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ON STARLIKE FUNCTIONS ASSOCIATED
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ABSTRACT. Analytic functions are characterized by the geometry of their im-
age domains. That’s why, geometry of image domain is of substantial impor-
tance to have a comprehensive study of analytic functions. To introduce and
study new geometrical structures as image domain and to define their subse-
quent analytic functions is an ongoing part of research in geometric function
theory. We introduced a new domain named as cardioid domain and defined
the corresponding analytic function, see [14]. Here we further study the car-
dioid domain, to define and study starlike functions associated with cardioid
domain.

1. Introduction and preliminaries

Let A be the class of functions of the form
o0
(1.1) f(z) :z—l—Zanz",
n=2

which are analytic in the open unit disk U = {z : |z] < 1} and S be the class of
functions from A which are univalent in open unit disk U. The function f is said
to be subordinate to the function g, written symbolically as f < g, if there exists a
function w such that

(1.2) f(z) = g(w(z)), =z€el,
where w(0) = 0, |w(z)| < 1 for z € U. The class §* of starlike univalent functions
is defined to be the set of functions f € S such that

2f'(z)
TORRA
where p(z) € P ={h:h(0) =1, Reh(z) >0, z € U}.

(1.3)
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Using the concept of subordination, several subclasses of analytic functions
were defined by condition ([3]) on the basis of geometrical interpretation of the
image domain p(U). Some interesting geometrical structures are like right half
plane [7], circular disk [9], conic domain [1L[10/11,13], cardioid domain [14,[22],
generalized conic domains [16], oval and petal type domains [17], leaf-like domain
[21[3[211[26], Bernoulli lemniscate [12124] and the most concerning one is the shell-
like curve [4H61[8,19][20,23,25]. A general approach to the classes of functions
defined by subordination (L3]) can be found in [15].

The shell-like curve is caused by the function p,(z) = 14722

1= 25,7, Where 7 =

%. The image of unit circle under the function p, gives the conchoid of Maclau-
rin, also named as shell-like curve. That is,

NG ; sin p(4cosp — 1)
2(3—2cosyp)  2(3—2cosy)(1+cosyp)’

pr(e'?) = 0 < p<2m.

The function p., has the following series representation

(1—7) =7

V5

This generates a series of coefficient constants which made it closer to Fibonacci
numbers.

Getting inspiration from the concept of shell-like curves and circular disk, we
define a class of analytic functions as follows.

oo
pr(z) =1+ Z(u”*1 + Upt1)7"2",  where u, =

n=1

DEFINITION 1.1. Let CP[A, B] be the class of functions p(z) which are defined
by the subordination relation p(z) < p(A, B; z), where p(A, B; z) is defined by

247222 + (A — )12 + 2

(1.4) PA B2 = gy (B 1)z 4 2

with -1 < B< A< land 7= (1-+5)/2,2€U.

For in-depth understanding of the class CP[A, B], it would be worthwhile here
to have a geometrical description of the function p(A, B; z) defined by (L4). If we
denote Rep(A, B;e?) = u and Im p(A, B; e?) = v, then the image p(A, B;e?) of
the unit circle is a cardioid-like curve defined by the following parametric form as
(15) () = 4+ (A—1)(B—1)72 +4AB7* 4+ 2\ cos 0 + 4(A + B)7?% cos 20

4+ (B—=1)272+4B%r* + 4(B — 1)(7 4+ B73) cos + 8 Br% cos 26’
_ 2(A — B)[(t — 7%)sin 6 + 272 sin 26)]
4+ (B—1)272 4+ 4B274 + 4(B — 1)(1 + B73) cos + 8BT12 cos 26’
where A = (A+ B —2)7 + (2AB — A— B)73, and 0 < 0 < 27.
Furthermore, we note that p(4, B;0) =1 and

AB+9(A+B)+1+4(B— AW5
B2+18B+1 '

v(6)

p(A,B;1) =



ON STARLIKE FUNCTIONS ASSOCIATED WITH CARDIOID DOMAIN 97

The cusp of the cardioid-like curve, defined by (L), is given by
2AB —3(A+B)+2+ (A-B)\V5
2(B>—3B+1) '
The above discussed cardioid-like curve with different values of parameters can
be seen in Figure [l

’Y(A,B) _ ﬁ(A,B;eiiarccos(1/4)) —

7(0.8,0.6) = 0.900893

0.00

-0.05

-0.10

7(0.5,-0.5) = 0.6792850867

0.5+

0.0
-0.5

-1.04

FIGURE 1. Selected cases of curve (LH)

If we consider the open unit disk U as the collection of concentric circles having
origin as center, then the image of each inner circle is a nested cardioid-like curve.
Therefore, the function p(A, B; z) maps the open unit disk U onto a cardioid region.
That is, p(A, B;U) is a cardioid domain as shown in Figure

For more details, see [14].
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0.1

-0.14

FIGURE 2. The image $(0.8,0.6; U)

LEMMA 1.1. Consider the function p(A, B; z) defined by (L4l). Then
e the function p(A, B;z) is univalent in the disk |z| < 72 =0.38...,
e if p(z) < p(A, B; z), then Rep(z) > «, where

_ 2(A+B—-2)1+2(2AB— A— B)r® + 16(A + B)?p

1.6 =
(16) “ A(B—1)(r + B7®) + 32Br2y ’
4472 - B?*r2—4B?7* —(1-B7?)4/5(2B72—(B—1)7+2)(2B72+(B—1)7+2
where 1 = ( )4\7/(1(+th2)( )7+2)( (B-1) )7
o if (A, B;z) =14 " pn2", then
(A—B)Z, forn =1,
(1.7) pn=4(A=B)6-B)%,  forn=2
1-B

5o TPn—1 — Bt%p,_o, forn =345,....
Some further properties of functions p, such that p < p can be deduced from a
general approach to this subordination, see [15].
2. Main Results
Now we define the class of starlike functions associated with cardioid domain.

DEFINITION 2.1. The class of starlike functions associated with cardioid do-
main, denoted by CS*[A, BJ, is defined to be the set of functions f € A such that

2f'(2)
f(2)
where p(A, B; z) is defined by (4.

(2.1)

< p(A, B; z),
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In other words, the function f will belong to the class CS*[A, B] when the
function zf’/f takes all values in the cardioid domain p(A, B;U). Furthermore, it
is worthwhile here to note that

(1) The class CS*[1, —1] coincides with the class SL of starlike functions con-
nected with Fibonacci numbers, introduced and studied in [23].

(2) CS*[A,B] C S*(a) ={f €S :Re z}fé,;) > a, z € U}, where o is defined
by (L.G).
THEOREM 2.1. If f(2) € CS*[A, B], —1 < B < A <1 and is of the form (L)),

then for n = 2,3,4,..., we have

1 2 n— 2 a 12
74@_1)2{“7[(%11)(nl)(Bl)]| 4(n = 2)?]an—1|

lan|* <

+ i [(I7I(A = 1) = k(B — 1)| + 27°| A — Bk|)* — 4(k — 1)°] |akl2}-
k=1

PrOOF. For f(z) € CS*[A,B], =1 < B < A < 1, we have from (1)) and (L2),
2f'(2)
f(z)

where w(0) =0, |w(z)| < 1 for z € Y. This implies that
2f 247202 + (A — 1)Tw + 2
f  2Br?w?+4+ (B-1)tw+2’

= (4, B;w(z)),

which reduces to
202f — ) =Ttw(A = 1)f — (B — 1)zf") + 27°w*(Af — Bzf').
This, along with (II]) gets the form

> 2k - Darz® = 7w [(A—1) = k(B - D]arz® + 27°0w* Y (A - Bk)agz".
k=1 k=1 k=1
This implies that
(2.2) Z 2(k — 1)axz" + Z by2"
k=1 k=n+1
n—1 n—2
=Tw Z[(A —1) = k(B - D)]apz* + 2r%w? Z(A — Bk)ay2",
k=1 k=1
where
S obet = Y 2k - Dartt — 7w Y [(A—1) = k(B - 1)]agz"
k=n+1 k=n+1 k=n

—27%w? Z (A — Bk)agz".
k=n—1

Now from (22)), one may have
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iQ flakz + Z 2"

k=1 k=n+1
n—1 n—2 2
=|rw ) [(A=1) = k(B - D]axz" + 27°w” Y (A - Bk)axz"
k=1 k=1

Now, since |w| < 1, so we have

<|T[(A=1)—(n—1)(B—1)]an_12""

+ Ti[r[(A —1) = k(B —1)] + 27%(A — Bk)w(z)]apz"*

)

where dj, = { bkk Dax, LSFS™ Making use of the formula 2= fo% | >r, dk(rew)kfdﬁ =
S ldi 2%, see [T], and integrating on z = re??, 0 < r < 1, 0 < 0 < 27, we have

oo 1 2
Z |dk|2’l“2k < — /
p 2'/T 0

7[(A=1) = (n = 1)(B = D]an_1(re®)" "

+ ”i [T[(A=1)— k(B —1)]+27%(A - Bk)w(reie)]akr e de
k=1
= % o (T[(A —1) = (n— 1)(B — D)]ag_r"teln1?

+ i [T[(A=1) = k(B—1)]+27*(A - Bk)w(reie)]akrkeike)
n _ 1)(3 _ 1)]mrn—1e—i(n—1)9

Z — 1) = U(B = 1)] + 27%(A — Bl)w(re®®)|ar'e Zl9>d9.
Since the integral of the product with k # [ gives 0, so consequently, we have

Zu (k= DaPr? 5 32 e < [rl(A — 1)~ (n— 1)(B— 1) Plan [

k=n-+1
+ Z IT[(A = 1) — k(B — 1)] + 272(A — Bk)w(2)|?|ag|*r?*.

Now, since
IT[(A = 1) — k(B — 1)] + 27%(A — BE)w(z)
<7[(A=1) = k(B = 1)]| + [27%(A — Bk)[|w(2)|
<|7||[(A=1) = k(B —1)| + 27%|A — BE|.
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Thus, we have

n

[e.¢]
> 120k = Dagr* + > [bif*r**

k=1 k=n+1
<|T[(A=1) = (n = 1)(B = D]} an_1|*r*"2
n—2
+ D (17l(A = 1) = k(B = 1)] + 274 — B|)*|ax *r**
k=1

which reduces to

> (k=1 |ax*r®* < |r[(A = 1) = (n = 1)(B = 1)]Pan_1[*r*" >
k=1
n—2
+ > (I7I[(A = 1) = k(B = 1)| + 27%|A — Bk|)®|ax|*r**.
k=1

Letting » — 1, one may have
n—2
> Ak = 1)?ax]* + 4(n — 2)*|an—1|* + 4(n — 1)|an|?
k=1
<A =1) = (n = )(B = D)]|an—1 ]
n—2
+ > (I7lI(A=1) = k(B = 1)] +2r%|A - Bk|)?|as|?
k=1
and this leads us to the required result. O

CONJECTURE 2.1. If f(z) € CS*[A,B], -1 < B <9—4V5, B < A and is of
the form (III), then

-1 Lm/QJ B—1 m—2k k m—1—k
lanl 3 =" Bl ‘A—B ’
< r —— —(m-1-
7|t 2 || 2 (m — 2k) k! ]1;[0 g (™ F)+

m=0 k=0

» [;m ()t |c|l|d|n-1—m—l)H,

_ (A-B)(1+B) _ 1-B-J/B"—i8BH1 _ 1-B+/B°—18B11 -
where § = SBVE 5T © = T and d = T . This
bound is sharp.

The above inequality suggests the function

(A-B)(1+B)

A—B 1 1-B—+/B2—-18B+1 2B\/B2-18B+1
}W G e— K

1_ (1fB+\/32718B+1 )TZ

4

(2.3) f(z)=2|1+ T2 4+ Bt?7?
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with —1 < B < 9 — 4v/5. This function is connected with function p(A, B;z) by
the relation

as

f(z) eCS*[A,B] — < == = p(A, B; z), (z e l).

The following binomial expansions can be easily formed.

oo [ Ln/2] qn—2kpk  nTick
(2.4) (1+az+bz2)5§0[§) <m j];[o (ﬂ(nlk)Jrj)) 2",
(=2 =S (O )

By making use of above binomial expansions, one can have

oo

(2.5) (1 +az+b22)5(i:flz)6 z{z enz"} {2&:"2"}

n=0

LS n
n+1
§ ( emgn—m) z
m=0

n=0

e’} n—1
n
= § (§ emgn—l—m)z
n=1

m=0

e’} n—1
= €0c0% + § ( E 6mffm—l—m) z"
n=2 “m=0
e’} n—1
_ E n
=z+ ( emgn—l—m)z )
n=2 “m=0

where

—

Q)

3

Il
o 3
2
= N

( an—2kpk "ﬁk(ﬂ -1 k)+))
(n—2k)K! L4 )

(@) )er)

(2) is of the form f(z) = 2+ > 0%, b,2", then from (23,

I
M3

En
l

<, &

Now, if the function
one can have

- mzl H“g:” <<ﬁ):jf;7m mjljok (A;BB Cm—1-k) +j>>}

=0 k=0
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[ (o Q)]

> HL%QJ <%m}j@k(g;(mlk”j))]

m=0 k=0
n—1—-m
NN/(d+n—m—1-2 T
1\ I m—1—m—I
RG] ik S]]
1=0
where
_ (A—B)(1+ B)
2BVBZ —18B+ 1’
1-B-— \/BQ—lB
(2.6) c= sh+1
1-B \/BQ—1B
2.7) d= + so+1

4
with —1 < B < 9—4+/5. Therefore, if f € CS*[A, B] and is of the form (), then

n 1 Lm/QJ B—1|m—2k ik m—1—k
B A—-B
‘ | | | H ‘ —(m 717k)+j‘
|T” 1| m — 2k)! k! =6 2B

k 0
n—1—-m
N/(d+n—m-—-1-2 Lo
d|r—t-m .
X|: ; <<Z>< n—1—m-—1 )|C|||

_ CoOROLLARY 2.1. If we take A =1 and B = —1, then the extremal function
[ (2) defined by 23] takes the form f(z) = =523z . Taylor series of this function
can be obtained by using 24) as follows.

f(Z) = Z(l — Tz — 7-222)71

oo [ Ln/2] (—7)m 2k (—72) —1-
_Zzlz(w H 1—n—1—k)+j))

n=0 L k=0 j=0
oo [ Ln/2]

I I
M 1M
HM

—_1)n—kpn n—1-k
((n_l—)Qk)!k:!(l)nk 1 ("kj)ﬂznﬂ

(
(

‘Ln/2j( n nmlok | ]nﬂ
(

<
3
Il
=]
T
B
I
=

M

(n— 2k) k! HO (”_k_”) :

n=0 L k=0 Jj=
oo [In/2] 1
n=0 L k=0 o
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n=0 k=0
n—1
= - n—1-k n—1_n = n—1_n
=z + Z Z k T 20 =zZ+ Z Un T z
n=2 k=0 n=2

=472 42728 33 5S4 855

where {u,} = {Z,EL%OJ ("_li_k)} ={1,1,2,3,5,8,13,21,...} is the sequence of
Fibonacci numbers. This coefficient bound |an| < |7|" tu, for the class SL of
starlike functions connected with Fibonacci numbers is found in [5123].

THEOREM 2.2. The function h(z) = z + ¢z does not belong to the class
CS*[A,B] with -1< B< (3—+5)/2, B< AL if

(A-B)(3—-+5-2B)
2n(B2 —3B+1) —2AB+3(A+B) - (A-B)}V5 -2

ProOOF. Consider that

(2.8) |e| >

zW(z)  14+mnez"!
h(z) — 14czn—1’

H(z)=

The image domain H(U) is a disk with diameter end points D; = 117_75‘ and Dy =

11':7‘5‘" , If (Z8) is satisfied, then one of D; would satisfy D; < (A, B) which results
the negation of inclusion relation H(U) C p(A4, B;U). Thus, H(z) £ p(A, B; z) and

this proves our proposition. Il

For A =1, B = —1, the above result reduces to the following one, proved in [5].

COROLLARY 2.2. The function h(z) = z+cz™ does not belong to the class SL if
|c| > %
nvs5—1

Let z = re*?, 0 < 6 < 27. Then we have
_ 24722 4 (A- 1)’7’7‘6i9 +2
" 2B72r2e2 4 (B — 1)7rei? 4 2
4+ (A—1)(B—1)7%? + 4AB7'r" + 2), cos 0 + 4(A + B)7°r? cos 20
N |2B721r2e2¥® + (B — 1)1re® + 2|2
(rr — 7313) sin § 4 27272 sin 26
|2BT2r2e?¥® + (B — 1)1ret? 4 2|2’
where A, = (A+ B —2)1r + (2AB — A — B)73r3. From above representation, one
may have

p(A, B; reie)

+i2(A - B)

Im $(A, B;re'?)
(29) Rep(A, B;rei?)
B 2(A — B)tr(1 — 7212 4 477 cos ) sin 6
B ‘4 + (A—1)(B—-1)72r2 + 4AB7*r* + 2\, cos 0 + 4(A + B)712r2(2cos? 0 — 1)
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- —2(A— B)tr(1 — 7202 — 477)
T4+ (A-1)(B—1)72r2 + 4ABT* — 2\, + 4(A + B)72r2
B —2(A - B)rr(1 — 7212 — 477) .
2+ (1= B)rr +2B12r2)(2 + (1 — A)rr + 2A72r2)
The radius of univalency for the function (A, B; z) is 7, = (3 — v/5)/2. That is,
for such r, the curve p(A, B;re®?), § € [0,27) \ {r} has no loops, see [14].

= "b(Ay 37 T)

THEOREM 2.3. If f(z) € CS*[A, B], then |arg ZJ{;S)‘ < arctan (A, B;r),
where (A, B;r) is given by (Z9).

This theorem says that if f(z) € CS*[A, B], then f is strongly starlike of order
B = Zarctant(A, B;r) in the disk |z| < r, whenever r < r, = (3 —/5)/2.

LEMMA 2.1. A function f belongs to the class CS*[A, B] if and only if there
exists an analytic function q, q¢ < p(A, B; 2), such that f(z) = zexp [ Q(t) =1 g,

THEOREM 2.4. If a function f belongs to the class CS*[A, B], then
_ J9@\ > rh(z)\?
&= {5

for some g € 8*(1/(1 + ¢7)) and h € §*(1/(1 + dr)), where the class S*(a) was
defined immediately before Theorem [Z1], and ¢, d are defined by (Z8) and by (Z71)
respectively.

PROOF. Let f € CS*[A, B], then by Definition 2] there exists an analytic
function w(z) with w(0) =0 and |w(2)| < 1, z € U, such that

Now consider that

2A7222 + (A—1)12+2 A a B
A, B; ==
B4, B;z) = 2B1222 4+ (B—1)12 + 2 B 1 oz " 1-arz
where
B-—A 1+ B B-A 1+ B
a = 1+ , = 1-—
2B ( \/B2f183+1) b 2B ( \/BQfISBJrl)

with —1 < B < 9—4+/5 and with ¢, d defined by (Z6) and (27, respectively. This
implies that

A B
4 + —1
—zeXp/ B 1— c‘rw(t) lfd'rw(t)) dt
0 t
B
o~ M)t (arom — 5
_ p/ — (t a) + (13 @ )dt
0 t

Q

{ /O 1-cre(® dt+6/ e S0 ldt] :z{%}a{%z)}ﬁ,
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1
T—drw(t) -1

; Therefore, we

— 1 1
where g(z) = zexp [; =0 — and h(z) = zexp [

have
A
Re 29(2) = Re L > L ,
9(z) 1—crw(z) =~ (1+4ec7)
/ 1 1
Re zh'(z) R

) T drw(z) A+ dn)
with w(0)=0 and |w(z)| <1, z€U. This shows that g(z) = zexp foz%(#w(t) —1)
€8*(1/(1 +cr)) and h(z) = zexp [, %(#{M —1) € §*(1/(1 +dr)). O

In [21] are considered some further coefficients problems in the class CS*[A, B].
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