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CONTINUED FRACTIONS AND DIOPHANTINE
EQUATIONS IN POSITIVE CHARACTERISTIC

Khalil Ayadi, Awatef Azaza, and Salah Beldi

ABSTRACT. We exhibit explicitly the continued fraction expansion of some
algebraic power series over a finite field. We also discuss some Diophantine
equations on the ring of polynomials, which are intimately related to these
power series.

1. Introduction

Formal power series over a given field have been studied for a long time in
Number Theory. The case of a finite base field is particularly important and the
analogy between these power series and the real numbers is striking. Nevertheless
the positive characteristic, inducing the existence of the Frobenius isomorphism,
makes rational approximation to algebraic elements very different from the case
of real numbers and somehow more complex. Baum Sweet’s article [3] was the
starting point of the diophantine approximation in positive characteristic through
the continued fraction expansion and opened several questions and research axis
in this area. The continued fraction expansion and the irrationality measure of
the solution of many algebraic equation was computed. We recall for example the
case of the equation algebraic irreducible ™ = R(*), where n is a positive integer,
not divisible by p, and R € F(T). Such an equation has a root in F((T~1)) if
(and only if) deg R is a multiple of n and the first coefficient of R belong to F".
Osgood [11], Voloch [14], de Mathan [8] and Lasjaunias [4] have studied the rational
approximation of the solution of the equation (). For instance, we know that it is
well approximable by rationals for suitable R. Furthermore, it is an element of a
particular subset of algebraic elements called hyperquadratic. Let r = p’ with ¢t > 0;
we say that o belonging to F((T~!)) is hyperquadratic if « is irrational and satisfies
an algebraic equation of the particular form Aa™+! 4+ Ba™ 4+ Ca+ D = 0, where A,
B, C and D belong to F[T]. Note that the quadratic elements are hyperquadratic.
Many explicit continued fractions are known for nonquadratic but hyperquadratic
elements; see for example [2], [5] and [12]. However, the explicit continued fraction
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expansion of the solution of (%) is not yet completely described. In [3], Baum
and Sweet have given the continued fraction expansion of the irrational solution
of the equation 2" ~! = Aiﬂ in F((T~1')), where F = Fy and A is nonconstant
polynomial. This has allowed them to describe the solutions of the Diophantine
equation (A + 1)P?"~! — AQ?"~! = 1. They have also computed the all partial
quotients of other algebraic elements and discussed the solutions of some other
Diophantine equation.

The remainder of the paper is organised in the following way. We gather some
definitions and theorems in Section 2. We then consider a nonconstant polynomial
A and r is a power of p. In Section 3, we will give explicitly the continued fraction
expansion of the solution of the equation 2”1 = A" — 1 in F((T~1)), Theorem
BI We will compute, in Theorem [3.2] the solutions of some Diophantine equations
related to it. Note that the solution of this equation for »r = 2 and A = T was
described in [I]. The Section 4 is devoted to describe all partial quotients of the
solution of the equation A" "1zt — (A" 4+ 1)2" + A"~z — A" = 0, Theorem A1l
Further, in Theorem .2, we will also discuss a Diophantine equation related to it.

So by this work we add other examples to the explicitly known hyperquadratic
continued fractions. Furthermore, for these examples, Liouville’s theorem is sharp,
and thus a Thue-Siegel-Roth theorem cannot hold for such examples. Indeed, we
will improve the following result of Baum ans Sweet [3], Theorems B3] [£3

THEOREM 1.1. Let d,n € N\ {0}. Then there exist an algebraic formal power
series € Fo((T1)) of degree 2™ + 1 such that the equation

P 2~
‘9 - @‘ = [T
has infinitely many solutions (P, Q) € Fo[T| x Fa[T].

We finally note that in [10], this result with some Diophantine equations stud-
ied in [3] was improved.

2. Preliminaries

Let p be a prime number and let F be a finite field of characteristic p. For
a formal indeterminate T let F[T], F(T) and F((T~1)), respectively, denote the
ring of polynomials, the field of rational functions and the field of power series in
1/T over F. These fields are valuated by the ultrametric absolute value introduced
on F(T) by |P/Q| = edee(P)~dee(@) where e is Euler’s number. Hence a nonzero
element of F((T~1)) is written as a = > k<ko apT* with ky € Z, ar, € F, and
ar, 7 0 and we have |a| = e*o. This field F((7'~!)) is the completion of the field
F(T) for this absolute value. We recall that each irrational (rational) element «
of F((T~1)) can be expanded as an infinite (finite) continued fraction. This will
be denoted o = [ag,a1,...,an,...] where the a; € F[T], with deg(a;) > 0 for
i > 1, are the partial quotients and the tail a; = [a;,a;41,...] € F((T™1Y)) is
the complete quotient. As in the classical theory, we define recursively the two
sequences of polynomials (P,,),>0 and (Qn)n>0 by Pn = anPr—1+ P2 and @, =
anQn_1 + Qn_o, with the initial conditions Py = ag, P = aga1 + 1, Qo = 1 and
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Q1 = a1. We have P, 11Q, — Qn+1P, = (—1)", whence P, and @,, are coprime
polynomials. The rational function P,/Q,, is called a convergent to « and we have
P./Qn = [ag,a1,...,ay,). It is easy to see that deg Q41 = degan41+deg @y, thus
deg @, = 2?21 deg a;. Moreover we have for n > 1 the equality:

PnanJrl + Pnfl

B Qnan+1 +Qn-1

where oy, 41 = [@nt1, Gny2, .. .| is called a complete quotient of «.
We have to introduce the following lemma and theorem. Mahler [7] proved the
equivalence of Liouville’s theorem [6] in the formal series case:

(2.1) a =[ag, a1,y ... 0y, Api1]

THEOREM 2.1. Let o € F((T™1)) algebraic of degree d > 2; then there exists
¢ > 0 such that for all P,Q € F[T] one has |a — g‘ > @

We have to introduce the following result of Mkaouar.

THEOREM 2.2. Let P(x) = Y oc;c, Aix" with A; € F[T] and n > 1. Suppose
that deg A; < degAp—1 for all 0 < i < n and i # n — 1. Then there exists a
unique power series y with positive degree satisfying P(vy) = 0. Moreover [y] =

—[An—1/4,].

The proof of this theorem can be found in Mkaouar’s paper [9]. The reader
who is interested in a survey on the different contributions to this topic and for full
references can consult for example [4], [12] and [[13], Chap 9].

3. Continued fraction expansion of the solution
of the equation z"t1 = A™1 — 1

THEOREM 3.1. Let r be a power of p. Let o € F((T~1)) be the irrational
solution of the equation
(3.1) D .
Then, the continued fraction expansion of « is [ag,...,an,...|, where ag = A,
a1 =—A" and forn >0

" n rrta(nntt
Unio = _A” (1 + ArJrl + AQ(TJrl) Ft A(T72)(r+1))7“ (ArJrl o 1) )

PROOF. Let v the irrational solution of the equation

(3.2) A4 ATy 4 Ay +1 =0,

So from Theorem we have [y] = —A". Let o = [ag,...,an,...] be such that
a = A+~ By a simple calculation we check that « is the solution of equation
@) namely a" ™t = A" —1. As |y| > 1 then [a] = ap = A and v = a;. Moreover
we can write ([B.2)) as

. —Aag —1
ro__
(3.3) al = AT
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We know that a; = —A” + a5 . So equation (B3] becomes
 —A(-AT+ ) -1

(3.4) o — = (A" —1)ag — A.
Qg
Equation (34) gives that a] + a; " = (A" — 1)as — A. So
ay + A _ —r _ATZ + A — —-r
= T AT =D ey = e+ (AT - g
Since

_Ar2 + A= _A(Ar-i-l _ 1)(1 + Ar-{-l + A2(r+1) NS 14(7“—2)(7“-{-1))7
then ag = —A(1 4+ A" + A20+D) ... 1 AC=2) (1)) and
(3.5) az = (A" —1)ab.

Again, we know that as = as + az'. So we obtain from equation (Z5) that
as = (A" — 1D)ay + (A" — 1)az". Then

az = (A" — 1)bh = —AT(A™H —1)(1 4+ AT 4+ A2+ 4y A(r72)(r+1))r’
and ay = (A" — 1)~1a4. The last equality gives that
ag=as+azt = (A" 1) a4+ (AT — 1) ey
Then
4y = —A" (AT )14 AT A2 4y A(r—2)(r+1))7“27

and a5 = (A" — 1)aj. So by a simple recursion we prove that for all k > 1:

o1 = (A = 1)ab, and  agpee = (A" — 1) lab, .
Hence for all £ > 1:

askr1 = (A" = 1)ah;, and  agps = (A" — 1) tab, .

Thus for all k& > 1:

1 F2k—1

P 7Ar2k—1 (1 4 ATHL A2 A(T72)(T+1))T2k (ATJrl B 1)T1+7
r2k _q
Aopro = A (1 4 AT poA20+Y) oy A(""_Q)(""‘i‘l))r?k (Ar+1 _ 1)?_

So we obtain the desired result. 0

THEOREM 3.2. Let A be a nonconstant polynomial of F[T] and r a power of p.
The Diophantine equations

Pr+1 _ (ArJrl o 1)Qr+1 _ 1’
Pr+1 _ (Ar+1 _ 1)Qr+1 _ _(A'r—i-l _ 1)

have infinitely many solutions (P, Q) € F[T| x F[T], which are respectively the even
and the odd convergents of the solution « of equation ([B.J).

For the proof of this theorem, we need the following lemma.
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LEMMA 3.1. Let r be a power of p. Let a be the irrational solution of equation
BI) and (P,/Qn)n>o0 the sequence of convergent of o. Then A" — 1 divides
Pogiq forall s > 0.

PROOF. If (P,/Qn)n>0 the sequence of convergent of «, then Py = A and
= A1 — 1. Then A™+! — 1 divides P;. Suppose that A"+ — 1 divides Prs_1
for all s > 1. We have Pygy1 = a2541Pas + Pas—1 and since

2s—1,4

p2s-1 r4l | A2(r+1) (r—2)(r+ )\ gl T
agsy1 =—-A"  (1+AT 4+ A +-+ A ) ATt —1)

is divisible by A"t! — 1 for all s > 1, then Py, is divisible by A™t! — 1 for all
s> 1. O

PROOF OF THEOREM 3.2l Let H(Y,Z) =Y ! — (A" —1)Z"+! and « the
unique root of L(Y) = H(Y, 1) satisfying |a| = |A], then by writing H(Y,1) in the
form H(Y,1) = o™ (Y —a)+ Y (Y — )", we can conclude, for all integer s > 0, that

PQS PS
(3.6) ‘H( )‘ ‘A| o=
P25+1 P2s+1
3.7 ‘H 1 ‘: _ ‘
(3.7) (st+1 ) Q2541

On the other hand, a simple calculation gives that

@arl = [ e = AP A== a2+
i=1
2541
|Q2s41] = H |a;| = | Al- B+
=1
Jazaral = AP AR D,
Jaga] = [P AR
We can easily check that |ags1]| = [A]"|Q2|" ™! and |agsta| = [A]7Q2e41|" " -
This gives that
‘ P2s o 1 o 1
Qas|  lagsy1]|Q2s?  [A|"|Qas| 1
Py, 1 1
(38) ‘O{ - 2ot ‘ = 2 = 1 +17
Q2541 |azst2||Q2s+1] |A] 7 Q2s41]"
So equation (B6) becomes
Py, 1 1
() - e - e
Q 5 |A|7|Q2s|7+ |Q2s|r+
and equation ([37)) becomes
‘H(PQS—‘,—l 1)‘ A" 1 _ |A|"tT |
QQerl7 |A|71|Q25|T+1 |Q25|T+1
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Since H(P, Q) = QT“H(g, 1) we have |H(Pss, Q25)| = 1 and |H (Past1, Q2s41)| =
|A|" L. From |H(Pas, Qas)| = 1 we get H(Pas, Q2s) € F*. Since Py = Aand Qp = 1
then H(Py, Qo) = 1. This gives that H(Pas, Q2s) = 1 for all s > 0.

On the other hand, we have H(Pai1, Q2s+1) = Py — (A1 = 1)Q5 1), then
H(Pysi1,Q2s11) is divisible by A™1 — 1 for all s > 0. As |H(Pasy1,Q2s11)| =
|A|"*1 and since H(Py,Q1) = —A™"' + 1 then H(Pasy1,Q2s11) = —A™1 + 1 for
all s > 0. O

The following theorem improves Baum and Sweet’s theorem stated in Theo-

rem [[L11

THEOREM 3.3. Let d € N\ {0} and r a power of p. Then there exist an
algebraic formal power series o € Fy((T1)) of degree v + 1 such that the equation

o= 51 = i
a——|=—"
Ql QI
has infinitely many solutions (P, Q) € F[T] x F[T].
PRrROOF. The proof is directly deduced from equality (3.5). O

4. Continued fraction expansion of the solution
of the equation A"~ 1zt — (A" + 1)a" + A" 1z — A" =0

THEOREM 4.1. Let r be a power of a prime p. Let A be a nonzero polynomial
of Fy[T]. Let B € Fy((T™1)) be the irrational solution of strictly positive degree of
the equation

(4.1) ATTIBTTL (AT )BT+ AT — AT = 0.
Then 8 = [bg,...,bn,...] where by = A and for alln > 1:

ntl
b, = {A’” > =1 fn is odd
A if n is even.

PRrROOF. First, we have to check the value of |3]. Let F(x) = A" lam+1 —
(A" + 1)z + A"tz — A". We consider the Newton polygon of F(z), which is
denoted by N(F'). There are four points (0,7deg A), (1, (r — 1)deg A), (r,rdeg A)
and (r + 1,(r — 1)deg A) on the zy-plane, and hence N(F) consists of two line
segments. The first one has slope 0 and the second one has slope deg A. This gives
that deg 8 = deg A.

We have ﬁ:,fll is a convergent to §. In fact, as 8 =

A" +1 B
B— Ar—1 Ar=1gr 4 Ar=1 A1 |~ |A]2(r=1)| A
Since 4 = [A, A", then by = A and by = A""L.

On the other hand, ([@I]) can be written as
B _Ar—lﬁ + A"

- Ar=15 — (AT +1)

(AT+1) TLAT
Ar—Iprp Ar—1

‘(A’“Jrl)ﬂ’“AT AT 41 1

then

(4.2) g
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From equality ([2]) we have
(A" +1)B+ A

4. =
(43) st
Combining ([@2) and [3]) we obtain that
(4.4) Br=A""1B,
We have = A+ % so (L) gives that
T AT 1 1
B2 = b =A

Ar—1  Ar—1 + AT-1pr + AT-1pr
This gives that by = A and B3 = A"~1f7. Again this equation gives that
Arfl Arfl
AT
B B
Since |85] > |A"~!| then b3 = A”"~! and
4.5 B4 = P2
( : ) 4= Ar—1°
We see that (£H) and [@4]) are of the same shape. We now claim that for all & > 1,
k
(4.6) bok = A,bok 1 = A" 71, Popr = AT Y, Barta = B /AT
Clearly (£0) is true for k = 1. So we assume (L0) for k =1 > 1. Then
1 ): ATHI_I n Ar—t
ﬂgl-}-l ﬁ5l+1
which implies by 0 == A" =1 and Boirs = ﬂgl_H/AT’l. Then
A" 1 1
Baits = + =A+
A AT AT

which implies ba; 13 = Aand B4 = A’"_1651+2. Thus (&) is also true for k = [+1.
By induction, we see that (6] holds for all k > 1. O

By = AT\, +

ﬁ2l+2 —_ Ar—l((Arl—l)r +

THEOREM 4.2. Let A be a nonconstant polynomial of F[T] and q a power of p.
The Diophantine equations

AT71PT+1 _ (Ar 4 1)P7’Q 4 AT*lPQT _ ArQrJrl — _A"

have infinitely many solutions (P, Q) € F[T]| x F[T], which are the even convergents
of the solution B of equation ([@Il).

LEMMA 4.1. Let 6 be the irrational solution of the equation [EIl) and (5 )n>0
the sequence of convergents of 0. Then A divides Pos for all s > 0.

PrROOF. If (P,/Qn)n>0 the sequence of convergent of §, then Py = A. Then A
divides Py. Suppose that A divides P, for all s > 1. We have Pogio = bosio2Past1+
Py and since bogpo = A is divisible by A then Pssyo is divisible by A for all
s> 1. O
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PROOF OF THEOREM [L2l Let (P,/Qn)n>0 be the sequence of convergent of
B. Let HY,Z) = Ar—lyr+1 — (A" +1)Y"Z + ATy 77 — A" Z"1 and S be the
unique root of L(Y) = H(Y, 1) satisfying |8| = A; then by writing H(Y,1) in the
form
H(Y,1) = A1+ 1)(Y = B) + (A71(Y — 4) — 1)(Y — B,

we can conclude, for every integer s > 0, that

()1 22

On the other hand, a simple calculation gives that |Qas] = [1-2, |bi| = |A|’“(TT:11 :
and |basi1| = |A]”" 71 We can easily check that |bysyi| = |A"!||Qas|" 1. This
gives that

P2s

(4.8) 8- o

So equation (7)) becomes

1 1

T Jboar1||Q2s A Qua L

Pas 2r—1 1 [A["
‘H(Q% )‘ 14 ||AT71||Q2$|’”Jrl QY
Since H(P,Q) = QT“H( 1) we obtain that [H (P, Q2s)| = |A]". Since Py = A,
Qo = 1 and H(Py,, Qo) = A" 1Py — (A" 4+ 1) Py, Qos + A" Py, Q5 — A™Q5 !
then H(Py, Qo) = —A". Further, from Lemma ] we have A div1des Py for

all s > 0. Then clearly A" divides H(Pss,Q2s) for all s > 0. This gives that
H(Pss,Q25) = —A" and we obtain the desired result. O

We next prove that the algebraic power series « is of degree r + 1.
LEMMA 4.2. Let A € F[T] ~ {0}. Then the polynomial
LY)=A"Y"™ (A" + )Y "+ Ay — A"
is irreducible over F(T).

PROOF. Let B € F((T'~1!)) the unique root of L such that |3] > 1. If 3 has
degree d < r + 1 and P/Q is a convergent of §, then by ([@3J]) and Theorem [ZT]
there are two constants ¢ and ¢’ > 0 such that

o~ 5=t

|Q|d s Ql QI+

for arbitrarily large |@|, which is a contradiction. d
So we can introduce the following result.

THEOREM 4.3. Let d € N\ {0} and r a power of p. Then there exist an
algebraic formal power series B € Fy((T1)) of degree r + 1 such that the equation

—(r—1)d

e
-5l =Tgrr
Ql Q|

has infinitely many solutions (P, Q) € F[T] x F[T].

PRrOOF. The proof is directly deduced from equality (£S). O
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