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HYPERFINITE LOGICS AND NON-STANDARD

EXTENSIONS OF BOOLEAN ALGEBRAS

Miklós Ferenczi

Abstract. Infinitary propositional logics, i.e., propositional logics with in-
finite conjunction and disjunction, have some deficiencies, e.g., these logics
fail to be compact or complete, in general. Such kind of infinitary proposi-
tional logics are introduced, called hyperfinite logics, which are defined in a
non-standard framework of non-standard analysis and have hyperfinite con-
junctions and disjunctions. They have more nice properties than infinitary
logics have, in general. Furthermore, non-standard extensions of Boolean al-
gebras are investigated. These algebras can be regarded as algebraizations of
hyperfinite logics, they have several unusual properties. These Boolean alge-
bras are closed under the hyperfinite sums and products, they are representable
by hyperfinitely closed Boolean set algebras and they are omega-compact. It
is proved that standard Boolean algebras are representable by Boolean set
algebras with a hyperfinite unit.

1. Introduction

Infinitary logics (i.e., propositional logics with infinitary conjunctions and dis-
junctions) have been investigated intensively, there is an extended literature for
these logics [2,5,9].

These logics have important applications in mathematics. For example, in-
finitary propositional logics appear in the theory of Boolean algebras, or in the
foundations of probability theory. Their expressive power is strong, but complete-
ness, or compactness holds only in exceptional cases. An important exception is
the infinitary propositional logic Lω1

with countable conjunction and disjunction,
this logic is complete.

Here we introduce a so-called hyperfinite logic LH , i.e. a propositional logic
having hyperfinite conjunctions and disjunctions. Hyperfinite logic is defined in a
non-standard framework of non-standard analysis. Hyperfinite logic is complete,
as it is proven. Roughly speaking, as is known, “hyperfinite” means an “infinite”
whose behaviour is “like the finite”. The part of the logic LH , where the ranks
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of the formulas are finite, is LHF (hyperfinite logic with finite rank). LHF can
be considered as a dual of Lω1

, in a sense, because hyperfinite conjunctions and
disjunctions are not denumerable operations. Hyperfinite logic has the “countable
saturation” property.

The topics hyperfinite logic and non-standard extensions (∗-transforms) of
Boolean algebras are closely related. The latter algebras can be regarded as al-
gebraization of hyperfinite logic. Non-standard extensions of Boolean algebras are
interesting also for themselves, they have several unusual properties. They are clo-
sed under hyperfinite unions and intersections (they are “hyperfinitely closed”), but,
cannot include the denumerable unions and intersections. They are ω-compact and
they are representable by hyperfinitely closed Boolean set algebras (as is known,
Boolean λ-algebras are not representable by Boolean λ-set algebras, in general,
where λ is any fixed infinite cardinality). A consequence is a variant of the Stone
representation theorem: Boolean algebras are representable as Boolean set algebras
with a hyperfinite unit. Applications of the topic is expected in probability theory
and in the theory of Boolean algebras.

Some concepts of hyperfinite logic is listed in 2, 3 concerns the semantics of
hyperfinite logic, the completeness is proved in 4. The connection of hyperfinite
logic and the ∗-transforms of Boolean algebras is analysed in 5.

2. On the concept of hyperfinite logic

We work in a general framework, in a suitable superstructure and enlargement,
defined in non-standard analysis. The knowledge of the basic concepts as ∗- trans-
form, hyperfiniteness, hypernatural, internality, etc. are assumed as prerequisites
(see [1,8,10,12,13]).

A classical propositional logic L is assumed. As regards its language L, the
only unusual feature is that instead of the binary operation symbols conjunction
∧ and disjunction ∨, the symbols of infinitely-many n-ary operations, the n-ary
conjunctions

∧
n and the n-ary disjunctions

∨
n are assumed in L, where n runs

over the natural numbers being > 2. L contains also the unary operation symbol
negation ¬. Furthermore, the language includes a set {Bj : j ∈ N} of propositional
symbols (N is the set of natural numbers).

The concept of formula, i.e. that of well-formed formula (wff), is the usual:

(i) The propositional symbols are formulas.
(ii) If α1, α2, . . . αn is a finite sequence of formulas, where n is a fixed natural

number, then
∧

n αi,
∨

n αi are formulas, and ¬αi is a formula.

Formulas are obtained by applying finitely-many times the rules in (i) and (ii).
Let W denote the set of formulas in L.The common term for a propositional symbol
and its negated is the literal.

The semantics of propositional logic is the usual:
An interpretation function s is a mapping from the set W of the formulas into

the Boolean algebra B of two elements 0 and 1, having the property (p) below:
(p) if α1, α2, . . . αn are formulas, then

s
( ∧

n αi

)
= min16i6n{s(αi)}, s

( ∨
n αi

)
= max16i6n{s(αi)}, s(¬α1) = −s(α1).
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Let S denote a fixed non-empty set (possible interpretations) of the interpre-
tation functions. The truth set [α] of a formula α is the set {s ∈ S : s(α) = 1}.

Roughly speaking, hyperfinite logic will be the ∗-transform of the classical
propositional logic introduced above. Next, this ∗-transform will be described and
reformulated.

Let us consider the collection of the formulas in L, the operations of the lan-
guage L and the set S of the possible interpretation functions. Let us form a
superstructure built on this collection and let us form the usual enlargement. Let
∗ denote the usual embedding function (see [8, 13]). As is known, the cardinality
of a hyperfinite set is not denumerable.

By a Q-sequence 〈ai : i ∈ Q〉 we mean an internal sequence, where Q is a
hypernatural, i.e. 〈ai : i ∈ Q〉 is an internal function.

Next, the hyperfinite logic LH and the hyperfinite logic with finite ranks LHF

are defined:
The set of the propositional symbols is the set ∗{Bj : j ∈ N} denoted by A. In

addition to the negation ¬, the operation symbols
∧

Q and
∨

Q are assumed in the
language, where Q runs over the hypernaturals.

The concept of formula α (i.e. a well-formed formula α) in LH :

(i) The members of A are formulas.
(ii) If 〈αi〉i∈Q is a Q-sequence of formulas, where Q is a fixed hypernatural,

then
∧

Q αi,
∨

Q αi are formulas, and ¬αi is a formula.

Formulas of LH are obtained by applying hyperfinitely-times, say M -times, the
rules (i) and (ii) (where M is a hypernatural), furthermore, any sequence of the
subformulas resulting α, are assumed to be an M -sequence (internal sequence).

The rank of a formula is the M occuring in the definition of the formula. If M

is finite, then the formula is said to be a formula of finite rank.
Let LHF denote the part of LH such that the ranks of the formulas are finite.

LHF is called hyperfinite logic with finite ranks.
An interpretation function t for the logic LH is an internal function, mapping

from the set of the formulas in LH , into the Boolean algebra B of two elements 0
and 1, having the property (p’) below:

(p’) if α1, α2, . . . αQ is a Q-sequence of formulas in LH , then

t
( ∧

Q αi

)
= min16i6Q{t(αi)}, t

( ∨
Q αi

)
= max16i6Q{t(αi)}, t(¬α1) = −t(α1).

The restriction of the interpretation function t to A is called elementary inter-
pretation.

The concept of interpretation function origins from the facts that the Boolean
algebra B of two elements remains unchanged at the ∗-transform and the set S

of interpretation functions of L goes into a set ∗S of internal functions mapping
the formulas of LH into B. The property (p) is inherited at the ∗-transform from
the finite set of formulas in L to the hyperfinite set of formulas, i.e. to the Q-
sequences of formulas in LH , this is why (p’) is true. Furthermore, ∗ min = min
and ∗ max = max.
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The concept of interpretation function in LH implies the definitions of the main
concepts of semantics. Thus, it implies the concept of satisfiability, or the logical
equivalency of two formulas: α and β are logical equivalent if their interpretations
t give the same value for every t ∈ ∗S.

Similarly to classical logic, Σ |= β is equivalent to the unsatisfiability of the
formula set Σ ∪ {¬β}.

3. Some semantical properties of hyperfinite logic

The definition by ∗-transform implies that hyperfinite logics have many ana-
logous properties with classical propositional logic. Many algebraic properties are
transfered by ∗: associativity, commutativity, distributivity of the conjunctions and
disjunctions.

The formulation of the normal form theorem for the logic LH is the following:

Theorem 3.1. Every formula of LH is logical equivalent to a hyperfinite dis-
junction of certain hyperfinite conjunctions of literals, i.e. equivalent to a formula
of the form

(3.1)
∨

i6Q

( ∧
j6Ki

Lij

)

where Q, Ki are hypernaturals, Lij are literals and the members of the disjunctions
and conjunctions in (3.1) constitute Q-, and Ki-sequences (i.e. internal sequences).

Proof. Known theorem of classical propositional logic is: for every formula α

in W , there is a formula β being a finite disjunction of certain finite conjunctions of
literals, logical equivalent to α. Considering the ∗-transform, we get that for every
formula α in ∗W there is a formula β being a hyperfinite disjunction of hyperfinite
conjunctions of literals, logical equivalent to α. The finite sets of the members of
the finite conjunctions and disjunctions go into internal hyperfinite sequences at
the ∗-transform. �

Similarly, the De Morgan laws remain true in LH . That is, the following
is true: The pair of formulas ¬

∨
Q γi and

∧
Q ¬γ, furthermore ¬

∧
Q γi and

∨
Q ¬γi

are logical equivalent in LH for every Q-sequence 〈γi〉i∈Q.
With the logic Lω1

the logic LHF can be associated rather than LH because the
ranks of the formulas are finite in both logics. There are many similar properties
of Lω1

and LHF . Next, however such a property of LHF is presented which makes
a difference between these two logics.

An important semantical concept in infinitary logics is the semantical consis-
tency (see [9]). A set Λ of formulas is semantical consistent if every finite subset
of Λ is satisfiable.

Recall that for the logic Lω1
the equivalency of satisfiability and semantical

consistency for countable formula sets fails to be true (see [9]).
Let Λ be a countable set of formulas of the logics LHF , or LH .

Theorem 3.2. For any countable set Λ of formulas, Λ is satisfiable if and only
if Λ is semantical consistent.
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Proof. The satisfiability of Λ implies the semantical consistency of Λ, this is
trivial. We check the other direction. Using the definition of formula in LH , we
prove that the truth sets {t ∈ ∗S : t(α) = 1} of formulas α are internal sets.

Let us consider the truth set of a propositional symbol C, i.e. the set {t ∈ ∗S :
t(C) = 1, C ∈ A}, where A denotes the set ∗{Bj : j ∈ N}. The internal definition
principle (see [13]) implies that this set is internal.

Assume that the truth sets of the formulas α and β are internal sets. By
definition, these are subsets of the internal set ∗S. As is known, the complement,
the union and the intersections of two internal sets are also internal. And, if the
truth sets of the formulas form a Q-sequence 〈αi : i ∈ Q〉 (i.e. an internal sequence),
then the truth sets of the formulas

∨
i6Q αi and

∧
i6Q αi are also internal sets,

because these are internal unions and intersections of internal sets (see [13]).
Then, if α is in LHF , i.e. α can be composed in finitely-many steps, then

ordinary formula induction applies.
If α is in LH , then internal formula induction applies [8, Ch. 11.3] rather than

ordinary formula induction. Let us consider the internal sequence 〈q〉 of the sub-
formulas resulting α by definition. If α is atomic, we are ready. Assume that the
truth set of the Kth member of 〈q〉 is internal, where K is a hypernatural. To
prove that the truth set of the (K + 1)th member of 〈q〉 is also internal, the same
argument applies as above at the induction step.

To complete the proof, we use that every enlargement has the “countable satu-
ration” property, i.e. the property that every countable collection of internal sets
having the finite intersection property has a non-empty intersection [8]. �

The theorem can be generalized from countable cardinality to cardinalities
less than the fixed cardinal number κ, using so-called κ-saturated enlargements
(see [13, Ch. 4]).

The developement of the first order variant of hyperfinite logic exceeds the
frame of this paper, but all the technics needed for that appear here. For example,
first order normal forms (prenex, Skolem) can be introduced and the completeness
can be reduced to the propositional case, as in classical logic.

4. On the completeness of the hyperfinite logic

To prove the completeness of the hyperfinite logic LH analytic tableaux is
applied. The concept of analytic tableaux (for short, tableaux) for classical propo-
sitional logic is considered to be known (see [3]). Roughly speaking, producing an
analytic tableaux for propositional logic is a kind of implementation for producing
a disjunctive normal form.

Classical propositional tableaux has finitely-many nodes and the tableaux is
defined by induction. The concept of analytic tableaux for the logic LH will be
the ∗-transform of that of classical propositional logic. Tableaux for LH will have
hyperfinitely-many nodes and the definition happens by internal induction (an ar-
gument for this is given later).

The description of the ∗-transformed tableaux is:
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First step (K = 1). Let the root include (be labelled by) a formula α of LH .
If α is an atomic formula, or a negated atomic formula, the procedure is finished.
Assume that α is a compound formula. If α is a disjunction, then hyperfinitely-
many nodes follow the root, each includes a disjunction member of α, respectively,
instead of α. If α is a conjunction, then one node follows the root, including the
conjunction members of α, instead of α. If α is a negation, then, if it is a double
negation, then the double negation is omitted from α in the next node, else, one of
the De Morgan rules is applied and a is replaced by its equivalent in the next node.

Assume that the tableaux is defined for the first K numbers, where K is a
hypernatural, i.e. assume that the Kth node N has been defined.

The (K + 1)th step. If N includes a contradictory pair of formulas, then the
branch of N (or simply N ) is said to be closed and another node being not closed
is selected. If N includes only literals (but there is no contradictory pair), then
the procedure is finished. Assume that N includes a compound formula. Then the
procedure described at the first step should be repeated.

The procedure is finished if all the branches are closed (in this case the tableaux
is called closed), or there is a node including only literals without contradictory pair.
By the internal induction the procedure is defined for ∗N -many steps (where N is
a natural number). The procedure is obviously finished in M steps, where M is a
hypernatural, but the steps after M are considered to result empty nodes.

Applying internal induction in the definition is justifiable because of the fol-
lowing reasons. Following the steps of the procedure, we get a sequence 〈r〉 of
subformulas of α (being decomposed in a step) with the properties: every member
of the sequence is a subformula of the previous one, or a subformula of some prece-
ding one in the sequence, or it is an equivalent of a subformula by some De Morgan
rule. Let us consider the internal subformula tree τ of α and eliminate the negati-
ons using the De Morgan rules, i.e. transform the negations into the literals using
the De Morgan rules, let π denote the subformula tree obtained. The conjunction-
disjunction structures of τ and π are the same (conjunctions and disjunctions are
changed, at most) and π inherits the internality of τ . With the sequence 〈r〉 a de-
composition sequence of the nodes can be associated in π, therefore the internality
of π implies the internality of 〈r〉.

The following theorem states the completeness of analytic tableaux for the
logic LH .

Theorem 4.1. A formula α in LH is unsatisfiable if and only if α has a closed
analytic tableaux. If α is in LHF , then the branches of its analytic tableaux are
finite and there is a natural number upper bound for the lenghts of the branches.

Proof. By ∗-transform, the completeness follows from the respective theorem
for classical propositional logic.

If α is in LHF , then α has a finite rank. Considering a fixed branch and the
successors nodes on it, respectively, the maximal rank of the formulas on a node,
strictly decreases node-by-node, or, at applying the De Morgan rule, this maximal
rank strictly decreases after two nodes. Therefore, following these maximal ranks
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on a branch it must became 1, or 2 after finitely-many steps, i.e. until a lief (last
node) appears. This means that the branch is finite.

But, the leafs of the tableaux can be arranged into some Q-sequence, where Q

is a hypernatural (see the normal form theorem). This is valid also for the lengths
(natural numbers) of the branches corresponding to the leafs. However, by the
“underflow principle” there is a natural number being upper bound of the foregoing
lengths (this upper bound can be considered as the depth of the tableaux). �

While the procedure of forming a classical analytic tableaux is finite, that of
forming an analytic tableaux for a formula in hyperfinite logic is hyperfinite. So
the “lengths” of the “deductions” are hyperfinite (i.e. it is a hyperfinite, internal
sequence). By (ii), if α is in LHF , then the “depth” of the tableaux is finite, but
the “width” is maybe hyperfinite.

As usual, the equivalency of Σ |= β and the unsatisfiableness of the formula set
Σ ∪ {¬β} yields a kind of concept of deducibility of β from Σ.

5. Hyperfinitely closed Boolean algebras

As is known, in classical proposition logic the truth sets [α]′s form a Bool-
ean subalgebra M of the power Boolean set algebra P(S), where S is the set of
the possible interpretations. Of course, M is closed under the finite unions and
intersections.

A Boolean algebra D is hyperfinitely closed if 〈di〉i∈Q is any Q-sequence of
the elements di in D, then

⋃
i∈Q di ∈ D and

⋂
i∈Q di ∈ C. D is ω-compact if

every countable subset of D, having the finite product property, has a non-empty
infimum.

Theorem 5.1. (i) The truth sets of the formulas in LH form a Boolean set
algebra C closed under the hyperfinite unions and intersections (C is hyperfinitely
closed), i.e. if 〈Ai〉i∈Q is any Q-sequence of the sets Ai in C, then

⋃
i∈Q Ai ∈ C

and
⋂

i∈Q Ai ∈ C, where
⋃

and
⋂

mean ordinary union and intersection.

(ii) C is ω-compact and it cannot inlude the denumerable unions, or intersections
of its members.

Proof. (i) M ⊂ P (S), where S denotes the set of the possible interpretations
in the classical logic and M denotes the Boolean set algebra of the truth sets in the
classical logic. Forming the ∗-transform, we get that ∗M ⊂ ∗P(S). Here ∗P(S) is
the collection of the internal sets in ∗S. Furthermore, ∗M includes the Boolean set
algebra of the truth sets for LH . Therefore the truth sets are internal sets, more
exactly: ∗{s ∈ S : s(α) = 1, α ∈ W } = {s ∈ ∗S : s(α) = 1, α ∈ ∗W } and, as is
known, they are closed under hyperfinite unions and intersections included in (i).

Notice that (i) follows also from the proof of Theorem 3.2.

(ii) The members of C are internal sets, thus C is ω-compact. By the underflow
principle, if Di ∈ C (i ∈ N), then

⋃
i∈N Di =

⋃
i6n Di for some natural number

n [8, Ch. 11.10]. The case of the intersection is analogous. �
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The hyperfinitely closedness is a rather unusual property of Boolean set alge-
bras. Hyperfinitely closed Boolean set algebras can be considered as some alge-
braization of hyperfinite logic LH , since a kind of converse of the above theorem is
true, as well: with every hyperfinitely closed Boolean set algebra some hyperfinite
logic can be associated.

Next we show how to get the algebraizations of hyperfinite logic purely in
algebraic way.

We set out from ordinary Boolean algebras and from their enlargements.

Theorem 5.2. Let A be a Boolean algebra and ∗A the enlargement of A. Then

(i) ∗A is hyperfinitely closed

(ii) ∗A has such a Boolean set algebra representation Ã that Ã is hyperfinitely
closed as set algebra, the hyperfinite infima and suprema in ∗A are preserved at the

canonical isomorphism and the members of Ã are internal sets

(iii) Ã is ω-compact.

Proof. (i) A is finitely closed under the Boolean operations, thus, by ∗-
transfer, ∗A is hyperfinitely closed.

(ii) We set out from a set algebra representation A′ of A and form the ∗-

transform Ã of A′. We show that the hyperfinite infima and suprema in Ã are
exactly the set operations intersections and unions. As regards the union, for
example, this follows from the definition of the union. Let us consider the union
axiom for finite unions in A′:

∀x ∈ PF (A′) ∃y ∈ A′ ∀u(u ∈ y ↔ ∃v(u ∈ v ∧ v ∈ x))

The ∗-transform of this formula is:

∀x ∈ ∗PF (A′) ∃y ∈ Ã ∀u(u ∈ y ↔ ∃v(u ∈ v ∧ v ∈ x)).

It says that for a hyperfinite set x (x ∈ ∗PF (A′)) the union of the members of x

exists in Ã.
The members of Ã are internal, by definition. Composing the inverse of the

transformation ∗ defined on A, the ordinary canonical isomorphism and the em-
bedding ∗ of A′, we get the canonical isomorphism from ∗A onto Ã. It obviously
preserves the hyperfinite operations.

(iii) By (ii), the members of Ã are internal. The proposition follows from the
known saturation property of the internal sets (see [8, 15.5]). �

Notice that while by (ii) the algebra Ã includes the hyperfinite intersections
and unions (these are uncountable operations if they are infinite ones), Ã really
does not include countable intersections and unions only finite ones (because the
saturation property of internal sets).

The following version of Theorem 5.2 is true:

Let A be a Boolean algebra. Then there exists an atomic and hyperfinite exten-
sion A+ of A such that A ⊂ A+ ⊂ ∗A holds, furthermore, replacing ∗A by +A in
Theorem 5.2, the properties (i), (ii) and (iii) are valid.
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The existence of A+ is proved in [8, 19.4]. The proofs of (i), (ii) and (iii) are
similar to those of Theorem 5.2.

The following proposition is a version of Stone’s theorem:

Corollary 5.1. Every Boolean algebra is isomorphic to a Boolean set algebra
with a hyperfinite unit.

It follows from the previous version of Theorem 5.2. Because every atomic
Boolean algebra can be considered as a Boolean set algebra, where the unit is the
set of the atoms.

As regards the application of hyperfinite logic, hyperfinite sets play an im-
portant role in non-standard measure-, or probability theory, among others. For
example, there is a hyperfinitely closed Boolean set algebra which includes the set
of the bounded realizations for stochastic processes. This set is not included in the
known σ-algebras. In general, certain crucial sets can be treated in terms of hyperfi-
nitely closed Boolean algebras [4]. There are considerable connections also between
hyperfinitely closed Boolean algebras and cylindric algebras, too (see, [6, 7, 11]),
these could be a subject of a forthcoming paper.
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