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CONTINUED FRACTIONS AND DIOPHANTINE
EQUATIONS IN POSITIVE CHARACTERISTIC

Khalil Ayadi, Awatef Azaza, and Salah Beldi

Abstract. We exhibit explicitly the continued fraction expansion of some
algebraic power series over a finite field. We also discuss some Diophantine
equations on the ring of polynomials, which are intimately related to these
power series.

1. Introduction

Formal power series over a given field have been studied for a long time in
Number Theory. The case of a finite base field is particularly important and the
analogy between these power series and the real numbers is striking. Nevertheless
the positive characteristic, inducing the existence of the Frobenius isomorphism,
makes rational approximation to algebraic elements very different from the case
of real numbers and somehow more complex. Baum Sweet’s article [3] was the
starting point of the diophantine approximation in positive characteristic through
the continued fraction expansion and opened several questions and research axis
in this area. The continued fraction expansion and the irrationality measure of
the solution of many algebraic equation was computed. We recall for example the
case of the equation algebraic irreducible xn = R(∗), where n is a positive integer,
not divisible by p, and R ∈ F(T ). Such an equation has a root in F((T −1)) if
(and only if) deg R is a multiple of n and the first coefficient of R belong to F

n.
Osgood [11], Voloch [14], de Mathan [8] and Lasjaunias [4] have studied the rational
approximation of the solution of the equation (∗). For instance, we know that it is
well approximable by rationals for suitable R. Furthermore, it is an element of a
particular subset of algebraic elements called hyperquadratic. Let r = pt with t > 0;
we say that α belonging to F((T −1)) is hyperquadratic if α is irrational and satisfies
an algebraic equation of the particular form Aαr+1 + Bαr + Cα + D = 0, where A,
B, C and D belong to F[T ]. Note that the quadratic elements are hyperquadratic.
Many explicit continued fractions are known for nonquadratic but hyperquadratic
elements; see for example [2], [5] and [12]. However, the explicit continued fraction
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expansion of the solution of (∗) is not yet completely described. In [3], Baum
and Sweet have given the continued fraction expansion of the irrational solution
of the equation x2n−1 = A

A+1 in F((T −1)), where F = F2 and A is nonconstant
polynomial. This has allowed them to describe the solutions of the Diophantine
equation (A + 1)P 2n−1 − AQ2n−1 = 1. They have also computed the all partial
quotients of other algebraic elements and discussed the solutions of some other
Diophantine equation.

The remainder of the paper is organised in the following way. We gather some
definitions and theorems in Section 2. We then consider a nonconstant polynomial
A and r is a power of p. In Section 3, we will give explicitly the continued fraction
expansion of the solution of the equation xr+1 = Ar+1 − 1 in F((T −1)), Theorem
3.1. We will compute, in Theorem 3.2, the solutions of some Diophantine equations
related to it. Note that the solution of this equation for r = 2 and A = T was
described in [1]. The Section 4 is devoted to describe all partial quotients of the
solution of the equation Ar−1xr+1 − (Ar + 1)xr + Ar−1x − Ar = 0, Theorem 4.1.
Further, in Theorem 4.2, we will also discuss a Diophantine equation related to it.

So by this work we add other examples to the explicitly known hyperquadratic
continued fractions. Furthermore, for these examples, Liouville’s theorem is sharp,
and thus a Thue–Siegel–Roth theorem cannot hold for such examples. Indeed, we
will improve the following result of Baum ans Sweet [3], Theorems 3.3, 4.3.

Theorem 1.1. Let d, n ∈ Nr {0}. Then there exist an algebraic formal power

series θ ∈ F2((T −1)) of degree 2n + 1 such that the equation

∣

∣

∣
θ −

P

Q

∣

∣

∣
=

2−d

|Q|2n+1

has infinitely many solutions (P, Q) ∈ F2[T ] × F2[T ].

We finally note that in [10], this result with some Diophantine equations stud-
ied in [3] was improved.

2. Preliminaries

Let p be a prime number and let F be a finite field of characteristic p. For
a formal indeterminate T let F[T ], F(T ) and F((T −1)), respectively, denote the
ring of polynomials, the field of rational functions and the field of power series in
1/T over F. These fields are valuated by the ultrametric absolute value introduced
on F(T ) by |P/Q| = edeg(P )−deg(Q), where e is Euler’s number. Hence a nonzero
element of F((T −1)) is written as α =

∑

k6k0
akT k with k0 ∈ Z, ak ∈ F, and

ak0 6= 0 and we have |α| = ek0 . This field F((T −1)) is the completion of the field
F(T ) for this absolute value. We recall that each irrational (rational) element α
of F((T −1)) can be expanded as an infinite (finite) continued fraction. This will
be denoted α = [a0, a1, . . . , an, . . . ] where the ai ∈ F[T ], with deg(ai) > 0 for
i > 1, are the partial quotients and the tail αi = [ai, ai+1, . . . ] ∈ F((T −1)) is
the complete quotient. As in the classical theory, we define recursively the two
sequences of polynomials (Pn)n>0 and (Qn)n>0 by Pn = anPn−1 + Pn−2 and Qn =
anQn−1 + Qn−2, with the initial conditions P0 = a0, P1 = a0a1 + 1, Q0 = 1 and
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Q1 = a1. We have Pn+1Qn − Qn+1Pn = (−1)n, whence Pn and Qn are coprime
polynomials. The rational function Pn/Qn is called a convergent to α and we have
Pn/Qn = [a0, a1, . . . , an]. It is easy to see that deg Qn+1 = deg an+1 +deg Qn, thus
deg Qn =

∑n

j=1 deg aj . Moreover we have for n > 1 the equality:

(2.1) α = [a0, a1, . . . , an, αn+1] =
Pnαn+1 + Pn−1

Qnαn+1 + Qn−1

where αn+1 = [an+1, an+2, . . . ] is called a complete quotient of α.
We have to introduce the following lemma and theorem. Mahler [7] proved the

equivalence of Liouville’s theorem [6] in the formal series case:

Theorem 2.1. Let α ∈ F((T −1)) algebraic of degree d > 2; then there exists

c > 0 such that for all P, Q ∈ F[T ] one has
∣

∣α − P
Q

∣

∣ > c
|Q|d .

We have to introduce the following result of Mkaouar.

Theorem 2.2. Let P (x) =
∑

06i6n Aix
i with Ai ∈ F[T ] and n > 1. Suppose

that deg Ai < deg An−1 for all 0 6 i 6 n and i 6= n − 1. Then there exists a

unique power series γ with positive degree satisfying P (γ) = 0. Moreover [γ] =
−[An−1/An].

The proof of this theorem can be found in Mkaouar’s paper [9]. The reader
who is interested in a survey on the different contributions to this topic and for full
references can consult for example [4], [12] and [[13], Chap 9].

3. Continued fraction expansion of the solution
of the equation x

r+1 = A
r+1

− 1

Theorem 3.1. Let r be a power of p. Let α ∈ F((T −1)) be the irrational

solution of the equation

(3.1) xr+1 = Ar+1 − 1.

Then, the continued fraction expansion of α is [a0, . . . , an, . . . ], where a0 = A,

a1 = −Ar and for n > 0

an+2 = −Arn(

1 + Ar+1 + A2(r+1) + · · · + A(r−2)(r+1))rn
(

Ar+1 − 1
)

r
n+(−1)n+1

r+1

Proof. Let γ the irrational solution of the equation

(3.2) γr+1 + Arγr + Aγ + 1 = 0.

So from Theorem 2.2 we have [γ] = −Ar. Let α = [a0, . . . , an, . . . ] be such that
α = A + γ−1. By a simple calculation we check that α is the solution of equation
(3.1) namely αr+1 = Ar+1 −1. As |γ| > 1 then [α] = a0 = A and γ = α1. Moreover
we can write (3.2) as

(3.3) αr
1 =

−Aα1 − 1

α1 + Ar
.
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We know that α1 = −Ar + α−1
2 . So equation (3.3) becomes

(3.4) αr
1 =

−A(−Ar + α−1
2 ) − 1

α−1
2

= (Ar+1 − 1)α2 − A.

Equation (3.4) gives that ar
1 + α−r

2 = (Ar+1 − 1)α2 − A. So

α2 =
ar

1 + A

Ar+1 − 1
+ (Ar+1 − 1)−1α−r

2 =
−Ar2

+ A

Ar+1 − 1
+ (Ar+1 − 1)−1α−r

2 .

Since

−Ar2

+ A = −A(Ar+1 − 1)
(

1 + Ar+1 + A2(r+1) + · · · + A(r−2)(r+1)),

then a2 = −A(1 + Ar+1 + A2(r+1) + · · · + A(r−2)(r+1)) and

(3.5) α3 = (Ar+1 − 1)αr
2.

Again, we know that α2 = a2 + α−1
3 . So we obtain from equation (3.5) that

α3 = (Ar+1 − 1)ar
2 + (Ar+1 − 1)α−r

3 . Then

a3 = (Ar+1 − 1)br
2 = −Ar(Ar+1 − 1)

(

1 + Ar+1 + A2(r+1) + · · · + A(r−2)(r+1))r
,

and α4 = (Ar+1 − 1)−1αr
3. The last equality gives that

α4 = a4 + α−1
5 = (Ar+1 − 1)−1ar

3 + (Ar+1 − 1)−1α−r
4 .

Then

a4 = −Ar2

(Ar+1 − 1)r−1(

1 + Ar+1 + A2(r+1) + · · · + A(r−2)(r+1))r2

,

and α5 = (Ar+1 − 1)αr
4. So by a simple recursion we prove that for all k > 1:

α2k+1 = (Ar+1 − 1)αr
2k and α2k+2 = (Ar+1 − 1)−1αr

2k+1.

Hence for all k > 1:

a2k+1 = (Ar+1 − 1)ar
2k and a2k+2 = (Ar+1 − 1)−1ar

2k+1.

Thus for all k > 1:

a2k+1 = −Ar2k−1(

1 + Ar+1 + A2(r+1) + · · · + A(r−2)(r+1))r2k−1
(

Ar+1 − 1
)

r
2k−1+1

r+1 ,

a2k+2 = −Ar2k(

1 + Ar+1 + A2(r+1) + · · · + A(r−2)(r+1))r2k
(

Ar+1 − 1
)

r
2k

−1
r+1 .

So we obtain the desired result. �

Theorem 3.2. Let A be a nonconstant polynomial of F[T ] and r a power of p.

The Diophantine equations

P r+1 − (Ar+1 − 1)Qr+1 = 1,

P r+1 − (Ar+1 − 1)Qr+1 = −(Ar+1 − 1)

have infinitely many solutions (P, Q) ∈ F[T ] ×F[T ], which are respectively the even

and the odd convergents of the solution α of equation (3.1).

For the proof of this theorem, we need the following lemma.
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Lemma 3.1. Let r be a power of p. Let α be the irrational solution of equation

(3.1) and (Pn/Qn)n>0 the sequence of convergent of α. Then Ar+1 − 1 divides

P2s+1 for all s > 0.

Proof. If (Pn/Qn)n>0 the sequence of convergent of α, then P0 = A and
P1 = Ar+1 − 1. Then Ar+1 − 1 divides P1. Suppose that Ar+1 − 1 divides P2s−1

for all s > 1. We have P2s+1 = a2s+1P2s + P2s−1 and since

a2s+1 = −Ar2s−1(

1 + Ar+1 + A2(r+1) + · · · + A(r−2)(r+1))r2s−1
(

Ar+1 − 1
)

r
2s−1+1

r+1

is divisible by Ar+1 − 1 for all s > 1, then P2s+1 is divisible by Ar+1 − 1 for all
s > 1. �

Proof of Theorem 3.2. Let H(Y, Z) = Y r+1 − (Ar+1 − 1)Zr+1 and α the
unique root of L(Y ) = H(Y, 1) satisfying |α| = |A|, then by writing H(Y, 1) in the
form H(Y, 1) = αr(Y − α) + Y (Y − α)r , we can conclude, for all integer s > 0, that

∣

∣

∣
H

( P2s

Q2s

, 1
)∣

∣

∣
=

∣

∣

∣
A|r |α −

P2s

Q2s

∣

∣

∣
,(3.6)

∣

∣

∣
H

( P2s+1

Q2s+1
, 1

)
∣

∣

∣
= |A|r

∣

∣

∣
α −

P2s+1

Q2s+1

∣

∣

∣
.(3.7)

On the other hand, a simple calculation gives that

|Q2s| =
2s
∏

i=1

|ai| = |A|r|A|2
r

2s−1
−r−1

r−1 |A|(r−2)(r+1) r
2s−1

−1
r−1 ,

|Q2s+1| =
2s+1
∏

i=1

|ai| = |A|r|A|2
r

2s
−1

r−1 |A|(r−2)(r+1) r
2s

−1
r−1 ,

|a2s+2| = |A|2r2s−1|A|(r−2)(r+1)r2s

,

|a2s+1| = |A|2r2s−1+1|A|(r−2)(r+1)r2s−1

.

We can easily check that |a2s+1| = |A|r|Q2s|r−1 and |a2s+2| = |A|−1|Q2s+1|r−1 .
This gives that

∣

∣

∣
α −

P2s

Q2s

∣

∣

∣
=

1

|a2s+1||Q2s|2
=

1

|A|r |Q2s|r+1 ,

∣

∣

∣
α −

P2s+1

Q2s+1

∣

∣

∣
=

1

|a2s+2||Q2s+1|2
=

1

|A|−1|Q2s+1|r+1 ,(3.8)

So equation (3.6) becomes
∣

∣

∣
H

( P2s

Q2s

, 1
)∣

∣

∣
= |A|r

1

|A|r|Q2s|r+1 =
1

|Q2s|r+1 .

and equation (3.7) becomes

∣

∣

∣
H

( P2s+1

Q2s+1
, 1

)∣

∣

∣
= |A|r

1

|A|−1|Q2s|r+1 =
|A|r+1

|Q2s|r+1 .
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Since H(P, Q) = Qr+1H
(

P
Q

, 1
)

we have |H(P2s, Q2s)| = 1 and |H(P2s+1, Q2s+1)| =

|A|r+1. From |H(P2s, Q2s)| = 1 we get H(P2s, Q2s) ∈ F
∗. Since P0 = A and Q0 = 1

then H(P0, Q0) = 1. This gives that H(P2s, Q2s) = 1 for all s > 0.
On the other hand, we have H(P2s+1, Q2s+1) = P r+1

2s+1 − (Ar+1 − 1)Qr+1
2s+1 then

H(P2s+1, Q2s+1) is divisible by Ar+1 − 1 for all s > 0. As |H(P2s+1, Q2s+1)| =
|A|r+1 and since H(P1, Q1) = −Ar+1 + 1 then H(P2s+1, Q2s+1) = −Ar+1 + 1 for
all s > 0. �

The following theorem improves Baum and Sweet’s theorem stated in Theo-
rem 1.1.

Theorem 3.3. Let d ∈ N r {0} and r a power of p. Then there exist an

algebraic formal power series α ∈ Fq((T −1)) of degree r + 1 such that the equation

∣

∣

∣
α −

P

Q

∣

∣

∣
=

e−d

|Q|r+1

has infinitely many solutions (P, Q) ∈ F[T ] × F[T ].

Proof. The proof is directly deduced from equality (3.8). �

4. Continued fraction expansion of the solution
of the equation A

r−1
x

r+1
− (A

r + 1)x
r + A

r−1
x − A

r = 0

Theorem 4.1. Let r be a power of a prime p. Let A be a nonzero polynomial

of Fq[T ]. Let β ∈ Fq((T −1)) be the irrational solution of strictly positive degree of

the equation

(4.1) Ar−1βr+1 − (Ar + 1)βr + Ar−1β − Ar = 0.

Then β = [b0, . . . , bn, . . .] where b0 = A and for all n > 1:

bn =

{

Ar
n+1

2 −1 if n is odd

A if n is even.

Proof. First, we have to check the value of |β|. Let F (x) = Ar−1xr+1 −
(Ar + 1)xr + Ar−1x − Ar. We consider the Newton polygon of F (x), which is
denoted by N(F ). There are four points (0, r deg A), (1, (r − 1) deg A), (r, r deg A)
and (r + 1, (r − 1) deg A) on the xy-plane, and hence N(F ) consists of two line
segments. The first one has slope 0 and the second one has slope deg A. This gives
that deg β = deg A.

We have Ar+1
Ar−1 is a convergent to β. In fact, as β = (Ar+1)βr+Ar

Ar−1βr+Ar−1 then
∣

∣

∣

∣

β −
Ar + 1

Ar−1

∣

∣

∣

∣

=

∣

∣

∣

∣

(Ar + 1)βr − Ar

Ar−1βr + Ar−1 −
Ar + 1

Ar−1

∣

∣

∣

∣

=
1

|A|2(r−1)|A|

Since Ar+1
Ar−1 = [A, Ar−1], then b0 = A and b1 = Ar−1.

On the other hand, (4.1) can be written as

(4.2) βr =
−Ar−1β + Ar

Ar−1β − (Ar + 1)
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From equality (2.1) we have

(4.3) β =
(Ar + 1)β2 + A

Ar−1β2 + 1

Combining (4.2) and (4.3) we obtain that

(4.4) βr = Ar−1β2

We have β = A + 1
β1

so (4.4) gives that

β2 =
βr

Ar−1 =
Ar

Ar−1 +
1

Ar−1βr
1

= A +
1

Ar−1βr
1

This gives that b2 = A and β3 = Ar−1βr
1 . Again this equation gives that

β3 = Ar−1br
1 +

Ar−1

βr
2

= Ar2−1 +
Ar−1

βr
2

.

Since |βr
2 | > |Ar−1| then b3 = Ar2−1 and

(4.5) β4 =
βr

2

Ar−1 .

We see that (4.5) and (4.4) are of the same shape. We now claim that for all k > 1,

(4.6) b2k = A, b2k−1 = Ark−1, β2k+1 = Ar−1βr
2k−1, β2k+2 = βr

2k/Ar−1.

Clearly (4.6) is true for k = 1. So we assume (4.6) for k = l > 1. Then

β2l+2 = Ar−1((Arl−1)r +
1

βr
2l+1

) = Arl+1−1 +
Ar−1

βr
2l+1

,

which implies b2l+2 == Arl+1−1 and β2l+3 = βr
2l+1/Ar−1. Then

β2l+3 =
Ar

Ar−1 +
1

Ar−1βr
2l+2

= A +
1

Ar−1βr
2l+2

,

which implies b2l+3 = A and β2l+4 = Ar−1βr
2l+2. Thus (4.6) is also true for k = l+1.

By induction, we see that (4.6) holds for all k > 1. �

Theorem 4.2. Let A be a nonconstant polynomial of F[T ] and q a power of p.

The Diophantine equations

Ar−1P r+1 − (Ar + 1)P rQ + Ar−1P Qr − ArQr+1 = −Ar

have infinitely many solutions (P, Q) ∈ F[T ]×F[T ], which are the even convergents

of the solution β of equation (4.1).

Lemma 4.1. Let θ be the irrational solution of the equation (4.1) and
(

Pn

Qn

)

n>0
the sequence of convergents of θ. Then A divides P2s for all s > 0.

Proof. If (Pn/Qn)n>0 the sequence of convergent of θ, then P0 = A. Then A
divides P0. Suppose that A divides P2s for all s > 1. We have P2s+2 = b2s+2P2s+1+
P2s and since b2s+2 = A is divisible by A then P2s+2 is divisible by A for all
s > 1. �
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Proof of Theorem 4.2. Let (Pn/Qn)n>0 be the sequence of convergent of
β. Let H(Y, Z) = Ar−1Y r+1 − (Ar + 1)Y rZ + Ar−1Y Zr − ArZr+1 and β be the
unique root of L(Y ) = H(Y, 1) satisfying |β| = A; then by writing H(Y, 1) in the
form

H(Y, 1) = Ar−1(βr + 1)(Y − β) + (Ar−1(Y − A) − 1)(Y − β)r,

we can conclude, for every integer s > 0, that

(4.7)
∣

∣

∣
H

( P2s

Q2s

, 1
)∣

∣

∣
= |A2r−1|

∣

∣

∣
β −

P2s

Q2s

∣

∣

∣
,

On the other hand, a simple calculation gives that |Q2s| =
∏2s

i=1 |bi| = |A|r( r
s

−1
r−1 ),

and |b2s+1| = |A|r
s+1−1. We can easily check that |b2s+1| = |Ar−1||Q2s|r−1. This

gives that

(4.8)
∣

∣

∣
β −

P2s

Q2s

∣

∣

∣
=

1

|b2s+1||Q2s|2
=

1

|A|r−1|Q2s|r+1 .

So equation (4.7) becomes
∣

∣

∣
H

( P2s

Q2s

, 1
)∣

∣

∣
= |A2r−1|

1

|Ar−1||Q2s|r+1 =
|A|r

|Q2s|r+1 .

Since H(P, Q) = Qr+1H
(

P
Q

, 1
)

we obtain that |H(P2s, Q2s)| = |A|r. Since P0 = A,

Q0 = 1 and H(P2s, Q2s) = Ar−1P r+1
2s − (Ar + 1)P r

2sQ2s + Ar−1P2sQr
2s − ArQr+1

2s

then H(P0, Q0) = −Ar. Further, from Lemma 4.1, we have A divides P2s for
all s > 0. Then clearly Ar divides H(P2s, Q2s) for all s > 0. This gives that
H(P2s, Q2s) = −Ar and we obtain the desired result. �

We next prove that the algebraic power series α is of degree r + 1.

Lemma 4.2. Let A ∈ F[T ] r {0}. Then the polynomial

L(Y ) = Ar−1Y r+1 − (Ar + 1)Y r + Ar−1Y − Ar

is irreducible over F(T ).

Proof. Let β ∈ F((T −1)) the unique root of L such that |β| > 1. If β has
degree d < r + 1 and P/Q is a convergent of β, then by (4.8) and Theorem 2.1,
there are two constants c and c′ > 0 such that

c

|Q|d
6

∣

∣

∣
β −

P

Q

∣

∣

∣
=

c′

|Q|r+1 ,

for arbitrarily large |Q|, which is a contradiction. �

So we can introduce the following result.

Theorem 4.3. Let d ∈ N r {0} and r a power of p. Then there exist an

algebraic formal power series β ∈ Fq((T −1)) of degree r + 1 such that the equation

∣

∣

∣
β −

P

Q

∣

∣

∣
=

e−(r−1)d

|Q|r+1

has infinitely many solutions (P, Q) ∈ F[T ] × F[T ].

Proof. The proof is directly deduced from equality (4.8). �
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