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INTEGER POINTS ENUMERATOR
OF HYPERGRAPHIC POLYTOPES

Marko Pesovié

ABSTRACT. For a hypergraphic polytope there is a weighted quasisymmetric
function which enumerates positive integer points in its normal fan and de-
termines its f-polynomial. This quasisymmetric function invariant of hyper-
graphs extends the Stanley chromatic symmetric function of simple graphs.
We consider a certain combinatorial Hopf algebra of hypergraphs and show
that universal morphism to quasisymmetric functions coincides with this enu-
merator function. We calculate the f-polynomial of uniform hypergraphic
polytopes.

1. Introduction

The theory of combinatorial Hopf algebras developed by Aguiar, Bergeron and
Sottile in the seminal paper [2] provides an algebraic framework for symmetric
and quasisymmetric generating functions arising in enumerative combinatorics.
Extensive studies of various combinatorial Hopf algebras are initiated recently
[3, 4, 9], 10]. The geometric interpretation of the corresponding (quasi)symmetric
functions was first given for matroids [4] and then for simple graphs [6] and build-
ing sets [7]. The quasisymmetric function invariants are expressed as integer points
enumerators associated to generalized permutohedra. This class of polytopes in-
troduced by Postnikov [11] is distinguished with rich combinatorial structure. The
comprehensive treatment of weighted integer points enumerators associated to gen-
eralized permutohedra is carried out by Gruji¢ et al [8]. Here we consider a certain
naturally defined non-cocommutative combinatorial Hopf algebra of hypergraphs
and show that the derived quasisymmetric function invariant of hypergraphs is
integer points enumerator of hypergraphic polytopes (Theorem [ZT]).
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2. Combinatorial Hopf algebra of hypergraphs HG

A combinatorial Hopf algebra is a pair (H, ) of a graded connected Hopf algebra
H= @7@0 ‘H,, over a field k, whose homogeneous components H,,, n > 0 are finite-
dimensional, and a multiplicative linear functional ¢ : H — k called character.
We consider a combinatorial Hopf algebra structure on hypergraphs different from
the chromatic Hopf algebra of hypergraphs studied in [10]. The difference is in
the coalgebra structures based on different combinatorial constructions, which is
manifested in (non)co-commutativity. It extends the Hopf algebra of building set
studied by Gruji¢ in [7]. This Hopf algebra of hypergraphs can be derived from the
Hopf monoid structure on hypergraphs introduced in [1].

A hypergraph H on the vertex set V is a collection of nonempty subsets H C V/,
called hyperedges. We assume that there are no ghost vertices, i.e., H contains all
singletons {i}, i € V. A hypergraph H is connected if it can not be represented
as a disjoint union of hypergraphs H; LI Hy. Every hypergraph H splits into its
connected components. Let ¢(H) be the number of connected components of H.
Hypergraphs H, on the vertex set V7, and Hs, on the vertex set Vs, are isomorphic
if there is a bijection f : V4 — V; such that Hy = {f(H) : H € Hy}. Let
HG = @n>0 HG,,, where HG,, is the linear span of isomorphism classes [H| of
hypergraphs on the set [n].

DEFINITION 2.1. For a hypergraph H on the vertex set [n] and a subset S C [n]
the restriction H|g and the contraction H/S are defined by

Hls={HeH:HC S},
H/S={H~\ S:HecH}
Define a product and a coproduct on the linear space HG by
[H,] - [Hy] = [Hy LU Hoy],
A(H]) = ) [Hs]® [H/S].

SC[n]

The straightforward checking shows that the space HG with the above operations
together with the unit n : k — HG given by 7n(1) = [Hy] (the empty hypergraph)
and the counit € : HG — k which is the projection on the component HGy = k, be-
come a graded connected commutative and non-cocommutative bialgebra. Namely,
associativity and commutativity of the product follow because U is associative and
commutative up to isomorphism. For a hypergraph H on the set [n] the following
equalities

(AeI)eA)H) = > [Hls,]®[(H]s,)/S] ®[H/S],
PCS1CS2C[n]

(deA) o A)(H) = > [Hs,]®[(H/S1)]s,-5,] @ [H/S:)]
PCS1CS2C[n]

between ((A ® Id) o A)([H]) and ((Id ®A) o A)([H]) provides the coassociativity.
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Commutativity of the bialgebra diagram follows since
[Hils, | U [Hals,] = [(H1 UHz)[s,0us,],
[Hy/S1] U [Hy/Ss] = [(Hy UH)/(S1 U S2)].

Since graded connected bialgebras of finite type posses antipodes, HG is in fact a
Hopf algebra. The formula for antipode S : HG — HG is derived from the general
Takeuchi formula [12]

k
S(HD =Y (D> TI(H] 15)/ L1,

k>1 L j=1

where the inner sum goes over all chains of subsets £, : ) =g cI; C--- CIy_; C
I, = V. Define a character ¢ : HG — k by ¢([H]) = 1 if H is discrete, i.e., contains
only singletons and (([H]) = 0 otherwise. This determines the combinatorial Hopf
algebra (HG, ().

3. Integer points enumerator

In this section we review the definition of the integer points enumerator of a
generalized permutohedron introduced in [§].

For a point (a1, as,...,a,) € R™ with increasing coordinates a; < --- < ay, let
us define the set Q(ay,az,...,a,) by

Q(al,ag, .. .,an) = {(aw(l),aw(g), .. .,aw(n)) L we Gn},

where &,, is the permutation group of the set [n]. The convex hull of the set
Q(a1,az,...,a,) is a standard (n — 1)-dimensional permutohedron Pe™ . The d-
dimensional faces of Pe”~! are in one-to-one correspondence with set compositions
C = C41]Cs| -+ |Cp—q of the set [n] = {1,2,...,n}, see [11], Proposition 2.6. By
this correspondence and the obvious correspondence between set compositions and
flags of subsets, we identify d-faces of Pe”~! with flags F: 0 = Fp C F;, C --- C
F,_4 = [n]. The dimension of a face and the length of the corresponding flag is
related by dim(F) =n — |F|.

The normal fan A (Pe"!) of the standard permutohedron is the fan of the
braid arrangement {z; = %, }1<i<j<n in the space R". The dimension of the normal
cone Cr at the face F is dim(Cr) = |F|. The relative interior points w € C% are
characterized by the condition that their coordinates are constant on F; \ F;_; and
increase w|p,«F_; < W|F,,~F- A positive integer vector w € Z'} belongs to C% if
the weight function w*(r) = (w,z) is maximized on Pe"~! along a face F.

DEeFINITION 3.1. For a flag F let Mx be the enumerator of interior positive
integer points w € Z"} of the corresponding cone Cr

M]: = E Xw)
wezZy N cs

where X, = Ty, Tw, * * * Ty, -
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The enumerator Mr is a monomial quasisymmetric function depending only
of the composition type(F) = (|Fi|, [Fa ~ Fil, ..., |Fk ~ Fi—1]).

The fan N is a coaresement of N'(Pe"~1) if every cone in N is a union of cones
of N(Pe™1). An (n — 1)-dimensional generalized permutohedron Q is a convex
polytope whose normal fan A(Q) is a coaresement of A (Pe™~1). There is a map
ng : L(Pe™ 1) — L(Q) between face lattices given by

mQ(F)=G ifandonlyif C% CCg,

where Cg in the relative interior of the corresponding normal cone C¢ at the face

G e L(Q).

DEFINITION 3.2. For an (n — 1)-generalized permutohedron @, let F,(Q) be
the weighted integer points enumerator

F(Q) = 3 gimtrax, = 3 glmra(®)
W€z FeL(Pen—1)

where F,, is a unique face of Pe"~! containing w in the relative interior.

REMARK 3.1. It is shown in [8] Theorem 4.4] that the enumerator F(Q) con-
tains the information about the f-vector of a generalized permutohedron ). More
precisely, the principal specialization of F,(Q) gives the f-polynomial of @

(3.1) (@, q) = (=1)"ps(F4(Q))(—1).

Recall that the principal specialization ps(F)(m) of a quasisymmetric function F
in variables x1,x3,... is a polynomial in m obtained from the evaluation map at
z;=1,i=1,...,m and z; =0 for i > m.

4. The hypergraphic polytope

For the standard basis vectors e;,1 < i < nin R™ let Ay = conv{e; : i € H}
be the simplex determined by a subset H C [n]. The hypergraphic polytope of a
hypergraph H on [n] is the Minkowski sum of simplices

Py = Z Ay

HeH

As generalized permutohedra can be described as the Minkowski sum of delated
simplices (see [11]), we have that hypergraphic polytopes are generalized permu-
tohedra. For the following description of Py see [5] Section 1.5] and the references
within it. Let H = H; U Hs U --- L Hy be the decomposition into connected
components. Then Py = Py, X Pp, X -+ x Py, and dim(Pg) = n — k. For
connected hypergraphs Py can be described as the intersection of the hyperplane
Hy :={zeR":) " | z; = [H|} with the halfspaces

Hg > = {x eER": Zwi 2 |H|S|}

€S
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corresponding to all proper subsets S C [n]. It follows that Py can be obtained
by iteratively cutting the standard simplex A, by the hyperplanes Hs > corre-
sponding to proper subsets S. For instance the standard permutohedron Pe"~!
is a hypergraphic polytope Pc, corresponding to the complete hypergraph C,
consisting of all subsets of [n].

DEFINITION 4.1. For a connected hypergraph H the H-rank is a map rkyg :
L(Pe™ 1) — {0,1,...,n — 1} given by

I"kH(]:) == dim(?TpH (]:))

Subsequently we deal only with connected hypergraphs. The quasisymmet-
ric function F,(Pyg) corresponding to a hypergraphic polytope Py, according to
Definitions 3.2l and 1] depends only on the rank function

(4.1) F,(Pu) = Z ¢ 1M
FeL(Pen-1)
We extend the ground field k to the field of rational function k(g) in a variable

q and consider the Hopf algebra HG over this extended field. Let rk(H) = n—c(H)
for hypergraphs on n vertices. Define a linear functional ¢, : HG — k(g) with

Go([H]) = ¢ = gD,

which is obviously multiplicative. By the characterization of the combinatorial Hopf
algebra of quasisymmetric functions (QSym, {g) as a terminal object ([2, Theorem
4.1]) there exists a unique morphism of combinatorial Hopf alegbras ¥, (HG, {;) —
(QSym, (o) given on monomial basis by

\I’q([H]) = Z (Cq)a([H])Ma-

al=n

We determine the coefficients by monomial functions in the above expansion
more explicitly. For a hypergraph H define its splitting hypergraph H/F by a flag

JF with
k

H/F = | |H|p/Fi1.

i=1
The coefficient corresponding to a composition o = (a1, e, ..., ax) E n is a poly-
nomial in ¢ determined by

k
(¢y)a(H]) = Z quk(H‘Fi/Fi—l) _ Z R/ F)

F :type(F)=ai=1 F :type(F)=a

where the sum is over all flags F : ) =: Fy C Fy C --- C Fy := [n] of the type a
and

k k
(4.2) rk(H/F) = rk(H|r,/Fi1) =n— Y c(H|p/Fi1).
=1 =1
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By this correspondence, we have

(4.3) U (H) = D My
FEeL(Per—1)

Now we have two quasisymmetric functions associated to hypergraphs whose expan-
sions in monomial bases are given by (A1) and (@3]). We show that they actually
coincide which describes the corresponding hypergraphic quasisymmetric invariant
algebraically and geometrically.

THEOREM 4.1. For a connected hypergraph H the integer points enumerator
F,(Pu) associated to a hypergraphic polytope and the quasisymmetric function
U, ([H]) coincide

Fy(Pu) = Wy ([H]).

PrOOF. Let H be a connected hypergraph on the set [n] and F : § = Fy C
Fy C F, C--- C Fy, = [n] be a flag of subsets of [n]. It is sufficient to prove that

(4.4) rky(F) = rk(H/F).

For this we need to determine the face G of the hypergraphic polytope Py along
which the weight function w* is maximized for an arbitrary w € C%. Since Py is
the Minkowski sum of simplices Ay for H € H the face G is itself a Minkowski
sum of the form G = 3, (Ag)F where (Ay)F is a unique face of Ay along
which the weight function w* is maximized for w € C%. Let w = (w1, .. .,wy) where
wy=jifie F;NFj_y fori=1,...,n. Then w € C% and we can convince that
(Ag)F = Ag<r;_, where j = min{k | H C Fy}. Denote by H; the collection of
all H € H with j = min{k | H C F}} for j = 1,...,m. We can represent the face
GasG= Z;n:1 > HeH, Ap<F,_,, which shows that G is precisely a hypergraphic
polytope corresponding to the splitting hypergraph

Equation ([#4) follows from the fact that dim Py 7 = rk(H/F), which is given by
H2). O

As a corollary, by Remark B.I] and equation (BI)) within it, we can derive the
f-polynomial of a hypergraphic polytope Py in a purely algebraic way.

COROLLARY 4.1. The f-polynomial of a hypergraphic polytope Py is deter-
mined by the principal specialization

f(Pr,q) = (=1)" ps (Vo ([H])) (-1).
We proceed with some examples and calculations.

EXAMPLE 4.1. Let U,, j, be the k-uniform hypergraph containing all k-elements
subsets of [n] with k > 1. Divide flags into two families depending on whether they
contain a k-elements subset. Let o be a bilinear operation on quasisymmetric
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functions given on the monomial bases by concatenation M, o Mg = M,.5. The
flags that contain k-elements subset contribute to ¥([U, x]) with

k
n i —i
Z(k >q TMETT o Mgy 0 W([Croi]).

— —1,t,n—k
1=

The contribution to ¥([U, x]) of the remaining flags is

n n—a—b—1 a
> (a,b,n—a—b)q My o M—q—p) © ¥q(Cp).
0<a<k<n—b<n

By Corollary[@Tlsince the principal specialization respects the operation o, it follows
from Pc,, = Pe™ ! that

k
f(Pu,ca) =) (k " )q"‘lf(Pe”"“‘l,q)
i=1

—1,4,n—Fk

n n—a—b—1 b—1
E P .
+ (a,b,nab)q f(Perq)

0<a<k<n—b<n

EXAMPLE 4.2. The hypergraphic polytope PS™~! corresponding to the hyper-
graph {[1], [2],. .., [n]} is known as the Pitman—Stanley polytope. It is combinato-
rially equivalent to the (n —1)-cube [11}, Proposition 8.10]. The following recursion
is satisfied

Fy(PS™) = Fy(PS"™)Mgy) + (g — 1)(Fy(PS" )11,

where 1 is given on monomial bases by (M, . ..i0))+1 = Mg i ip+1)- It
can be seen by dividing flags into two families according to the position of the
element n. Toaflag F: ) = Fy C Fy C --- C F,, = [n], we associate the flag
F:0=FycF~{n}C - CFn~{n}=[n—1]. If n € F} for some k < m, then
rkpgn (F) =rkpgn-1(F) and if n ¢ Fy, for k < m, then rkpgn (F) = rkpgn-1(F)+1.
The principal specialization of the previous recursion formula gives

fo(PSn) = 2+ q) fo(PSn-1),
consequently f;(PS,) = (2+ ¢)" which reflects the fact that PS™ is an n-cube.

ExampLE 4.3. If T is a simple graph, the corresponding hypergraphic polytope
Pr is the graphic zonotope
Pr= Y A,

{i,jrer
Simple graphs generate the Hopf subalgebra of HG which is isomorphic to the
chromatic Hopf algebra of graphs. Therefore F, (Pr) is the g-analogue of the Stanley
chromatic symmetric function of graphs introduced in [6].

ExaMPLE 4.4. Simplicial complexes generate another Hopf subalgebra of HG
which is isomorphic to the Hopf algebra of simplicial complexes introduced in [10]
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and studied more extensively in [3]. It is shown in [1, Lemma 21.2] that hyper-
graphic polytopes Px and Pg1 corresponding to a simplicial complex K and its
1-skeleton K! are normally equivalent and therefore have the same enumerators

F,(Pg) = F,(Pg1).
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