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INTEGER POINTS ENUMERATOR

OF HYPERGRAPHIC POLYTOPES

Marko Pešović

Abstract. For a hypergraphic polytope there is a weighted quasisymmetric
function which enumerates positive integer points in its normal fan and de-
termines its f -polynomial. This quasisymmetric function invariant of hyper-
graphs extends the Stanley chromatic symmetric function of simple graphs.
We consider a certain combinatorial Hopf algebra of hypergraphs and show
that universal morphism to quasisymmetric functions coincides with this enu-
merator function. We calculate the f -polynomial of uniform hypergraphic
polytopes.

1. Introduction

The theory of combinatorial Hopf algebras developed by Aguiar, Bergeron and
Sottile in the seminal paper [2] provides an algebraic framework for symmetric
and quasisymmetric generating functions arising in enumerative combinatorics.
Extensive studies of various combinatorial Hopf algebras are initiated recently
[3, 4, 9, 10]. The geometric interpretation of the corresponding (quasi)symmetric
functions was first given for matroids [4] and then for simple graphs [6] and build-
ing sets [7]. The quasisymmetric function invariants are expressed as integer points
enumerators associated to generalized permutohedra. This class of polytopes in-
troduced by Postnikov [11] is distinguished with rich combinatorial structure. The
comprehensive treatment of weighted integer points enumerators associated to gen-
eralized permutohedra is carried out by Grujić et al [8]. Here we consider a certain
naturally defined non-cocommutative combinatorial Hopf algebra of hypergraphs
and show that the derived quasisymmetric function invariant of hypergraphs is
integer points enumerator of hypergraphic polytopes (Theorem 4.1).
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2. Combinatorial Hopf algebra of hypergraphs HG

A combinatorial Hopf algebra is a pair (H, ζ) of a graded connected Hopf algebra
H =

⊕
n>0 Hn over a field k, whose homogeneous components Hn, n > 0 are finite-

dimensional, and a multiplicative linear functional ζ : H → k called character.
We consider a combinatorial Hopf algebra structure on hypergraphs different from
the chromatic Hopf algebra of hypergraphs studied in [10]. The difference is in
the coalgebra structures based on different combinatorial constructions, which is
manifested in (non)co-commutativity. It extends the Hopf algebra of building set
studied by Grujić in [7]. This Hopf algebra of hypergraphs can be derived from the
Hopf monoid structure on hypergraphs introduced in [1].

A hypergraph H on the vertex set V is a collection of nonempty subsets H ⊆ V ,
called hyperedges. We assume that there are no ghost vertices, i.e., H contains all
singletons {i}, i ∈ V . A hypergraph H is connected if it can not be represented
as a disjoint union of hypergraphs H1 ⊔ H2. Every hypergraph H splits into its
connected components. Let c(H) be the number of connected components of H.
Hypergraphs H1, on the vertex set V1, and H2, on the vertex set V2, are isomorphic

if there is a bijection f : V1 → V2 such that H2 = {f(H) : H ∈ H1}. Let
HG =

⊕
n>0 HGn, where HGn is the linear span of isomorphism classes [H] of

hypergraphs on the set [n].

Definition 2.1. For a hypergraph H on the vertex set [n] and a subset S ⊆ [n]
the restriction H|S and the contraction H/S are defined by

H|S = {H ∈ H : H ⊆ S},

H/S = {H r S : H ∈ H}.

Define a product and a coproduct on the linear space HG by

[H1] · [H2] = [H1 ⊔ H2],

∆([H]) =
∑

S⊂[n]

[H|S ] ⊗ [H/S].

The straightforward checking shows that the space HG with the above operations
together with the unit η : k → HG given by η(1) = [H∅] (the empty hypergraph)
and the counit ǫ : HG → k which is the projection on the component HG0 = k, be-
come a graded connected commutative and non-cocommutative bialgebra. Namely,
associativity and commutativity of the product follow because ⊔ is associative and
commutative up to isomorphism. For a hypergraph H on the set [n] the following
equalities

((∆ ⊗ Id) ◦ ∆)([H]) =
∑

∅⊂S1⊂S2⊂[n]

[H|S1
] ⊗ [(H|S2

)/S1] ⊗ [H/S2],

((Id ⊗∆) ◦ ∆)([H]) =
∑

∅⊂S1⊂S2⊂[n]

[H|S1
] ⊗ [(H/S1)|S2rS1

] ⊗ [H/S2]

between ((∆ ⊗ Id) ◦ ∆)([H]) and ((Id ⊗∆) ◦ ∆)([H]) provides the coassociativity.
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Commutativity of the bialgebra diagram follows since

[H1|S1
] ⊔ [H2|S2

] = [(H1 ⊔ H2)|S1⊔S2
],

[H1/S1] ⊔ [H2/S2] = [(H1 ⊔ H2)/(S1 ⊔ S2)].

Since graded connected bialgebras of finite type posses antipodes, HG is in fact a
Hopf algebra. The formula for antipode S : HG → HG is derived from the general
Takeuchi formula [12]

S([H]) =
∑

k>1

(−1)k
∑

Lk

k∏

j=1

([H] |Ij
)/Ij−1,

where the inner sum goes over all chains of subsets Lk : ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ik−1 ⊂
Ik = V . Define a character ζ : HG → k by ζ([H]) = 1 if H is discrete, i.e., contains
only singletons and ζ([H]) = 0 otherwise. This determines the combinatorial Hopf
algebra (HG, ζ).

3. Integer points enumerator

In this section we review the definition of the integer points enumerator of a
generalized permutohedron introduced in [8].

For a point (a1, a2, . . . , an) ∈ R
n with increasing coordinates a1 < · · · < an let

us define the set Ω(a1, a2, . . . , an) by

Ω(a1, a2, . . . , an) = {(aω(1), aω(2), . . . , aω(n)) : ω ∈ Sn},

where Sn is the permutation group of the set [n]. The convex hull of the set
Ω(a1, a2, . . . , an) is a standard (n − 1)-dimensional permutohedron P en−1. The d-
dimensional faces of P en−1 are in one-to-one correspondence with set compositions
C = C1|C2| · · · |Cn−d of the set [n] = {1, 2, . . . , n}, see [11], Proposition 2.6. By
this correspondence and the obvious correspondence between set compositions and
flags of subsets, we identify d-faces of P en−1 with flags F : ∅ = F0 ⊂ F1 ⊂ · · · ⊂
Fn−d = [n]. The dimension of a face and the length of the corresponding flag is
related by dim(F) = n − |F|.

The normal fan N (P en−1) of the standard permutohedron is the fan of the
braid arrangement {xi = xj}16i<j6n in the space R

n. The dimension of the normal
cone CF at the face F is dim(CF ) = |F|. The relative interior points ω ∈ C◦

F are
characterized by the condition that their coordinates are constant on Fi rFi−1 and
increase ω|FirFi−1

< ω|Fi+1rFi
. A positive integer vector ω ∈ Z

n
+ belongs to C◦

F if
the weight function ω∗(x) = 〈ω, x〉 is maximized on P en−1 along a face F .

Definition 3.1. For a flag F let MF be the enumerator of interior positive
integer points ω ∈ Z

n
+ of the corresponding cone CF

MF =
∑

ω∈Zn
+

∩ C◦

F

xω,

where xω = xω1
xω2

· · · xωn
.
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The enumerator MF is a monomial quasisymmetric function depending only
of the composition type(F) = (|F1|, |F2 r F1|, . . . , |Fk r Fk−1|).

The fan N is a coaresement of N (P en−1) if every cone in N is a union of cones
of N (P en−1). An (n − 1)-dimensional generalized permutohedron Q is a convex
polytope whose normal fan N (Q) is a coaresement of N (P en−1). There is a map
πQ : L(P en−1) → L(Q) between face lattices given by

πQ(F) = G if and only if C◦
F ⊆ C◦

G,

where C◦
G in the relative interior of the corresponding normal cone CG at the face

G ∈ L(Q).

Definition 3.2. For an (n − 1)-generalized permutohedron Q, let Fq(Q) be
the weighted integer points enumerator

Fq(Q) =
∑

ω∈Zn
+

qdim(πQ(Fω))xω =
∑

F∈L(P en−1)

qdim(πQ(F))MF ,

where Fω is a unique face of P en−1 containing ω in the relative interior.

Remark 3.1. It is shown in [8, Theorem 4.4] that the enumerator Fq(Q) con-
tains the information about the f -vector of a generalized permutohedron Q. More
precisely, the principal specialization of Fq(Q) gives the f -polynomial of Q

(3.1) f(Q, q) = (−1)nps(F−q(Q))(−1).

Recall that the principal specialization ps(F )(m) of a quasisymmetric function F
in variables x1, x2, . . . is a polynomial in m obtained from the evaluation map at
xi = 1, i = 1, . . . , m and xi = 0 for i > m.

4. The hypergraphic polytope

For the standard basis vectors ei, 1 6 i 6 n in R
n let ∆H = conv{ei : i ∈ H}

be the simplex determined by a subset H ⊂ [n]. The hypergraphic polytope of a
hypergraph H on [n] is the Minkowski sum of simplices

P H =
∑

H∈H

∆H .

As generalized permutohedra can be described as the Minkowski sum of delated
simplices (see [11]), we have that hypergraphic polytopes are generalized permu-
tohedra. For the following description of PH see [5, Section 1.5] and the references
within it. Let H = H1 ⊔ H2 ⊔ · · · ⊔ Hk be the decomposition into connected
components. Then P H = P H1

× P H2
× · · · × P Hk

and dim(P H) = n − k. For
connected hypergraphs P H can be described as the intersection of the hyperplane
H H := {x ∈ R

n :
∑n

i=1 xi = |H|} with the halfspaces

HS,> :=

{
x ∈ R

n :
∑

i∈S

xi > |H|S |

}
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corresponding to all proper subsets S ⊂ [n]. It follows that P H can be obtained
by iteratively cutting the standard simplex ∆[n] by the hyperplanes HS,> corre-

sponding to proper subsets S. For instance the standard permutohedron P en−1

is a hypergraphic polytope PCn
corresponding to the complete hypergraph Cn

consisting of all subsets of [n].

Definition 4.1. For a connected hypergraph H the H-rank is a map rk H :
L(P en−1) → {0, 1, . . . , n − 1} given by

rkH(F) = dim(πPH
(F)).

Subsequently we deal only with connected hypergraphs. The quasisymmet-
ric function Fq(PH) corresponding to a hypergraphic polytope PH, according to
Definitions 3.2 and 4.1, depends only on the rank function

(4.1) Fq(P H ) =
∑

F∈L(P en−1)

qrkH(F)MF .

We extend the ground field k to the field of rational function k(q) in a variable
q and consider the Hopf algebra HG over this extended field. Let rk(H) = n−c(H)
for hypergraphs on n vertices. Define a linear functional ζq : HG → k(q) with

ζq([H]) = qrk(H) = qn−c(H),

which is obviously multiplicative. By the characterization of the combinatorial Hopf
algebra of quasisymmetric functions (QSym, ζQ) as a terminal object ([2, Theorem
4.1]) there exists a unique morphism of combinatorial Hopf alegbras Ψq (HG, ζq) →
(QSym, ζQ) given on monomial basis by

Ψq([H]) =
∑

α|=n

(ζq)α([H])Mα.

We determine the coefficients by monomial functions in the above expansion
more explicitly. For a hypergraph H define its splitting hypergraph H/F by a flag
F with

H/F =

k⊔

i=1

H|Fi
/Fi−1.

The coefficient corresponding to a composition α = (α1, α2, . . . , αk) |= n is a poly-
nomial in q determined by

(ζq)α([H]) =
∑

F : type(F)=α

k∏

i=1

qrk(H|Fi
/Fi−1) =

∑

F : type(F)=α

qrk(H /F),

where the sum is over all flags F : ∅ =: F0 ⊂ F1 ⊂ · · · ⊂ Fk := [n] of the type α
and

(4.2) rk(H/F) =

k∑

i=1

rk(H|Fi
/Fi−1) = n −

k∑

i=1

c(H|Fi
/Fi−1).
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By this correspondence, we have

(4.3) Ψq([H]) =
∑

F∈L(P en−1)

qrk(H/F)MF .

Now we have two quasisymmetric functions associated to hypergraphs whose expan-
sions in monomial bases are given by (4.1) and (4.3). We show that they actually
coincide which describes the corresponding hypergraphic quasisymmetric invariant
algebraically and geometrically.

Theorem 4.1. For a connected hypergraph H the integer points enumerator

Fq(P H) associated to a hypergraphic polytope and the quasisymmetric function

Ψq([H]) coincide

Fq(P H) = Ψq([H]).

Proof. Let H be a connected hypergraph on the set [n] and F : ∅ = F0 ⊂
F1 ⊂ F2 ⊂ · · · ⊂ Fm = [n] be a flag of subsets of [n]. It is sufficient to prove that

(4.4) rkH(F) = rk(H/F).

For this we need to determine the face G of the hypergraphic polytope PH along
which the weight function ω∗ is maximized for an arbitrary ω ∈ C◦

F . Since PH is
the Minkowski sum of simplices ∆H for H ∈ H the face G is itself a Minkowski
sum of the form G =

∑
H∈H

(∆H)F where (∆H)F is a unique face of ∆H along
which the weight function ω∗ is maximized for ω ∈ C◦

F . Let ω = (ω1, . . . , ωn) where
ωi = j if i ∈ Fj r Fj−1 for i = 1, . . . , n. Then ω ∈ C◦

F and we can convince that
(∆H)F = ∆HrFj−1

where j = min{k | H ⊂ Fk}. Denote by Hj the collection of
all H ∈ H with j = min{k | H ⊂ Fk} for j = 1, . . . , m. We can represent the face
G as G =

∑m
j=1

∑
H∈Hj

∆HrFj−1
, which shows that G is precisely a hypergraphic

polytope corresponding to the splitting hypergraph

G = PH/F .

Equation (4.4) follows from the fact that dim PH/F = rk(H/F), which is given by
(4.2). �

As a corollary, by Remark 3.1 and equation (3.1) within it, we can derive the
f -polynomial of a hypergraphic polytope PH in a purely algebraic way.

Corollary 4.1. The f -polynomial of a hypergraphic polytope P H is deter-

mined by the principal specialization

f(P H, q) = (−1)n ps (Ψ−q([H])) (−1).

We proceed with some examples and calculations.

Example 4.1. Let Un,k be the k-uniform hypergraph containing all k-elements
subsets of [n] with k > 1. Divide flags into two families depending on whether they
contain a k-elements subset. Let ◦ be a bilinear operation on quasisymmetric
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functions given on the monomial bases by concatenation Mα ◦ Mβ = Mα·β. The
flags that contain k-elements subset contribute to Ψ([Un,k]) with

k∑

i=1

(
n

k − i, i, n − k

)
qi−1Mk−i

(1) ◦ M(i) ◦ Ψq([Cn−k]).

The contribution to Ψ([Un,k]) of the remaining flags is

∑

06a<k<n−b6n

(
n

a, b, n − a − b

)
qn−a−b−1Ma

(1) ◦ M(n−a−b) ◦ Ψq(Cb).

By Corollary 4.1 since the principal specialization respects the operation ◦, it follows
from PCm

= P em−1 that

f(P Un,k
, q) =

k∑

i=1

(
n

k − i, i, n − k

)
qi−1f(P en−k−1, q)

+
∑

06a<k<n−b6n

(
n

a, b, n − a − b

)
qn−a−b−1f(P eb−1, q).

Example 4.2. The hypergraphic polytope P Sn−1 corresponding to the hyper-
graph {[1], [2], . . . , [n]} is known as the Pitman–Stanley polytope. It is combinato-
rially equivalent to the (n−1)-cube [11, Proposition 8.10]. The following recursion
is satisfied

Fq(P Sn) = Fq(P Sn−1)M(1) + (q − 1)(Fq(P Sn−1))+1,

where +1 is given on monomial bases by (M(i1,i2,...,ik))+1 = M(i1,i2...,ik+1). It
can be seen by dividing flags into two families according to the position of the
element n. To a flag F : ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fm = [n], we associate the flag

F̃ : ∅ = F0 ⊂ F1 r {n} ⊂ · · · ⊂ Fm r {n} = [n − 1]. If n ∈ Fk for some k < m, then
rkP Sn(F) = rkP Sn−1(F) and if n /∈ Fk for k < m, then rkP Sn(F) = rkP Sn−1(F)+1.
The principal specialization of the previous recursion formula gives

fq(P Sn) = (2 + q)fq(P Sn−1),

consequently fq(P Sn) = (2 + q)n which reflects the fact that P Sn is an n-cube.

Example 4.3. If Γ is a simple graph, the corresponding hypergraphic polytope
PΓ is the graphic zonotope

PΓ =
∑

{i,j}∈Γ

∆ei,ej
.

Simple graphs generate the Hopf subalgebra of HG which is isomorphic to the
chromatic Hopf algebra of graphs. Therefore Fq(PΓ) is the q-analogue of the Stanley
chromatic symmetric function of graphs introduced in [6].

Example 4.4. Simplicial complexes generate another Hopf subalgebra of HG
which is isomorphic to the Hopf algebra of simplicial complexes introduced in [10]
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and studied more extensively in [3]. It is shown in [1, Lemma 21.2] that hyper-
graphic polytopes PK and PK1 corresponding to a simplicial complex K and its
1-skeleton K1 are normally equivalent and therefore have the same enumerators

Fq(PK) = Fq(PK1 ).
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