DOI: https://doi.org/10.2298/PIM2021085J

WHEN A TOTAL GRAPH ASSOCIATED WITH A COMMUTATIVE RING IS PERFECT?

Mitra Jalali, Reza Nikandish, and Abolfazl Tehranian

ABSTRACT. Let R be a commutative ring with identity, and let Z(R) be the set of zero-divisors of R. The total graph of R is the graph $T(\Gamma(R))$ whose vertices are all elements of R, and two distinct vertices x and y are adjacent if and only if $x + y \in Z(R)$. We investigate the perfectness of the graphs $Z_0(\Gamma(R))$, $T_0(\Gamma(R))$ and $T(\Gamma(R))$, where $Z_0(\Gamma(R))$ and $T_0(\Gamma(R))$ are (induced) subgraphs of $T(\Gamma(R))$ on $Z(R)^* = Z(R) \smallsetminus \{0\}$ and $R^* = R \smallsetminus \{0\}$, respectively.

1. Introduction

The idea of a total graph associated with a commutative ring was first introduced by Anderson and Badawi [3]. They studied the connectedness, diameter and girth of total graphs. The Hamiltonian total graphs were investigated by Akbari et al. [2]. Moreover, Eulerian total graphs in [17], total graphs without zero element in [4], complement of total graphs in [5], planar total graphs in [14], total graphs of noncommutative rings in [12], characterization of balanced signed total graphs in [16], total graphs of semirings in [13] and coloring of some special total graphs of a commutative ring may be found in [9, 15, 18]. This paper is devoted to study perfect total graphs.

Throughout this paper, all rings are assumed to be commutative with identity. We denote by Z(R), $\operatorname{Reg}(R)$, $\operatorname{Max}(R)$, $\operatorname{Nil}(R)$ and U(R), the set of all zero-divisor elements of R, the set of regular elements of R, the set of all maximal ideals of R, the set of all nilpotent elements of R and the set of all invertible elements of R, respectively. A non-zero ideal I of R is called *essential*, if I has a non-zero intersection with any non-zero ideal of R. For a subset T of R such that $0 \in T$, let $T^* = T \setminus \{0\}$. For any undefined notation or terminology in poset theory, we refer the reader to [6, 7].

Let G be a graph with the vertex set V(G) and edge set E(G). By \overline{G} , we mean the complement graph of G. We write u - v, to denote an edge with ends

²⁰¹⁰ Mathematics Subject Classification: 13A15; 13B99; 05C99; 05C25.

Key words and phrases: total graph, perfect graph, chromatic number, clique number. Communicated by Zoran Petrović.

⁸⁵

u, v. A graph $H = (V_0, E_0)$ is called a subgraph of G if $V_0 \subseteq V$ and $E_0 \subseteq E$. Moreover, H is called an *induced subgraph by* V_0 , denoted by $G[V_0]$, if $V_0 \subseteq V$ and $E_0 = \{\{u, v\} \in E(G) \mid u, v \in V_0\}$. A complete graph of order n and a complete bipartite graph with part sizes m, n are denoted by K_n and $K_{m,n}$, respectively. Let G_1 and G_2 be two disjoint graphs. The *join* of G_1 and G_2 , denoted by $G_1 \vee G_2$, is a graph with the vertex set $V(G_1 \vee G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 \vee G_2) =$ $E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2)\}$. For a graph G, $S \subseteq V(G)$ is called a *clique* if the subgraph induced on S is complete. The number of vertices in the largest clique of graph G is called the *clique number* of G and is often denoted by $\omega(G)$. For a graph G, let $\chi(G)$ denote the *chromatic number* of G, i.e., the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. Clearly, for every graph G, $\omega(G) \leq \chi(G)$. A graph G is said to be *weakly perfect* if $\omega(G) = \chi(G)$. A *perfect graph* G is a graph in which every induced subgraph is weakly perfect. For any undefined notation or terminology in graph theory, we refer the reader to [19].

Let R be a commutative ring with identity, and let Z(R) be the set of zerodivisors of R. The total graph of R is the (undirected) graph $T(\Gamma(R))$ with vertices all elements of R, and two distinct vertices x and y are adjacent if and only if $x + y \in Z(R)$. Let $\operatorname{Reg}(\Gamma(R))$, $Z_0(\Gamma(R))$ and $T_0(\Gamma(R))$ be (induced) subgraphs of $T(\Gamma(R))$ with vertices $\operatorname{Reg}(R)$, $Z(R)^* = Z(R) \setminus \{0\}$ and $R^* = R \setminus \{0\}$, respectively. In this paper, we investigate the perfectness of the graphs $Z_0(\Gamma(R))$, $T_0(\Gamma(R))$ and $T(\Gamma(R))$. Indeed, for a ring R which is not an integral domain and $\omega(Z_0(\Gamma(R))) < \infty$, we show that the following statements hold (Theorem 2.5).

- (1) If $|Max(R)| \leq 2$, then $Z_0(\Gamma(R))$ is perfect.
- (2) If $|Max(R)| \ge 3$, then $Z_0(\Gamma(R))$ is perfect if and only if
 - $u + v \neq 1$, for every $u, v \in U(R)$.

Also, for such a ring R we show that, if $|Max(R)| \neq 2$, then the following statements are equivalent (Theorem 3.1).

(1) $Z_0(\Gamma(R))$ is perfect. (2) $T_0(\Gamma(R))$ is perfect. (3) $T(\Gamma(R))$ is perfect.

2. When $Z_0(\Gamma(R))$ is perfect?

Let R be a ring and $\omega(Z_0(\Gamma(R))) < \infty$. In this section, we give condition under which $Z_0(\Gamma(R))$ is perfect. First, we recall the following results from [3].

THEOREM 2.1. [3, Theorem 2.1]. Let R be a ring such that Z(R) is an ideal of R. Then $Z(\Gamma(R))$ is a complete (induced) subgraph of $T(\Gamma(R))$ and $Z(\Gamma(R))$ is disjoint from $\operatorname{Reg}(\Gamma(R))$.

THEOREM 2.2. [3, Theorem 2.2]. Let R be a ring such that Z(R) is an ideal of R, and let $|Z(R)| = \alpha$ and $|R/Z(R)| = \beta$.

(1) If $2 \in Z(R)$, then $\operatorname{Reg}(\Gamma(R))$ is the union of $\beta - 1$ disjoint $K'_{\alpha}s$.

(2) If $2 \notin Z(R)$, then $\operatorname{Reg}(\Gamma(R))$ is the union of $(\beta - 1)/2$ disjoint $K'_{\alpha,\alpha}s$.

Using Theorems 2.1 and 2.2, we state the following result.

THEOREM 2.3. Let R be an Artinian local ring. Then the graphs $Z_0(\Gamma(R))$, $Z(\Gamma(R))$, $\operatorname{Reg}(\Gamma(R))$, $T_0(\Gamma(R))$ and $T(\Gamma(R))$ are perfect.

PROOF. Let $|Z(R)| = \alpha$ and $|R/Z(R)| = \beta$. By Theorems 2.1 and 2.2,

$$T(\Gamma(R)) = \begin{cases} \underbrace{K^{\alpha} \cup K^{\alpha} \cup \dots \cup K^{\alpha}}_{\beta \text{ copies}} & \text{if } 2 \in Z(R) \\ K^{\alpha} \cup \underbrace{K^{\alpha,\alpha} \cup K^{\alpha,\alpha} \cup \dots \cup K^{\alpha,\alpha}}_{(\beta-1)/2 \text{ copies}} & \text{if } 2 \notin Z(R) \end{cases}$$

Clearly, $T(\Gamma(R))$ is perfect and thus all subgraphs $Z_0(\Gamma(R))$, $Z(\Gamma(R))$, $\operatorname{Reg}(\Gamma(R))$ and $T_0(\Gamma(R))$ are perfect.

The following lemmas will be used frequently in this paper. A different proof for Lemma 2.1 may be found in [4].

LEMMA 2.1. Let R be a ring. If $a \in Nil(R)$ and $x \in Z(R)$, then $a + x \in Z(R)$.

PROOF. Assume that $a \in \operatorname{Nil}(R)$. We claim that $\operatorname{ann}_R(a)$ is an essential ideal of R. Suppose to the contrary, there exists an ideal I such that $I \cap \operatorname{ann}_R(a) = (0)$. If $x \in I^*$, then $0 \neq ax \in I$, and thus $aax = a^2x \neq 0$. By continuing this procedure, $a^n x \neq 0$, for every positive integer n, a contradiction and so the claim is proved. Therefore, $\operatorname{ann}_R(a) \cap \operatorname{ann}_R(x) \neq (0)$, for every $x \in Z(R)^*$ and thus z(a + x) = 0, for every $0 \neq z \in \operatorname{ann}_R(a) \cap \operatorname{ann}_R(x)$. This means that $a + x \in Z(R)$.

LEMMA 2.2. Let R be a ring which is not an integral domain. Then the following statements are equivalent:

(1) $\omega(Z_0(\Gamma(R))) < \infty$. (2) $\chi(Z_0(\Gamma(R))) < \infty$. (3) R is a finite ring.

PROOF. (3) \Rightarrow (1), (2) are clear. If we prove (1) \Rightarrow (3), then (2) \Rightarrow (3) is easily obtained. Thus (1) \Rightarrow (3) is the only thing to prove.

 $(1) \Rightarrow (3)$ Assume that $\omega(Z_0(\Gamma(R))) < \infty$. We show that $|R| < \infty$. If $\operatorname{Nil}(R) = Z(R)$, then by Lemma 2.1, $Z_0(\Gamma(R))$ is a complete graph. This means that $|Z(R)| < \infty$ and thus R is a finite ring (see [11]). If $\operatorname{Nil}(R) \neq Z(R)$, let $x \in Z(R) \setminus \operatorname{Nil}(R)$. The set $\{x^n \mid n \in \mathbb{N}\}$ is a clique of $Z_0(\Gamma(R))$, and thus $x^n = x^m$, for some distinct positive integers n, m. We can let n < m and hence $x^n(1-x^{m-n}) = 0$. This implies that $Rx^{m-n} + \operatorname{ann}_R(x^n) = R$. Therefore, for some $k \ge n$, $Rx^k + \operatorname{ann}_R(x^n) = R$. Since $(Rx^k)(\operatorname{ann}_R(x^n)) = (0)$, we have $R \cong R_1 \times R_2$, where R_1 and R_2 are two rings. If $a, b \in R_1^*$, then (a, 0) is adjacent to (b, 0). Therefore, the set $\{(a, 0) \mid a \in R_1^*\}$ is finite and thus R_1 is a finite ring. Similarly, R_2 is a finite ring, as desired.

To state our main result in this section, we need the following celebrate result.

THEOREM 2.4. [10, The Strong Perfect Graph Theorem]. A graph G is perfect if and only if neither G nor \overline{G} contain an induced odd cycle of length at least 5.

THEOREM 2.5. Let R be a ring which is not an integral domain and $\omega(Z_0(\Gamma(R))) < \infty$. Then the following statements hold.

(1) If $|\operatorname{Max}(R)| \leq 2$, then $Z_0(\Gamma(R))$ is perfect.

(2) If $|\operatorname{Max}(R)| \ge 3$, then $Z_0(\Gamma(R))$ is perfect if and only if $u + v \ne 1$, for every $u, v \in U(R)$.

PROOF. (1) If $|\operatorname{Max}(R)| = 1$, then $Z(R) = \operatorname{Nil}(R)$ and hence $Z_0(\Gamma(R))$ is a complete graph, by Lemma 2.1. Thus $Z_0(\Gamma(R))$ is perfect. So, one may suppose that $\operatorname{Max}(R) = \{\mathfrak{m}_1, \mathfrak{m}_2\}$. Since R is an Artinian ring, $Z(R) = \mathfrak{m}_1 \cup \mathfrak{m}_2$. We show that

$$Z_0(\Gamma(R)) = K_{|\mathfrak{m}_1^* \cap \mathfrak{m}_2^*|} \lor (K_{|\mathfrak{m}_1 \smallsetminus \mathfrak{m}_2|} \cup K_{|\mathfrak{m}_2 \smallsetminus \mathfrak{m}_1|}).$$

Since $\mathfrak{m}_1 \cap \mathfrak{m}_2 = \operatorname{Nil}(R)$, by Lemma 2.1, every $x \in \mathfrak{m}_1^* \cap \mathfrak{m}_2^*$ is adjacent to all other vertices in $Z_0(\Gamma(R))$. Now, let $x, y \in \mathfrak{m}_1 \setminus \mathfrak{m}_2$. Clearly, x is adjacent to y. This means that $Z_0(\Gamma(R))[\mathfrak{m}_1 \setminus \mathfrak{m}_2]$ is a complete subgraph of $Z_0(\Gamma(R))$. Similarly, $Z_0(\Gamma(R))[\mathfrak{m}_2 \setminus \mathfrak{m}_1]$ is a complete subgraph of $Z_0(\Gamma(R))$. If $x \in \mathfrak{m}_1 \setminus \mathfrak{m}_2$ and $y \in \mathfrak{m}_2 \setminus \mathfrak{m}_1$, then $x + y \in U(R)$ and thus x is not adjacent to y. Hence

$$Z_0(\Gamma(R)) = K_{|\mathfrak{m}_1^* \cap \mathfrak{m}_2^*|} \lor (K_{|\mathfrak{m}_1 \smallsetminus \mathfrak{m}_2|} \cup K_{|\mathfrak{m}_2 \smallsetminus \mathfrak{m}_1|}).$$

Clearly, in this case $Z_0(\Gamma(R))$ is perfect, too.

(2) Let $|\operatorname{Max}(R)| = n \ge 3$ and $Z_0(\Gamma(R))$ be perfect. By Lemma 2.2 and [6, Theorem 8.7], $R \cong R_1 \times \cdots \times R_n$, where R_i is an Artinian local ring, for every $1 \le i \le n$. If there exist $u, v \in U(R)$ such that u + v = 1, then there are $u_i, v_i \in U(R_i)$ with $u_i + v_i = 1$, for every $1 \le i \le n$. Let $A = \{x, y, z, w, e\}$, where

$$\begin{aligned} x &= (u_1, 0, -u_3, u_4, 0, -u_6, \dots), \quad y &= (-v_1, 0, v_3, -v_4, 0, v_6, \dots), \\ z &= (v_1, u_2, 0, v_4, u_5, 0, \dots), \quad w &= (0, -u_2, 0, 0, -u_5, 0, \dots), \\ e &= (0, v_2, u_3, 0, v_5, u_6, \dots). \end{aligned}$$

It is not hard to check that $Z_0(\Gamma(R))[A]$ is an induced cycle of length 5 (see the following figure).

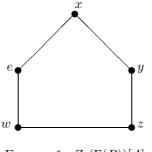


FIGURE 1. $Z_0(\Gamma(R))[A]$

This contradicts Theorem 2.4. Thus $u + v \neq 1$, for every $u, v \in U(R)$.

Conversely, assume that $u+v \neq 1$, for every $u, v \in U(R)$. Since $\omega(Z_0(\Gamma(R))) < \infty$, by Lemma 2.2 and [6, Theorem 8.7], $R \cong R_1 \times \cdots \times R_n$, where every R_i is an Artinian local ring. We show that $Z_0(\Gamma(R))$ is perfect. By Theorem 2.4, it is enough to show that $Z_0(\Gamma(R))$ and $\overline{Z_0(\Gamma(R))}$ contain no induced odd cycle of length at least 5. Indeed, we have the following claims:

88

CLAIM 2.1. $Z_0(\Gamma(R))$ contains no induced odd cycle of length at least 5. Assume to the contrary, $a_1 - a_2 - \cdots - a_n - a_1$ is an induced odd cycle of length at least 5 in $Z_0(\Gamma(R))$. We show that $u_1 + v_1 = w_1$, for some $u_1, v_1, w_1 \in U(R_1)$. To see this, let

$$a_{1} = (x_{1_{a_{1}}}, x_{2_{a_{1}}}, \dots, x_{n_{a_{1}}}), \quad a_{2} = (x_{1_{a_{2}}}, x_{2_{a_{2}}}, \dots, x_{n_{a_{2}}}), \dots,$$
$$a_{n} = (x_{1_{a_{n}}}, x_{2_{a_{n}}}, \dots, x_{n_{a_{n}}}), \quad A = \{x_{1_{a_{1}}}, x_{1_{a_{2}}}, \dots, x_{1_{a_{n}}}\}.$$

Since $a_1 - a_2 - \cdots - a_n - a_1$ is an induced odd cycle of length at least 5, $|A \cap Z(R_1)| \leq 2$. This together with $R_1 = Z(R_1) \cup U(R_1)$ implies that the other elements in A are invertible in R_1 . With no loss of generality, we may assume that

$$x_{1_{a_1}}, x_{1_{a_2}}, x_{1_{a_3}} \in U(R_1).$$

Since a_1 is not adjacent to a_3 , $x_{1_{a_1}} + x_{1_{a_3}} = w_1$, for some $w_1 \in U(R_1)$. Hence there exist $u_1, v_1 \in U(R_1)$ such that $u_1 + v_1 = 1$. Similarly, one may show that there exist $u_i, v_i \in U(R_i)$ such that $u_i + v_i = 1$, for every $2 \leq i \leq n$. Thus u + v = 1, for some $u, v \in U(R)$, a contradiction. Therefore $Z_0(\Gamma(R))$ contains no induced odd cycle of length at least 5.

CLAIM 2.2. $\overline{Z_0(\Gamma(R))}$ contains no induced odd cycle of length at least 5. Assume to the contrary, $a_1 - a_2 - \cdots - a_n - a_1$ is an induced odd cycle of length at least 5 in $\overline{Z_0(\Gamma(R))}$. First, we show that $u_1 + v_1 = w_1$, for some $u_1, v_1, w_1 \in U(R_1)$. To see this, let

$$a_{1} = (x_{1_{a_{1}}}, x_{2_{a_{1}}}, \dots, x_{n_{a_{1}}}), \ a_{2} = (x_{1_{a_{2}}}, x_{2_{a_{2}}}, \dots, x_{n_{a_{2}}}), \ \dots,$$
$$a_{n} = (x_{1_{a_{n}}}, x_{2_{a_{n}}}, \dots, x_{n_{a_{n}}}).$$

Since a_1 is adjacent to a_2 , at least one of the $x_{1_{a_1}}, x_{1_{a_2}}$ is invertible in R_1 . With no loss of generality, we may assume that $x_{1_{a_1}} \in U(R_1)$. If $x_{1_{a_2}} \in U(R_1)$, then $x_{1_{a_1}} + x_{1_{a_2}} \in U(R_1)$ and thus $u_1 + v_1 = w_1$, for some $u_1, v_1, w_1 \in U(R_1)$. If $x_{1_{a_2}} \notin U(R_1)$, then $x_{1_{a_3}} \in U(R_1)$. If $x_{1_{a_4}} \in U(R_1)$, then $x_{1_{a_3}} + x_{1_{a_4}} \in U(R_1)$ and hence there exist $u_1, v_1, w_1 \in U(R_1)$ such that $u_1 + v_1 = w_1$. Otherwise, $x_{1_{a_5}} \in U(R_1)$. Since n is an odd integer, if we continue this procedure up to $t \leq n$, we have $x_{1_{a_1}} + x_{1_{a_t}} \in U(R_1)$ and so $u_1 + v_1 = w_1$, for some $u_1, v_1, w_1 \in U(R_1)$. This implies that there exist $u_1, v_1 \in U(R_1)$ such that $u_1 + v_1 = 1$. Similarly, one may show that there exist $u_i, v_i \in U(R_i)$ such that $u_i + v_i = 1$, for every $2 \leq i \leq n$. Hence u + v = 1, for some $u, v \in U(R)$, a contradiction. Therefore $\overline{Z_0(\Gamma(R))}$ contains no induced odd cycle of length at least 5.

Now, by Claims 2.1, 2.2 and Theorem 2.4, $Z_0(\Gamma(R))$ is a perfect graph. \Box

COROLLARY 2.1. Let R be a ring which is not an integral domain and

 $\omega(Z_0(\Gamma(R))) < \infty.$

If $|\operatorname{Max}(R)| \ge 3$ and $2 \in U(R)$, then $Z_0(\Gamma(R))$ is not perfect.

3. When $T_0(\Gamma(R))$ and $T(\Gamma(R))$ are perfect?

In this section, we investigate the perfectness of $T_0(\Gamma(R))$ and $T(\Gamma(R))$. First consider the following simple example.

EXAMPLE 3.1. (1) Let $R = \mathbb{Z}_3 \times \mathbb{Z}_5$. Then $Z_0(\Gamma(R)) = K_2 \cup K_4$ and thus it is perfect.

(2) Let $R = \mathbb{Z}_3 \times \mathbb{Z}_5$. The following cycle shows that $T_0(\Gamma(R))$ has an induced cycle of length 5, i.e., it is not perfect and hence $T(\Gamma(R))$ is not perfect.

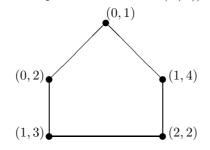
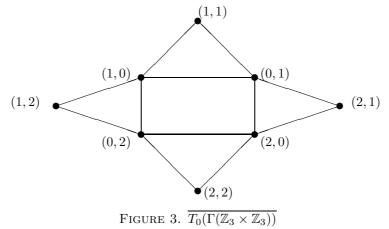


FIGURE 2. Induced cycle of length 5 in $T_0(\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_5))$

(3) Let $R = \mathbb{Z}_3 \times \mathbb{Z}_3$. The following figure shows that $\overline{T_0(\Gamma(R))}$ is perfect. Thus by Theorem 2.4, $T_0(\Gamma(R))$ is perfect.



(4) Let $R = \mathbb{Z}_3 \times \mathbb{Z}_3$. The following cycle shows that $T(\Gamma(R))$ has an induced cycle of length 5 and thus it is not perfect.

Example 3.1 shows that if |Max(R)| = 2, then we do not have definite results on perfectness of $T_0(\Gamma(R))$ and $T(\Gamma(R))$.

THEOREM 3.1. Let R be a ring which is not an integral domain and $\omega(Z_0(\Gamma(R))) < \infty$. If $|\operatorname{Max}(R)| \neq 2$, then the following statements are equivalent:

(1) $Z_0(\Gamma(R))$ is perfect. (2) $T_0(\Gamma(R))$ is perfect. (3) $T(\Gamma(R))$ is perfect.

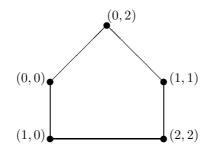


FIGURE 4. Induced cycle of length 5 in $T(\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3))$

PROOF. If |Max(R)| = 1, then the proof is obtained from Theorem 2.3. Hence suppose that $|Max(R)| \ge 3$.

 $(1) \Rightarrow (2)$ The argument here is a refinement of the proof of Theorem 2.5. By this proof it is easily seen that neither $T_0(\Gamma(R))$ nor $\overline{T_0(\Gamma(R))}$ contains an induced odd cycle of length at least 5 and thus is perfect (replace $T_0(\Gamma(R))$ with $Z_0(\Gamma(R))$).

 $(2) \Rightarrow (3)$ We show that $T(\Gamma(R))$ and $\overline{T(\Gamma(R))}$ contain no induced odd cycle of length at least 5. Indeed, we have the following claims:

CLAIM 3.1. $T(\Gamma(R))$ contains no induced odd cycle of length at least 5. Assume to the contrary, $a_1 - a_2 - \cdots - a_n - a_1$ is an induced cycle of length at least 5 in $T(\Gamma(R))$. Since $T_0(\Gamma(R))$ is perfect, $\{a_1, a_2, \ldots, a_n\} \notin V(T_0(\Gamma(R)))$. Hence there exists $1 \leq i \leq n$ such that $a_i = 0$ and so $a_{i-1}, a_{i+1} \in Z(R)$. Hence $\{a_1, a_2, \ldots, a_n\} \setminus$ $\{a_{i-1}, a_i, a_{i+1}\} \subseteq U(R)$. Also, since a_{i-1} is not adjacent to $a_{i+1}, a_{i-1} + a_{i+1} \in$ U(R). This implies that if $x_i \in Z(R_i)$, for some $1 \leq i \leq n$, then $y_i \in U(R_i)$ and if there exists $1 \leq j \leq n$ such that $y_j \in Z(R_j)$, then $x_j \in U(R_j)$, where $a_{i+1} = (x_1, x_2, \ldots, x_n)$ and $a_{i-1} = (y_1, y_2, \ldots, y_n)$. Let $x' = (z_1, z_2, \ldots, z_n)$, where $z_i \in U(R_i)$ such that $z_i = x_i$ or $z_i = y_i$. Let $a_{i+2} = (u_1, u_2, \ldots, u_n)$, $a_{i+3} =$ (v_1, v_2, \ldots, v_n) and put $y' = (w_1, w_2, \ldots, w_n)$ such that $w_i = u_i$ if $z_i = y_i$ in x' and $w_j = v_j$ if $z_j = x_j$.

Now, we can easily see that $y', x' \in U(R)$ such that $y' + x' \in U(R)$. Thus by Theorem 2.3, $Z_0(\Gamma(R))$ is not perfect, a contradiction.

CLAIM 3.2. $T(\Gamma(R))$ contains no induced odd cycle of length at least 5. This proof is similar to the proof of Claim 1.

By Claims 3.1, 3.2 and Theorem 2.4, $T(\Gamma(R))$ is a perfect graph. (3) \Rightarrow (1) is clear.

We close this paper, with the following question.

Let R be a ring, $\omega(Z_0(\Gamma(R))) < \infty$ and $|\operatorname{Max}(R)| = 2$. What condition $T(\Gamma(R))$ is perfect under?

Acknowledgements. The authors thank the referee for his/her careful reading and his/her excellent suggestions.

References

- S. Akbari, M. Jamaali, S. A. Seyed Fakhari, The clique numbers of regular graphs of matrix algebras are finite, Linear Algebra Appl. 43 (2009), 1715–1718.
- S. Akbari, D. Kiani, F. Mohammadib, S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009), 2224–2228.
- D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), 2706–2719.
- 4. _____, On the total graph of a commutative ring without the zero element, J. Algebra Appl. 11 (2012), 1250074 (18 pages).
- T. Asir, T. Tamizh Chelvam, On the total graph and its complement of a commutative ring, Comm. Algebra 41 (2013), 3820–3835.
- M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
 W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1997.
- T. Chelvam, T. Asir, The intersection graph of gamma sets in the total graph II, J. Algebra Appl. 12 (2013), 1250199 (14 pages).
- 9. ____, Domination in the total graph of a commutative ring, J. Combin. Math. Combin. Comput. 87 (2013), 147–158.
- 10. R. Diestel, Graph Theory, Springer-Verlag, New York, 2000.
- N. Ganesan, Properties of rings with a finite number of zero-divisors, Math. Ann. 157 (1964), 215–218.
- 12. D. Dolžan, P. Oblak, The total graphs of finite rings, Comm. Algebra 43 (2015), 2903–2911.
- Sh. Ebrahimi Atani, F. Esmaeili Khalil Saraei, The total graph of a commutative semiring, An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 21 (2013) 21–33.
- H. R. Maimani, C. Wickham, S. Yassemi, *Rings whose total graphs have genus at most one*, Rocky Mountain J. Math. 42 (2012), 1551–1560.
- Z. Pucanović, Z. Petrović, On the radius and the relation between the total graph of a commutative ring and its extensions, Publ. Inst. Math., Nouv. Sér. 89(103) (2011), 1–9.
- P. Sharma, M. Acharya, Balanced signed total graphs of commutative rings, Graphs and Combin. 32 (2016), 1585–1597.
- 17. M. H. Shekarriz, M. H. Shirdareh Haghighi, H. Sharif, On the total graph of a finite commutative ring, Comm. Algebra 40 (2012), 2798–2807.
- T. Tamizh Chelvam, T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra, 41 (2013), 142–153.
- 19. D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.

Department of Mathematics Science and Research Branch Islamic Azad University (IAU) Tehran, Iran mjalali@gmail.com

Department of Mathematics Jundi-Shapur University of Technology Dezful, Iran (corresponding author) r.nikandish@ipm.ir

Department of Mathematics Science and Research Branch Islamic Azad University (IAU) Tehran, Iran tehranian@srbiau.ac.ir (Received 21 01 2019)

92