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NEW ESTIMATES FOR MEROMORPHIC FUNCTIONS

Bülent Nafi Örnek

Abstract. A boundary version of the Schwarz lemma for meromorphic func-
tions is investigated. For the function Inf(z) = 1

z
+

∑

∞

k=2
knck−2zk−2, be-

longing to the class of W , we estimate from below the modulus of the angular
derivative of the function on the boundary point of the unit disc.

1. Introduction

One of the most investigated subjects is Schwarz lemma in complex analysis. It
is an important result which gives estimates about taking values of the holomorphic
functions defined in the unit disc in complex plane and whose image set in the unit
disc. In addition, it is a fundamental support to develop geometric function theory,
the fixed point theory of holomorphic map, hyperbolic geometry and many areas of
analysis. Schwarz lemma, which is a direct application of the maximum modulus
principle, is commonly stated as follows.

Let f be a holomorphic function in the unit disc U = {z : |z| < 1}, f(0) = 0 and
|f(z)| < 1 for |z| < 1. For any point z in the unit disc U , we have |f(z)| 6 |z| and
|f ′(0)| 6 1. Equality in these inequalities (in the first one, for z 6= 0) occurs only if
f(z) = λz, |λ| = 1 [6, p. 329]. For historical background about the Schwarz lemma
and its applications on the boundary of the unit disc, we refer to (see [2, 20]). Also,
Mateljević [16] give an approach to Hyperbolic geometry via the Schwarz lemma.

In proving our main results, we shall need the following result due to Jack [7].

Lemma 1.1 (Jack’s lemma). Let f(z) be a holomorphic function in the unit

disc U with f(0) = 0. If |f(z)| attains its maximum value on the circle |z| = r at

the point z0, then z0f
′(z0) = kf(z0) where k > 1 is a real number.

Let T denote the class of functions f(z) = 1
z

+ c0 + c1z + c2z
2 + · · · that are

holomorphic in the punctured disc E = {z ∈ C : 0 < |z| < 1}. Define I0f(z) = f(z),

I1f(z) =
1

z
+ 2c0 + 3c1z + 4c2z

2 + · · · =
(z2f(z))′

z
, I2f(z) = I1(I1f(z)),
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and for n = 1, 2, 3, . . .

Inf(z) = I1(In−1f(z)) =
1

z
+ 2nc0 + 3nc1z + 4nc2z

2 + · · · =
1

z
+

∞
∑

k=2

knck−2z
k−2.

Also, let W be the class of T consisting of all the functions f(z) satisfying

(1.1) Re[−z2(Inf(z))′] > 0, |z| < 1.

Let f(z) ∈ W and consider the function

(1.2) ψ(z) =
1 + z2(InH(z))′

1 − z2(InH(z))′
,

where H(z) = c
zc+1

∫ z

0 t
cf(t)dt and Re c > 0, which is holomorphic in U and

ψ(0) = 0, that is

I0H(z) = H(z), I1H(z) =
1

z
+

2c

c+ 1
c0 +

3c

c+ 2
c1z +

4c

c+ 3
c2z

2 + . . . ,

I2H(z) = I1(I1H(z)), InH(z) =
1

z
+

∞
∑

k=2

kn
c

c+ k − 1
ck−2z

k−2,

ψ(z) =
3n c

c+2c1z
2 + 2 · 4n c

c+3c2z
3 + 3 · 5n c

c+3c3z
4 + . . .

2 − 3n c
c+2c1z2 − 2 · 4n c

c+3c2z3 − 3 · 5n c
c+3c3z4 − . . .

= 3n
c

2(c+ 2)
c1z

2 + 2 · 4n
c

2(c+ 3)
c2z

3 + . . .

Since f(z) ∈ W , we have

(1.3) z(InH(z))′ + (1 + c)InH(z) = cInf(z).

Differentiating (1.3), we obtain z(InH(z))′′ + (c + 2)(InH(z))′ = c(Inf(z))′. Dif-

ferentiating (1.2), we get z(InH(z))′′ + 2(InH(z))′ = 2ψ′(z)
c(1+ψ(z))2 . Thus, we have

−z2(Inf(z))′ = −z2(InH(z))′ −
2zψ′(z)

c(1 + ψ(z))2 .

Now, we show that |ψ(z)| < 1 for |z| < 1. If there exists a point z0 ∈ U such that
max|z|6|z0| |ψ(z)| = |ψ(z0)| = 1, then Jack’s lemma gives us that ψ(z0) = eiθ and
z0ψ

′(z0) = kψ(z0). Thus, we have

−z2
0(Inf(z0))′ = −z2

0(InH(z0))′ −
2zψ′(z0)

c(1 + ψ(z0))2

=
1 − ψ(z0)

1 + ψ(z0)
−

2kψ(z0)

c(1 + ψ(z0))2

=
1 − eiθ

1 + eiθ
−

2keiθ

c(1 + eiθ)2 .

and

Re(−z2
0(Inf(z0))′) = Re

(

1 − eiθ

1 + eiθ
−

2keiθ

c(1 + eiθ)2

)

.
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Therefore, we obtain

Re(−z2
0(Inf(z0))′) = Re

(

1 − (cos θ + i sin θ)

1 + cos θ + i sin θ
−

2keiθ

c(1 + eiθ)2

)

= Re

(

1 − (cos θ + i sin θ)

1 + cos θ + i sin θ
− 2k

1

c(2 + eiθ + e−iθ)

)

= Re

(

1 − (cos θ + i sin θ)

1 + cos θ + i sin θ
−

2k

2c(1 + cos θ)

)

= −kRe

(

1

c(1 + cos θ)

)

6 0.

This contradicts (1.1). Thus, there is no point z0 ∈ U such that |ψ(z0)| = 1 for
all z0 ∈ U . Consequently, we conclude that |ψ(z)| < 1 for |z| < 1. Thus, by the
Schwarz lemma, we obtain

(1.4) |c1| 6
2

3n
|
c+ 2

c
|.

Moreover, the equality in (1.4) occurs for the solution of the equation

(InH(z))′ =
z2 − 1

z2(1 + z2)
,

with the condition limz→0 z
2H(z) = 0 at z = 0. In particular, for n = 1, we have

(1.5) (I1H(z))′ =
z2 − 1

z2(1 + z2)
,

with the condition limz→0 z
2H(z) = 0 at z = 0 Thus, from (1.5), we obtain

f(z) =
1

z
+

2

3

c+ 2

c
z −

2

15

c+ 4

c
z3 +

2

35

c+ 6

c
z5 − · · ·

Now, we can find equality condition in (1.4).

InH(z) =
1

z
+ 2n

c

c+ 1
c0 + 3n

c

c+ 2
c1z + 4n

c

c+ 3
c2z

2 + 5n
c

c+ 4
c3z

3 + · · · ,

(InH(z))′ =
−1

z2 + 3n
c

c+ 2
c1 + 2 · 4n

c

c+ 3
c2z + 3 · 5n

c

c+ 4
c3z

2 + · · ·

Therefore, we obtain

(InH(z))′ =
z2 − 1

z2(1 + z2)
,

−1

z2 + 3n
c

c+ 2
c1 + 2 · 4n

c

c+ 3
c2z + 3 · 5n

c

c+ 4
c3z

2 + · · · =
z2 − 1

z2(1 + z2)
,

−1 + 3n
c

c+ 2
c1z

2 + 2 · 4n
c

c+ 3
c2z

3 + 3 · 5n
c

c+ 4
c3z

4 + · · · =
z2 − 1

1 + z2 ,

3n
c

c+ 2
c1z

2 + 2 · 4n
c

c+ 3
c2z

3 + 3 · 5n
c

c+ 4
c3z

4 + · · · =
z2 − 1

1 + z2 + 1 =
2z2

1 + z2 ,

3n
c

c+ 2
c1 + 2 · 4n

c

c+ 3
c2z + 3 · 5n

c

c+ 4
c3z

2 + · · · =
2

1 + z2
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and passing to the limit in the last inequality yields

lim
z→0

3n
c

c+ 2
c1 + 2 · 4n

c

c+ 3
c2z

z + 3 · 5n
c

c+ 4
c3z

2 + · · · = lim
z→0

2

1 + z2 ,

3n
c

c+ 2
c1 = 2, |c1| =

2

3n
|
c+ 2

c
|.

Osserman [19] offered the following boundary refinement of the classical
Schwarz lemma. It is very much in the spirit of the sort of result, we wish to
consider here. In other words,

|f ′(b)| > p+
1 − |cp|

1 + |cp|
,(1.6)

|f ′(b)| > p(1.7)

under the assumption f(0) = 0, where f is a holomorphic function mapping of the
unit disc into itself and b is a boundary point which f extends continuosly, and
|f(b)| = 1. In addition, equality in (1.7) holds if and only if f(z) = zpeiθ, where
θ is a real number. Also, equality in (1.6) holds if and only if f is of the form

f(z) = −zp ξ−z
1−ξz , ∀z ∈ U , for some constant ξ ∈ (−1, 0].

The following set is called a Stolz angle at b ∈ ∂U

△=
{

z ∈ U : | arg(1 − b̄z)| < α, |z − b| < ρ
}

,
(

0 < α <
π

2
, ρ < 2 cosα

)

.

Let f be a function from U to C̄. It is said that f has an angular limit ς ∈ C̄

at b ∈ ∂U if f(z) → ς as z → b, z ∈△ for each Stolz angle △ at b. The number
2α which is length of △ can be any number less than π. It is said that f has the
unrestricted limit ς ∈ C̄ at b if f(z) → ς as z → b, z ∈ U . Clearly, in the last fact,
if the function f which is continuous in U is defined at the point b as f(b) = a,
then f becomes continuous in U ∪ {b}.

Let f be a function from U to U and γ be its angular limit at the point b. If

there exists a point β such that limz→b, z∈△
f(z)−γ
z−b = β for every Stolz anagle △ at

the point b, then β is called the angular derivative of the function f at b and β is
shown with f ′(b).

In proving our main results, we shall need the following lemma due to Julia–
Wolff and Corollary 3 [21].

Lemma 1.2 (Julia–Wolff lemma). Let f be a holomorphic function in U , f(0) =
0 and f(U) ⊂ U . If, in addition, the function f has an angular limit f(b) at b ∈ ∂U ,

|f(b)| = 1, then the angular derivative f ′(b) exists and 1 6 |f ′(b)| 6 ∞.

Corollary 1.1. The holomorphic function f has a finite angular derivative

f ′(b) if and only if f ′ has the finite angular limit f ′(b) at b ∈ ∂U .

Inequality (1.7) and its generalizations have important applications in geomet-
ric theory of functions (see, e.g., [6, 21]). Therefore, the interest to such type of
results have not vanished (see, e.g., [1, 2, 4, 5, 11, 12, 16, 17, 19, 20, 22] and
references therein).
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Dubinin has continued this line and has made a refinement on the boundary
Schwarz lemma under the assumption that f(z) = cpz

p + cp+1z
p+1 + · · · , with a

zero set {zk} [4].
Krantz and Burns [10] and Chelst [3] studied the uniqueness part of the

Schwarz lemma. Similar types of results which are related with the subject of
the paper can be found in [13, 14, 15]. Also, Mateljević’s [16] give an approach
to hyperbolic geometry via Schwarz lemma.

In addition, Jeong [9] showed some inequalities at a boundary point for different
form of holomorphic functions. He also found the condition for equality. In [8], a
holomorphic selfmap was defined on the closed unit disc with fixed points only on
the boundary of the disc. Wail and Shah [21] established some results by using a
boundary refinement of the classical Schwarz lemma.

2. Main Results

In this section, the meromorphic function Inf(z) = 1
z

+
∑∞

k=2 k
nck−2z

k−2,
belonging to W , is estimated from below by the modulus of the angular derivative
of the function on the boundary point of the unit disc.

Theorem 2.1. Let f(z) ∈ W. Assume that, for some b ∈ ∂U , (Inf(z))′ has

angular limit (Inf(z))′
z=b at b and (Inf(z))z=b = c+1

c
(In( c

zc+1

∫ z

0 t
cf(t)dt))z=b.

Then we have

(2.1) |(Inf(z))′
z=b| >

1

|c|
.

The inequality (2.1) is sharp.

Proof. Consider the function

ψ(z) =
1 + z2(InH(z))′

1 − z2(InH(z))′
,

where H(z) = c
zc+1

∫ z

0 t
cf(t)dt and Re c > 0. The function ψ(z) is holomorphic

in the unit disc U and ψ(0) = 0. From Jack’s lemma and since f(z) ∈ W , we
have |ψ(z)| < 1 for |z| < 1. Also, we have |ψ(b)| = 1 for b ∈ ∂U . That is, since
(Inf(z))z=b = c+1

c

(

In( c
zc+1

∫ z

0 t
cf(t)dt)

)

= c+1
c

(InH(z))z=b, we have

b(InH(z))′
z=b + (1 + c)InH(z)z=b = cInf(z)z=b,

b(InH(z))′
z=b + (1 + c)InH(z)z=b = c

c+ 1

c
(InH(z))z=b

and (InH(z))′
z=b = 0. Therefore, we take |ψ(b)| = 1 for b ∈ ∂U .

For p = 2, from (1.7), we obtain

2 6 |ψ′(b)| =

∣

∣

∣

∣

(2b(InH(z))′
z=b + b2(InH(z))′′

z=b)(1 − b2(InH(z))′
z=b)

(1 − b2(Inf(z))′
z=b)

2

+
(2b(InH(z))′

z=b + b2(InH(z))′′
z=b)(1 + b2(InH(z))′

z=b)

(1 − b2(InH(z))′
z=b)

2

∣

∣

∣

∣

,
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2 6
|4b(InH(z))′

z=b + 2b2(InH(z))′′
z=b|

(1 − b2(InH(z))′
z=b)

2 = |2(InH(z))′′
z=b|,

and |(InH(z))′′
z=b| > 1. Since z(InH(z))′′ + (c + 2)(InH(z))′ = c(Inf(z))′ and

(InH(z))′
z=b = 0, we have b(InH(z))′′

z=b + (c+ 2)(InH(z))′
z=b = c(Inf(z))′

z=b and
b(InH(z))′′

z=b = c(Inf(z))′
z=b. Thus, we obtain |(Inf(z))′

z=b| > 1/|c|.
Now, we show that the inequality (2.1) is sharp. Let

(InH(z))′ =
z2 − 1

z2(1 + z2)

with the condition limz→0 z
2H(z) = 0 at z = 0. Then, we have

(InH(z))′′ =
2z(z4 + z2) − (4z3 + 2z)(z2 − 1)

(z4 + z2)2 , (InH(z))′′
z=1 = 1.

We know that

b(InH(z))′′
z=b + (c+ 2)(InH(z))′

z=b = c(Inf(z))′
z=b

and since (InH(z))′′
z=1 = 1 and (InH(z))′

z=1 = 0, we obtain (InH(z))′′
z=1 =

c(Inf(z))′
z=1. Thus, we get |(Inf(z))′

z=1| = 1
|c| . �

Theorem 2.2. Under the same assumptions as in Theorem 4, we have

(2.2) |(Inf(z))′
z=b| >

1

2|c|

(

6|c+ 2| + 3n|c||c1|

2|c+ 2| + 3n|c||c1|

)

.

The inequality (2.2) is sharp.

Proof. Let ψ(z) be as in the proof of Theorem 4. For n = 2, using the
inequality (1.6) for the function ψ(z), we obtain

2 +
1 − |d2|

1 + |d2|
6 |ψ′(b)| = 2|(InH(z))′′

z=b|

Since |d2| = |ψ′′(0)|
2 = 3n

2

∣

∣

∣

c
c+2

∣

∣

∣
|c1|, where d2 is the coefficient in the Taylor expansion

of the function ψ(z), then we have

2 +
1 − 3n

2

∣

∣

c
c+2

∣

∣|c1|

1 + 3n

2

∣

∣

c
c+2

∣

∣|c1|
= 2 +

2|c+ 2| − 3n|c||c1|

2|c+ 2| + 3n|c||c1|
6 2|(InH(z))′′

z=b|,

|(InH(z))′′
z=b| >

1

2

(

2 +
2|c+ 2| − 3n|c||c1|

2|c+ 2| + 3n|c||c1|

)

=
1

2

(

6|c+ 2| + 3n|c||c1|

2|c+ 2| + 3n|c||c1|

)

.

To show that the inequality (2.2) is sharp, take the holomorphic function

ψ(z) =
1 + z2(InH(z))′

1 − z2(InH(z))′
= z2 z + ̺

1 + ̺z
, (0 6 ̺ < 1)

with the condition limz→0 z
2H(z) = 0 at z = 0. Then

ψ′(z) = 2
2z(InH(z))′ + z2(InH(z))′′

(1 − z2(InH(z))′)2 =
(3z2 + 2̺z)(1 + ̺z) − ̺(z3 + ̺z2)

(1 + ̺z)2 ,

ψ′(1) = 2
2(InH(z))′

z=1 + (InH(z))′′
z=1

(1 − (InH(z))′
z=1)2 =

3 + ̺

1 + ̺
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and
∣

∣(InH(z))′′
z=1

∣

∣ = 1
2

(

3+̺
1+̺

)

. Since ̺ = 3n

2

∣

∣

c
c+2

∣

∣|c1| (see, (1.4)) and (InH(z))′′
z=1

= c(Inf(z))′
z=1, (2.2) is satisfied with equality. �

Theorem 2.3. Under the same assumptions as in Theorem 4, we have

(2.3) |(In
f(z))′

z=1| >
1

|c|

(

1 +
|c + 3|(2|c + 2| − 3n|c||c1|)2

|c + 3|(4|c + 2|2 − 32n|c|2|c1|2) − 4n+1|c||c + 2|2|c2|

)

.

The inequality (2.3) is sharp.

Proof. Let ψ(z) be as in the proof of Theorem 4. By the maximum principle,
for each z ∈ U , we have |ψ(z)| 6 |z2|. So, ϕ(z) = ψ(z)/z2 is a holomorphic function
in U and |ϕ(z)| < 1 for |z| < 1. In particular, we have

(2.4) |ϕ(0)| =
3n

2

∣

∣

∣

c

c+ 2

∣

∣

∣
|c1| 6 1

and |ϕ′(0)| = 4n
∣

∣

∣

c
c+3

∣

∣

∣
|c2|. Moreover, one can see that

bψ′(b)

ψ(b)
= |ψ′(b)| > |(b2)′| =

b(b2)′

b2 .

The function

Φ(z) =
ϕ(z) − ϕ(0)

1 − ϕ(0)ϕ(z)
=

3n c
2(c+2)c1 + 2 · 4n c

2(c+3)c2z + · · · − 3n c
2(c+2)c1

1 − 3n c
2(c+2)c1

(

3n c
2(c+2)c1 + 2 · 4n c

2(c+3)c2z + · · ·
)

=
4n c

(c+3)c2z + · · ·

1 − 3n c
2(c+2)c1

(

3n c
2(c+2)c1 + 2 · 4n c

2(c+3)c2z + · · ·
)

is holomorphic in the unit disc U , |Φ(z)| < 1 for |z| < 1, Φ(0) = 0 and |Φ(b)| = 1
for b ∈ ∂U . From (1.6), we obtain

2

1 + |Φ′(0)|
6 |Φ′(b)| =

1 − |ϕ(0)|2

|1 − ϕ(0)ϕ(b)|2
|ϕ′(b)|

6
1 + |ϕ(0)|

1 − |ϕ(0)|
|ϕ′(b)| =

1 + |ϕ(0)|

1 − |ϕ(0)|
{|ψ′(b)| − 2}.

Since Φ′(z) = 1−|ϕ(0)|2

(1−ϕ(0)ϕ(z))2
ϕ′(z), we have

|Φ′(0)| =
|ϕ′(0)|

1 − |ϕ(0)|2
=

4n
∣

∣

c
c+3

∣

∣|c2|

1 −
(

3n

2

∣

∣

c
c+2

∣

∣|c1|
)2 =

4n+1|c||c+ 2|2|c2|

|c+ 3|(4|c+ 2|2 − 32n|c|2|c1|2)
,

wherefrom

2

1 + 4n+1|c||c+2|2|c2|
|c+3|(4|c+2|2−32n|c|2|c1|2)

6
2|c+ 2| + 3n|c||c1|

2|c+ 2| − 3n|c||c1|
{2|(InH(z))′′

z=b| − 2},

2|c+ 3|(4|c+ 2|2 − 32n|c|2|c1|2)

|c+ 3|(4|c+ 2|2 − 32n|c|2|c1|2) − 4n+1|c||c+ 2|2|c2|

2|c+ 2| − 3n|c||c1|

2|c+ 2| + 3n|c||c1|

6 2|(InH(z))′′
z=b| − 2,
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2|c+ 3|(2|c+ 2| − 3n|c||c1|)2

|c+ 3|(4|c+ 2|2 − 32n|c|2|c1|2) − 4n+1|c||c+ 2|2|c2|
+ 2 6 2|(InH(z))′′

z=b|

Therefore, we obtain

|(InH(z))′′
z=b| > 1 +

|c+ 3|(2|c+ 2| − 3n|c||c1|)2

|c+ 3|(4|c+ 2|2 − 32n|c|2|c1|2) − 4n+1|c||c+ 2|2|c2|
.

Also, since b(InH(z))′′
z=b = c(Inf(z))′

z=b, we have

|(Inf(z))′
z=b| >

1

|c|

(

1 +
|c+ 3|(2|c+ 2| − 3n|c||c1|)2

|c+ 3|(4|c+ 2|2 − 32n|c|2|c1|2) − 4n+1|c||c+ 2|2|c2|

)

.

Now, we shall show that the inequality (2.3) is sharp. Consider the function

(InH(z))′ = z2−1
z2(1+z2) with the condition limz→0 z

2H(z) = 0 at z = 0. We have

(InH(z))′′ =
2z(z4 + z2) − (4z3 + 2z)(z2 − 1)

(z4 + z2)2 ,

|(InH(z))′′
z=1| = 1, |(Inf(z))′

z=1| = 1/|c|.

Since |c1| = 2
3n

| c+2
c

|, (2.3) is satisfied with equality. That is,

1

|c|

(

1 +
|c+ 3|(2|c+ 2| − 3n|c||c1|)2

|c+ 3|(4|c+ 2|2 − 32n|c|2|c1|2) − 4n+1|c||c+ 2|2|c2|

)

=
1

|c|

(

1 +
|c+ 3|

(

2|c+ 2| − 3n|c| 2
3n

∣

∣

c+2
c

∣

∣

)2

|c+ 3|
(

4|c+ 2|2 − 32n|c|2
(

2
3n

∣

∣

c+2
c

∣

∣

)2)

− 4n+1|c||c+ 2|2|c2|

)

=
1

|c|
.

Thus, we obtain |(Inf(z))′
z=1| = 1/|c|. �

If z2(Inf(z))′ has no zeros different from z = 0 in Theorem 6, the inequality
(2.3) can be further strengthened. This is given by the following Theorem.

Theorem 2.4. Let f(z) ∈ W(c > 0) and z2(Inf(z))′ has no zeros in U except

z = 0 and c1 > 0. Assume that, for some b ∈ ∂U , (Inf(z))′ has angular limit

(Inf(z))′
z=b at b and (Inf(z))z=b = c+1

c

(

In
(

c
zc+1

∫ z

0 t
cf(t)dt

))

z=b. Then we have

the inequality

(2.5) |(Inf(z))′
z=b| >

1

c

(

1 −
1

2

3n c
c+2c1 ln2 (

3n

2
c
c+2c1

)

3n c
c+2c1 ln

(

3n

2
c
c+2c1

)

− 4n c
c+3 |c2|

)

.

The inequality (2.5) is sharp.

Proof. Let c1 > 0 and c > 0 in the expression of the function f(z). Having
in mind the inequality (2.4) and the function z2(Inf(z))′ has no zeros in U except
U − {0}, we denote by lnϕ(z) the holomorphic branch of the logarithm normed by
the condition

lnϕ(0) = ln
(3n

2

c

c+ 2
c1

)

< 0.

That is, since z2(Inf(z))′ has no zeros in U except U−{0}, we have that z2(InH(z))′

has no zeros in U except z = 0
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The auxiliary function

̥(z) =
lnϕ(z) − lnϕ(0)

lnϕ(z) + lnϕ(0)

is holomorphic in the unit disc U , |̥(z)| < 1, ̥(0) = 0 and |̥(b)| = 1 for b ∈ ∂U .
For p = 1, from (1.7), we obtain

2

1 + |̥′(0)|
6 |̥′(b)| =

|2 lnϕ(0)|

| lnϕ(b) + lnϕ(0)|2

∣

∣

∣

ϕ′(b)

ϕ(b)

∣

∣

∣

=
−2 lnϕ(0)

ln2 ϕ(0) + arg2 ϕ(b)
{|ψ′(b)| − 2}.

Replacing arg2 ω(b) by zero, we get

1

1 −
4n c

c+3
|c2|

3n

2
c

c+2
c12 ln

(

3n

2
c

c+2
c1

)

6
−1

ln
(

3n

2
c
c+2c1

){2|(InH(z))′′
z=b| − 2},

−
3n c

c+2c1 ln2 (

3n

2
c
c+2c1

)

3n c
c+2c1 ln

(

3n

2
c
c+2c1

)

− 4n c
c+3 |c2|

6 2|(InH(z))′′
z=b| − 2,

−
1

2

3n c
c+2c1 ln2 (

3n

2
c
c+2c1

)

3n c
c+2c1 ln

(

3n

2
c
c+2c1

)

− 4n c
c+3 |c2|

6 |(InH(z))′′
z=b| − 1,

|(InH(z))′′
z=b| >

(

1 −
1

2

3n c
c+2c1 ln2 (

3n

2
c
c+2c1

)

3n c
c+2c1 ln

(

3n

2
c
c+2c1

)

− 4n c
c+3 |c2|

)

.

Also, since (InH(z))′′
z=b = c(Inf(z))′

z=b, we have

|(Inf(z))′
z=b| >

1

c

(

1 −
1

2

3n

2
c
c+2c1 ln2 (

3n

2
c
c+2c1

)

3n c
c+2c1 ln

(

3n

2
c
c+2c1

)

− 4n c
c+3 |c2|

)

.

Equality in (2.5) occurs for the solution of the equation

(InH(z))′ =
z2 − 1

z2(1 + z2)
,

with the condition limz→0 z
2H(z) = 0 at z = 0. �
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