ON THE JACK LEMMA
AND ITS GENERALIZATION

Mamoru Nunokawa, Nak Eun Cho, and Janusz Sokół

Abstract. We present a new geometric approach to some problems in differential subordination theory and discuss the new results closely related to the Jack lemma.

1. Introduction

Let H denote the class of analytic functions in the unit disc $D = \{z : |z| < 1\}$ on the complex plane \mathbb{C}. Let $f, g \in H$, $f(|z| < |z_0|) \subset g(|z| < |\zeta_0|)$ and $f(z_0) = g(\zeta_0)$. In this paper we are looking for the relation between $f(z_0)$ and $z_0 f'(z_0)$ for the case when $g(z)$ maps the unit disc D onto the right half-plane $\Re\{w\} > 0$. In order to prove our main result we recall the following lemma, well known as the Jack lemma. This lemma describes the case when $g(z) = z$.

Lemma 1.1. [1] Let $w(z)$ be a nonconstant and analytic function in the unit disc D with $w(0) = 0$. If $|w(z)|$ attains its maximum value on the disc $|z| \leq r$ at the point z_0, $|z_0| = r$, then $z_0 w'(z_0) = sw(z_0)$ and $s \geq 1$.

The Jack lemma has several applications and generalizations in the theory of differential subordinations, see for instance [2], [3] and [4]. In this paper we generalize the following Nunokawa lemma, [5], see also [6] for its angle version.

Lemma 1.2. Let p be analytic function in $|z| < 1$, with $p(0) = 1$. If there exists a point z_0, $|z_0| < 1$, such that $\Re\{p(z)\} > 0$ for $|z| < |z_0|$ and $p(z_0) = \pm ia$ for some $a > 0$, then we have

$$
\frac{z_0 p'(z_0)}{p(z_0)} = \frac{2ik \arg\{p(z_0)\}}{\pi},
$$

for some $k \geq (a + a^{-1})/2 \geq 1$.

2010 Mathematics Subject Classification: Primary 30C45, Secondary 30C80.

Key words and phrases: analytic functions; univalent functions; differential subordination Jack's lemma; Nunokawa's lemma.

Communicated by Miodrag Mateljević.

This work is supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1I1A3A01050861).

63
2. Main results

THEOREM 2.1. Let \(p \) be an analytic function in \(|z| < 1 \). If there exists a point \(z_0, |z_0| < 1 \), such that \(\text{Re}\{p(z)\} > 0 \) for \(|z| < |z_0| \) and \(p(z_0) = \pm ia \) for some \(a > 0 \), then we have \(z_0 p'(z_0) = ikp(z_0) \), where

\[
\begin{align*}
(2.1) \quad k & \geq \frac{|p(0)|^2 - 2a \text{Im}\{p(0)\} + a^2}{2a \text{Re}\{p(0)\}} > 0 \quad \text{when} \quad \text{arg}\{p(z_0)\} = \frac{\pi}{2} \\
(2.2) \quad k & \leq -\frac{|p(0)|^2 + 2a \text{Im}\{p(0)\} + a^2}{2a \text{Re}\{p(0)\}} < 0 \quad \text{when} \quad \text{arg}\{p(z_0)\} = -\frac{\pi}{2}
\end{align*}
\]

PROOF. Let

\[
q(z) = \frac{p(0) - p(z)}{p(0) + p(z)}, \quad z \in \mathbb{D}.
\]

Then \(q(z) \) is an analytic function in the unit disc \(\mathbb{D} \) with \(q(0) = 0 \). If there exists a point \(z_0, |z_0| = r < 1 \), such that \(\text{Re}\{p(z)\} > 0 \) for \(|z| < |z_0| \) and \(p(z_0) = \pm ia \) for some \(a > 0 \), then \(|q(z)| \) attains its maximum value \(|q(z_0)| = 1 \) on the disc \(|z| \leq r \) at the point \(z_0 \). By the Jack lemma \[1\] we have

\[
(2.4) \quad z_0 q'(z_0) = sq(z_0), \quad s \geq 1.
\]

Moreover, by (2.3), we have

\[
(2.5) \quad z_0 q'(z_0) = -\frac{2z_0 p'(z_0) \text{Re}\{p(0)\}}{(p(0) + p(z_0))^2}, \quad sq(z_0) = s \frac{p(0) - p(z_0)}{p(0) + p(z_0)}.
\]

Substituting (2.5) in (2.4), we obtain

\[
z_0 p'(z_0) = -s \frac{(p(0) - p(z_0)) (p(0) + p(z_0))^2}{2 \text{Re}\{p(0)\}}
\]

\[
= -s \frac{|p(0)|^2 + 2ip(z_0) \text{Im}\{p(0)\} - p^2(z_0)}{2 \text{Re}\{p(0)\}}
\]

\[
= ip(z_0)s \frac{|p(0)|^2 + 2ip(z_0) \text{Im}\{p(0)\} - p^2(z_0)}{-2ip(z_0) \text{Re}\{p(0)\}} = ip(z_0)k,
\]

where from

\[
k = s \frac{|p(0)|^2 + 2ip(z_0) \text{Im}\{p(0)\} - p^2(z_0)}{-2ip(z_0) \text{Re}\{p(0)\}}.
\]

For the case \(p(z_0) = ia \), we have

\[
k = s \frac{|p(0)|^2 + 2ip(z_0) \text{Im}\{p(0)\} - p^2(z_0)}{-2ip(z_0) \text{Re}\{p(0)\}}
\]

\[
= s \frac{|p(0)|^2 - 2a \text{Im}\{p(0)\} + a^2}{2a \text{Re}\{p(0)\}} \geq \frac{|p(0)|^2 - 2a \text{Im}\{p(0)\} + a^2}{2a \text{Re}\{p(0)\}},
\]

because \(s \geq 1 \), and

\[
\frac{|p(0)|^2 - 2a \text{Im}\{p(0)\} + a^2}{2a \text{Re}\{p(0)\}} > 0.
\]
Therefore, we obtain (2.1). For the case \(p(z_0) = -a \), we have from (2.6)

\[
k = s \left| p(0) \right|^2 + 2a \left| \text{Im}\{p(0)\} \right| + a^2
\]

\[
\leq \frac{\left| p(0) \right|^2 + 2a \left| \text{Im}\{p(0)\} \right| + a^2}{2a \text{Re}\{p(0)\}}
\]

because \(s \geq 1 \), and

\[
\frac{\left| p(0) \right|^2 + 2a \left| \text{Im}\{p(0)\} \right| + a^2}{2a \text{Re}\{p(0)\}} = \frac{(a - \left| p(0) \right|)^2 + 2a(\left| p(0) \right| + \text{Im}\{p(0)\})}{2a \text{Re}\{p(0)\}} > 0.
\]

Therefore, we obtain (2.2). \(\square \)

Corollary 2.2. Let \(p \) be an analytic function in \(|z| < 1 \) with \(p(0) = b \in \mathbb{R} \). If there exists a point \(z_0, \left| z_0 \right| < 1 \), such that \(\text{Re}\{p(z)\} > 0 \) for \(|z| < |z_0| \) and \(p(z_0) = \pm ia \) for some \(a > 0 \), then we have \(z_0 \frac{p'(z_0)}{p(z_0)} = ikp(z_0) \), where

\[
k \geq \frac{|b|^2 + a^2}{2ab} > 0 \quad \text{when} \quad \arg\{p(z_0)\} = \frac{\pi}{2}
\]

\[
k \leq -\frac{|b|^2 + a^2}{2ab} < 0 \quad \text{when} \quad \arg\{p(z_0)\} = -\frac{\pi}{2}.
\]

For \(b = 1 \) Corollary 2.2 becomes Nunokawa’s lemma 1.2.

References