\Zzi,
rh
B=—ph, o=,

equation (16) is

Pe— (a+ 23*)"—’:2— - -¢, (20)
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and the expression (19) is

Eh® mt 4m* mt mt
ot — + (12 2 + )
r? { { 4(1 + m%? B ( (1 + m?)? + (9 + m?)? (1 + 9m2?

4(14{“) 2 212 12
+pl 45(2(1+m4)a +(1 +m2p )] @1)

~tap| <ﬁ73] [ + 0 ] )

where the value 0.25 has been given to v throughout, Substituting for
Px from (20) in (21), W is finally given by

W_@wyaﬂ@+_1i_}
re (16 4(1 + m3)2)
4 4 4
4m + m n m ]
(L+m2  (9+m)?  (1+9m)e

+a2(32{

.l.ig_’,”_] 45{2(1+m‘)u+(1+m2)5’}] (22)

[ (5 ) (2o

o +2).

(1 + m2)

+;34{

Apart from known constants, W is expressed in terms of the imposed
compressive strain &, and the variable parameters «, B, 0 and m: it now
remains to find these parameters in terms of . For a given compressive
strain, the static analogue of Kelvin’s minimum energy theorem requires
the cylinder to take up that particular form which makes the strain energy
a minimum. For small changes in the parameters it follows that S W is
zero, and hence that

oW oW

—- =0, (23 — =0, (25
oa (23) a0 (29)
ow ow

— =0, (24 — =0, (26
28 (24) Fym (26)
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The detailed solution of these equations is extremely laborious and
attention is confined to outlining the method. An essential point to notice
is that it is not necessary to solve equations (23) to (25) for «, §, 6 and
m in terms of 2. To solve for &, 8,0 and m in terms of a amounts o
the same thing and is considerably easier. From (23) to (25) it is possible
to eliminate  and B and thus obtain an equation in «, 8, and m, and the
problem now reduces to finding the value of m which corresponds to any
particular value of «. This is done by taking a number of values for m,
and substituting the corresponding values of B, 6 and & in the left hand
side of equation (26). After a little trial and error it is possible to find
the approximate value of m, and the correct value — that for which the
left hand side of (26) vanishes — can then be found by interpolation.

3. COMPARISON WITH METHOD OF SOLUTION OF VON KARMAN AND TSIEN

Throughout the first part of this paper, the method used is similar
to von Karman and Tsien’s; the same basic form is assumed for the
distortion of the middle surface, and an analogous expression is obtained
for the strain energy. Thereafter, however, the present treatment is more
general. For von Karman gives arbitrary values to the two parameters
(A, m) which fix the shape of the buckles, and then determines the two
remaining parameters (a«, ) which decide the amplitude of the buckles
by making the strain energy stationary. Whereas here all four parameters
are found by msking the strain energy stationary. The importance of
this difference in method is due to the fact that the form of distortion
assumed for the middle surface is only approximately correct, so that the
equation of equilibrium for motion normal to the middle surface is not
satisfied exactly. Accordingly, in addition to the uniformly distributed end
load, constraining forces must be applied to the curved surface of the
cylinder in order to maintain the assumed form of distortion. For a given
amount of overall strain, the magnitude and distribution of these constrain-
ing forces, which vary with the parameters N and m, will affect the
magnitude of the end load; and von Karman’s results suggest that for a
given value of the overall ‘strain, the correct values to take for A and m
are those which make the end load a minimum. -

From Fig.5 of von Karman’s paper (reproduced here except for the
heavy curve as Fig. 4), it can be deduced that this criterion is inconsistent
with the condition that the strain energy is stationary, and that it is therefore
unsound. The figure referred to shows how, for a given value of m, and
for a number of particular values of A, the load applied to the two ends
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of the cylinder varies with the average overall strain. There is a different
stress strain curve for each A, and OACD in Fig. 2 represents a typical
member of the family, the straight and curved portions referring to the
unbuckled and buckled states respectively. In

the latter state the buckles are always constrai- A

ned to be of the same shape (by the action of
the constraining forces already mentioned) but

corresponding to each value of the overall ®

strain, the amplitudes of the buckles are deter- f D
mined from the condition that the strain &

energy is stationary. This means that no work c

is done by the constraining forces as the
overall strain is increased, and that the strain
energy in the cylinder corresponding to any
particular value of the overall strain is given
by the area enclosed between the siress sirain
~curve OACD, the strain axis and the appropriate ordinate.

It is now necessary to consider the physical meaning of the two
parameters \ and m. The former is inversely proportional to the number
of circumferential buckles, and hence

Az is limited fo the set of discrete values
2,; the later measures the angle of the

A diamond shaped buckles and so is free

Dy (70,11) to take any value.
‘g"”o')‘z)

Average oleroll strain

Fig. 2

Fig. 3 shows the two stress strain
curves corresponding to (m, 2,) and
2 (m, 2y), where X, and A, are assumed to

be successive values of A. Denoting the

Averege overall strain strain energy corresponding to (m, X)

Fig. 3 by W (m, ), it follows that W (m,, X;)

is not equal to W (m,, A;) for the value

of the overall strain at which the two

stress strain curves intersect, but for some considerably larger value,

corresponding to which the areas 1 and 2 in the figure are equal. This

means that for increasing end load the stress strain curve is Ay Cy Dy,

because over this range of overall strain W (m, &) < W (m,, A,). But once

D, is reached, a change takes place. For if the overall strain is increased

further, W (my, 1) > W (m,, X,), and there will be a sudden change in the
type of buckling, indicated in the figure by the ‘jumps’ D, D,.

End Joad

C2
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It is now possible to form a picture of what happens when the cylinder
is constrained to distort into diamond shaped buckles of angle defined by

{mo,Ap)
LYY

s

End load

g ——

P .
Average overall strain

Fig. 4

m,. The final stress strain curve
will consist of portions of the
stress strain curves in the figure
and a number of ‘jumps’. On
theoretical grounds these “jumps’
occur whenever, for the same
overall sirain, the sirain energies
corresponding to two successive
values of A are equal. In this
paper the assumption is made
that A is continuous, but owing
to the considerable number of
circumferential waves into which
the cylinder buckles, this is not

likely to make any serious difference to the results obtained. In practice,
the exact moment when these ‘jumps’® occur depends upon initial irregula-

2 .gf?l A point corresponding

o to /nitial buckling on
3 Southwell's theory /
4 >/
(%3
2 o <
g 2 L
® 3
S ] /

7
S o8 r

i
3 ¢
Q £
< o6 £ e

/ i L~ |
:
. 1
04 A [
/ B
o-2
) o5 1o- 15 20 25 30 35 40 45h

Overall compressive strain

Fig. 5 — Varlation of Overall Cempressive Strain with Appiled Compressive Stress,

rities and any vibration which may be present, and so varies from one

cylinder to another.

The theoretical stress strain curve, in which the ‘jumps® are assumed
to occur as soon as the strain energies corresponding to successive values



The buckling of thin cylindrical shells under axial compression 57

of A are equal, is the curve drawn heavily in Fig. 4; and it is clear from
the figure that this is very different from the envelope of the family of
stress strain curves. This is because at points on the envelope, the strain
energy is not stationary with respect to A although it is with respect to o
and B. So that as the end load is increased, work must continually be
done by some external agency other than the uniformly distributed end
load. Consequently, the area enclosed between the envelope and the strain
axis does not represent the strain energy stored in the cylinder. In parti-
cular, the configuration corresponding to the point P in Fig. 4 is not one
in which the strain energy is stationary.

From the above argument two points may be gathered. Firstly, on
the basis of pure theory and on the assumption that changes in strain are
completely controlled, the correct stress strain curve in Fig. 4 is the
heavily drawn curve, not the envelope. (The stress strain curve in Fig.
corresponds to the heavily drawn curve in Fig. 4, except that m is no
longer constant and A has been regarded as a continuous variable). Secondly,
if the stress strain curve in Fig. 4 is to follow the envelope, work must
be done by some external agency other than the uniformly distributed
end load.

4, DESCRIPTION OF RESULTS

In what follows it is important to keep in mind the assumption made
{hroughout this paper that the stresses in the shell remain within the elastic
range of the material of which the shell is made. As soon as this is exceeded
a new factor is introduced which will modify the results obtained. For
most shells of aluminium alloy or steel, theory and experiment indicate
that this occurs very soon after buckling.

4.1. THE RELATION BETWEEN AVERAGE STRESS AND OVERALL STRAIN

The variation of the average compressive stress and the average
overall compressive strain is shown in Fig. 5. Before buckling the stress
strain relationship is represented by the straight line OA where A repre-
sents the critical stress p.. at which buckling first takes place according
to past theory. In practice the buckling stress is considerably less than
that given by A, although how much less depends on the exient of initial
irregularities and therefore varies from one cylinder to another. For the
perfectly formed cylinder which does not buckle until the compressive
stress is p.,, the theoretical stress strain curve is OABCD. As the part AB
does not correspond to any physically possible condition for equilibrium, it
is indicated by a broken line in Fig. 5, and the practical stress strain
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curve consists of the two parts OA, and BCD. The later indicates the very
important result that the cylinder can be maintained in a buckled condition
of stable equilibrium by a compressive stress which is only one-third of p,,.

The effective stiffness of the cylinder is measured by the gradient
of the stress strain curve in Fig. 5. During buckling the conception of
stiffness is meaningless, but once C is reached, the gradient is practically
constant, and the corresponding stiffness is E/4. With increasing strain
there is a slight tendency for the stiffness to fall off, but below D this is
unimportant.

4.2. FORM OF DISTORTION AFTER BUCKLING
When buckling first starts a and y are zero, and w takes the form
2h B cos A mx cos Ay.
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Fig. 6 — Variation of Angle of Diamond Shaped Buckles with Overall Compressive Strain

This agrees with past theory and indicates that the cylinder buckles into
a system of axial and circumferential waves. During buckling the form of
distortion varies rapidly, but once buckling has taken place, changes occur
more slowly and subsequent alterations in the parameters are shown in
Figs. 6 to 8. -

Fig. 7 gives the variation in «, § and Yy, and the most significant
point here is the ratio of a to 8. For, if a/f were unity, w would be

4h B coszg (y + mx) cos*%(y — mx)
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apart from a constant, and this represents a system of diamond shaped

buckles of a kind which is known to occur when buckling is far advanced.
As shown in Fig. 7 this condition is never quite attained, but once buck-
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Fig. 7 — Variation of Parametres in w with Overalt
Compressive Strain,

ling has taken place it is a condition which is gradually approached. Fig. 6
shows how the shape of the diamond buckles change and, in particular,

-
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Number of waves ©
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Fig. 8 — Variation in Number of Circumfierential
Waves with Overall Compressive Strain.

how they start by being very narrow and then become wider as the strain
is increased. Fig. 8 gives the number of circumferential waves and indi-
cates that once buckling has taken place any variation is small.

4.3. COMPARISON WITH EXPERIMENT

When account is taken of the considerable scatter among the expe-
rimental results of Lundquist and Donnell, a comparison between these and
the theoretical resulls obtained in this paper indicates very fair agreement
between experiment and theory.
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8. CONCLUSIONS

Two main conclusions can be drawn from the above results so long as
the stresses in the cylinder remain within the elastic range of the material
of which it is made. The first is that an axially loaded cylindrical shell
can be maintained in a buckled condition by a load which is approximately
one-third- of the critical compressive load obtained by Southwell. The
second is that once the cylinder has buckled it has only one-quarter of
its original stiffness.

The author desires to take this opportunity of expressing his thanks
to Dr. R. P. N. Jones for his great assistance in carrying out the computation.

(Received 16 April 1954)
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