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SOME CONVOLUTION INEQUALITIES IN

REALIZED HOMOGENEOUS BESOV AND

TRIEBEL–LIZORKIN SPACES

Mohamed Benallia and Madani Moussai

Abstract. Using the realizations, we study some convolution inequalities in

the realized homogeneous Besov spaces ˙̃
Bs

p,q
(Rn) and the realized homoge-

neous Triebel–Lizorkin spaces ˙̃
F

s

p,q
(Rn). We also deduce for the homogeneous

Sobolev spaces Ẇ m

p
(Rn) in certain sense.

1. Introduction

We study some properties of the convolution in homogeneous Besov spaces
Ḃs

p,q(Rn) and homogeneous Triebel–Lizorkin spaces Ḟ s
p,q(Rn). This type of prop-

erties has been studied by Peetre [13, Chapter 8] considering Ḃs
p,q(Rn), see also

Bourdaud [3]. As these spaces are defined modulo polynomials, since ‖f‖Ḃs
p,q

=

‖f‖Ḟ s
p,q

= 0 if and only if, f is a polynomial on Rn, then in our investigation, we

will consider realized homogeneous Besov spaces ˙̃Bs
p,q(Rn) and realized homoge-

neous Triebel–Lizorkin spaces ˙̃F s
p,q(Rn), which are defined in the tempered distri-

butions space S′(Rn). We will employ the notation Ȧs
p,q(Rn) for either Ḃs

p,q(Rn) or

Ḟ s
p,q(Rn), the notation ˙̃As

p,q(Rn) for either ˙̃Bs
p,q(Rn) or ˙̃F s

p,q(Rn) and their initials
B and F , respectively. Also, we will omit the symbol Rn in notations since all
function spaces which occur in this work are defined on R

n. We will also use the
following two notations:

– If f ∈ S′, [f ]P denotes the equivalence class of f modulo all polynomials on Rn.
– E ′ is the set of distributions with compact support in Rn.

So in the convolution, we essentially prove an estimate in ˙̃As
p,q (see below, Theorem

2.2 and Remark 2.2 in which we explain why we work with the realized spaces) using
the convergence in S′

ν (the space of tempered distributions modulo polynomials Pν
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of degree < ν), where for any 4-tuples (n, s, p, q) and throughout this paper the
number ν ∈ N0 is defined by

ν := ([s− n/p] + 1)+ if s− n/p /∈ N0 or q > 1 in B-case (p > 1 in F -case)

ν := s− n/p if s− n/p ∈ N0 and 0 < q 6 1 in B-case (0 < p 6 1 in F -case),

(see [4]), with [t] denotes the greatest integer less than or equal to t ∈ R.

Notation and plan of the paper. As usual, N denotes the set of natural
numbers, N0 = N ∪ {0}, Z the integers and R the real numbers. For a ∈ R we put
a+ := max(0, a). The symbol →֒ indicates a continuous embedding. For 0 < p 6 ∞
we denote by ‖ · ‖p the quasi-norm of Lp. We will use the parameters s, p and q as
s ∈ R and 0 < p, q 6 ∞ (p < ∞ in the F -case) along the paper unless otherwise
stated. For a function θ defined on Rn, we set θλ := λ−nθ(λ−1(·)) for all λ > 0 and

θ̌(x) := θ(−x). The standard norms in the Schwartz space S are defined by

ζm(f) := sup
|α|6m

sup
x∈Rn

(1 + |x|)m|f (α)(x)|, (m ∈ N0).

For f ∈ L1,

Ff(x) = f̂(ξ) :=

∫

Rn

e−ix·ξf(x)dx

is the Fourier transform and F−1f(x) := (2π)−nf̂(−x) is the inverse Fourier trans-
form. The operators F and F−1 are extended to the whole S′ in the usual way.

For k ∈ N0 ∪{∞}, Pk denotes the set of all polynomials on R
n of degree < k (in

particular P0 = {0}, P1 = {c}, . . . ,P∞ the set of all polynomials). Sk will be used
for the set of all ϕ ∈ S such that 〈u, ϕ〉 = 0 (∀u ∈ Pk), its topological dual is S′

k.
The mapping which takes any [f ]P to the restriction of f to Sk is an isomorphism
from S′/Pk onto S′

k.
The constants c, c1, . . . are strictly positive, depend only on the fixed parame-

ters n, s, p, q, . . . , their values may change from line to line.
This work is organized as follows. In Section 2 we state the main results. In

Section 3 we collect some needed tools. Section 4 is devoted to the proofs. In the
last section, we give applications and an extension to Sobolev homogeneous spaces.

2. Statement of the main results

The Littlewood–Paley decomposition plays a major role here, then once and
for all, we fix two functions ρ and γ, where ρ is a positive C∞ and radial such that
0 6 ρ 6 1, ρ(ξ) = 1 for |ξ| 6 1 and ρ(ξ) = 0 for |ξ| > 3/2, and γ(ξ) := ρ(ξ) − ρ(2ξ)
which is supported by 1/2 6 |ξ| 6 3/2. Then we define the operators Qj and Sj

(∀j ∈ Z) by Q̂jf := γ(2−j(·))f̂ and Ŝjf := ρ(2−j(·))f̂ . We also fix a positive and

radial function γ̃ ∈ D(Rn r {0}) such that γ̃γ = γ. We associate Q̃j (∀j ∈ Z)

defined by ̂̃Qjf := γ̃(2−j(·))f̂ . Now, for brevity we set ω := ω(p, q) such that

(2.1) 1/ω = 1/p− 1/q if p 6 min(1, q), ω = q′ if p > 1 or q 6 p 6 1,

where, here and throughout the paper, q′ := q/(q − 1) if q > 1 and q′ := ∞ if
0 < q 6 1. So we have our first result:
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Theorem 2.1. Let ω be given as in (2.1). We put r := min(1, p) and µ :=
−s+ (n/p− n)+. Let f ∈ Ȧs

p,q and θ ∈ Ȧµ
r,ω. Then

∑
j∈Z

Q̃jθ ∗ Qjf converges in

S′
ν to an element denoted by θ ⊛ f , such that

(2.2) ‖θ ⊛ f‖p 6 c‖θ‖Ȧµ
r,ω

‖f‖Ȧs
p,q

holds, where the constant c > 0 is independent of f and θ (with c = 1 if p > 1).

Remark 2.1. By taking θλ instead of θ in the above theorem (recall θλ :=
λ−nθ(λ−1(·))), we obtain a generalization of [13, Theorem 1, p. 156] given in B-
case for p > 1 and q = ∞, see Proposition 2.1 below. Note that owing to (2.1),
ω > r, then Ḃµ

r,r →֒ Ȧµ
r,ω, in particular Ḃ−s

1,1 →֒ Ȧ−s
1,q′ for p > 1 which covers the

result given in the previous reference.

Secondly and similarly to (2.2), we wish to give an inequality for the usual
convolution. Since in (2.2) taking θ ∗ f instead of θ ⊛ f is not true in general (see

Subsection 5.1 below), we then pass to ˙̃As
p,q, where the distributions vanishing at

infinity play an important role.

Definition 2.1. We say that a distribution f ∈ S′ vanishes at infinity if
limλ→0 f(λ−1(·)) = 0 in S′. The set of all such distributions is denoted by C̃0.

Examples of such distributions are:
(i) f ∈ C̃0 if f ∈ Lp (1 6 p < ∞); (ii) ∂jf ∈ C̃0 if either f ∈ L∞ or f ∈ C̃0.

Using the notion of the realization, see e.g., [2], we now recall the definition of
˙̃As
p,q according to [4] or [11]:

The space ˙̃As
p,q is the set of f ∈ S′ such that [f ]P ∈ Ȧs

p,q and f (α) ∈ C̃0

(∀|α| = ν), and one of the following three conditions:

(1) There is no supplementary condition if either s < n/p, or s = n/p and 0 <
q 6 1 in B-case (0 < p 6 1 in F -case); here ν = 0.

(2) f is of class Cν−1 and f (β)(0) = 0 for |β| 6 ν − 1, if either s−n/p ∈ R+ rN0,
or s − n/p ∈ N and 0 < q 6 1 in B-case (0 < p 6 1 in F -case); here either
ν = [s− n/p] + 1 or ν = s− n/p, respectively; here ν > 1.

(3) f is of class Cν−1 with f (β)(0) =
∑

j>0(Qjf)(β)(0), |β| 6 ν−1, if s−n/p ∈ N0

and q > 1 in B-case (p > 1 in F -case); here ν = s− n/p+ 1 > 1.
˙̃As
p,q endowed with ‖f‖ ˙̃As

p,q

:= ‖[f ]P‖Ȧs
p,q

is a quasi-Banach space. Then we have

the following statement:

Theorem 2.2. Let r, µ and ω be real numbers given as in Theorem 2.1. Then
there exists a constant c > 0 (with c = 1 if p > 1) such that

(2.3) ‖θ ∗ f‖p 6 c‖[θ]P‖Ȧµ
r,ω

‖[f ]P‖Ȧs
p,q

holds, for all f ∈ ˙̃As
p,q and all θ satisfying [θ]P ∈ Ȧµ

r,ω and either θ ∈ S or θ ∈ E ′.

Remark 2.2. The condition on f guarantees a “good” representative. Indeed,

if we replace the assumption f ∈ ˙̃As
p,q by only [f ]P ∈ Ȧs

p,q, it is possible to fall
on a wrong choice of representative which yields a contradiction. For instance,
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assume that (2.3) is valid in that case. Let f be a nonzero polynomial on Rn, then
‖[f ]P‖Ȧs

p,q
= 0. We take θ := δ (Dirac distribution at the origin), it is not difficult

to get [δ]P ∈ Ḃ
n/p−n
p,∞ (0 < p 6 ∞), see e.g., the beginning of Subsection 5.1, then

– if 0 < q 6 p 6 1, then ‖[θ]P‖
Ḃ

n/p−n
p,∞

‖[f ]P‖Ḃ0
p,q

= 0,

– if 1 < p 6 ∞ and 0 < q 6 1, then ‖[θ]P‖Ḃ0
1,∞

‖[f ]P‖Ḃ0
p,q

= 0,

however θ ∗ f = f , thus it is impossible to satisfy (2.3) since its left-hand side is ∞.

Remark 2.3. If θ ∈ S∞, then Theorem 2.2 holds with only [f ]P ∈ Ȧs
p,q.

Indeed, by Lemma 3.1 (see below) θ ∗ f ∈ S′, and if [f1]P = [f2]P = f , then

f1 − f2 = P ∈ P∞ and P ∗ θ = 0. Recall that F(xα ∗ θ) = cθ̂δ(α) = 0, since

θ̂(β)(0) = 0 for all α, β ∈ Nn
0 .

In connection with the assertion in [13, pp. 156–159] given for the homogeneous
Besov spaces, we have:

Proposition 2.1. Let r, µ and ω be real numbers given as in Theorem 2.1.
(i) There exists a constant c > 0 (with c = 1 if p > 1) such that

(2.4) λ−s
∥∥∥

∑

j∈Z

Q̃jθλ ∗Qjf
∥∥∥

p
6 c‖θ‖Ȧµ

r,ω
‖f‖Ȧs

p,q
, (∀λ > 0)

holds, for all f ∈ Ȧs
p,q and all θ ∈ Ȧµ

r,ω

(ii) There exists a constant c > 0 (with c = 1 if p > 1) such that

(2.5) λ−s‖θλ ∗ f‖p 6 c‖[θ]P‖Ȧµ
r,ω

‖[f ]P‖Ȧs
p,q
, (∀λ > 0)

holds, for all f ∈ ˙̃As
p,q and all θ satisfying [θ]P ∈ Ȧµ

r,ω and either θ ∈ S or θ ∈ E ′.

In (2.4)–(2.5), the particular case λ := 2−k (k ∈ Z) yields an interesting situa-
tion when the ℓq(Z) quasi-norm is taken of these affirmations, according to [13, Re-
mark 1, p. 159] at least for the B-case, see also [3] in case p > 1; (ℓq(Z) is the set

of all sequences (ak)k∈Z ⊂ C such that ‖(ak)‖ℓq := (
∑

k∈Z
|ak|q)1/q < ∞). Namely

we have the following two results, where we start with the B-spaces.

Theorem 2.3. Let r := min(1, p), t := min(1, p, q) and µ := −s+ (n/p− n)+.
(i) Let f ∈ Ḃs

p,q and θ ∈ Ḃµ
r,t. Then

∑
j∈Z

Q̃jθ2−k ∗Qjf converges in S′
ν to an

element denoted by θ2−k ⊛ f for all k ∈ Z. Moreover, there exists a constant c > 0
(with c = 1 if p > 1) such that

( ∑

k∈Z

2ksq‖θ2−k ⊛ f‖q
p

)1/q
6 c‖θ‖Ḃµ

r,t
‖f‖Ḃs

p,q

holds, for all such f and θ.

(ii) Let f ∈ ˙̃Bs
p,q. Let θ be such that [θ]P ∈ Ḃµ

r,t and either θ ∈ S or θ ∈ E ′.
Then ( ∑

k∈Z

2ksq‖θ2−k ∗ f‖q
p

)1/q

6 c‖[θ]P‖Ḃµ
r,t

‖[f ]P‖Ḃs
p,q

holds. The positive constant c does not depend on f and θ; (if p > 1 then c = 1).
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For the case of the F -spaces, we use poised homogeneous spaces of Besov Ḃs,a
p,q ,

introduced in e.g., [12], see Section 3 below.

Theorem 2.4. Let a > n/min(p, q) and t := min(1, q).

(i) Let f ∈ Ḟ s
p,q and θ ∈ Ḃ−s,a

1,t . Then
∑

j∈Z
Q̃jθ2−k ∗ Qjf converges in S′

ν to
an element denoted by θ2−k ⊛ f for all k ∈ Z. Moreover, there exists a constant
c > 0 such that

∥∥∥
( ∑

k∈Z

2ksq|θ2−k ⊛ f |q
)1/q∥∥∥

p
6 c‖θ‖Ḃ−s,a

1,t
‖f‖Ḟ s

p,q

holds, for all such f and θ.

(ii) Let f ∈ ˙̃F s
p,q. Let θ be such that [θ]P ∈ Ḃ−s,a

1,t and either θ ∈ S or θ ∈ E ′.
Then ∥∥∥

( ∑

k∈Z

2ksq|θ2−k ∗ f |q
)1/q∥∥∥

p
6 c‖[θ]P‖Ḃ−s,a

1,t
‖[f ]P‖Ḟ s

p,q

holds. The positive constant c does not depend on f and θ.

3. Preliminaries

This section contains preparations, definitions and a characterization for real-
ized homogeneous spaces. We first recall that the operators Qj and Sj take values
in the space of analytical functions of exponential type, see Paley–Wiener theorem,
e.g., [15, Theorem 29.2, p. 311] or [16, Remark 2.3.1/2, p. 45]. They are defined
on S′

∞ and S′, respectively, since Qjf(x) = 0 if and only if, f ∈ P∞. For brevity,
we make use of the following convention:

If f ∈ S′
∞ we define Qjf := Qjf1 for all f1 such that [f1]P = f.

We will exploit the following assertions:

Lemma 3.1. Let k ∈ N0 ∪ {∞}. If f ∈ S′
k (Sk, respectively) and θ ∈ Sk (E ′,

respectively), then θ ∗ f ∈ S′ (Sk, respectively).

Proof. Assume that f ∈ S′
k and θ ∈ Sk. For all ϕ ∈ D we obtain 〈θ ∗ f, ϕ〉 =

〈f,
¯̌
θ ∗ϕ〉. Clearly,

¯̌
θ ∗ϕ ∈ Sk since F(

¯̌
θ ∗ϕ) = (2π)n(F−1θ)ϕ̂ and (F−1θ)(α)(0) = 0

for all |α| < k. The assertion follows since D is dense in S.

Now suppose that f ∈ Sk and θ ∈ E ′. It suffices to observe that F(θ ∗ f) = θ̂ f̂

and both f̂ (α)(0) = 0 if |α| < k and θ̂ is a function of class C∞ with |θ̂(β)(ξ)| 6
cβ,m(1+ |ξ|)m for all m ∈ N0 and all β ∈ Nn

0 , see e.g., [9, Theorem 1.7.5, p. 20]. �

Lemma 3.2. Let N ∈ N0. There exist constants c1, c2 > 0 and a number
m ∈ N0, such that for all ϕ ∈ D(Rn r {0}) and all ψ ∈ D, (we put ϕ̂j := ϕ(2−j(·))

and ψ̂j := ψ(2−j(·))), it holds:

(i) ‖ϕj ∗ f‖p 6 c12−jNζm(f) for all f ∈ S and all j ∈ N0.
(ii) ‖ϕj ∗ f‖p + ‖ψj ∗ f‖p 6 c22jNζm(f) for all f ∈ SN and all j ∈ Zr N.
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Proof. For (i), it suffices in ϕj ∗ f(x) =
∫
Rn f(x − y)ϕj(y)dy to apply the

N -th degree Taylor formula with integral remainder of y → f(x−y) at x. However
for (ii), we change the roles between f and ϕj as

∫
Rn f(y)ϕj(x − y)dy, then again

the N -th degree Taylor formula of y → ϕj(x− y) at x. Similarly for ψjf . See [11]
for more details. �

This lemma yields the convergence of the Littlewood–Paley decomposition in
the following sense: we have f =

∑
j∈Z

Qjf in either S∞ or S′
∞, and f = Skf +∑

j>k Qjf in either S or S′. On the other hand, we will make use of the following

classical inequalities (see e.g., [16, Remark 1, p. 18, Remark 2, p. 28]):

Proposition 3.1. (i) If 0 < p 6 q 6 ∞ and R > 0, then it holds ‖f‖q 6

cRn/p−n/q‖f‖p for all f ∈ Lp satisfying supp f̂ ⊆ {ξ ∈ Rn : |ξ| 6 R}.

(ii) If 0 < p 6 1 and R > 0, then ‖f ∗g‖p 6 cRn/p−n‖f‖p‖g‖p for all f, g ∈ S′

satisfying that supp f̂ and supp ĝ are subsets of {ξ ∈ Rn : |ξ| 6 R}. If
p = 1 then c = 1, that is Young’s inequality.

For more details about Ḃs
p,q and Ḟ s

p,q, we refer to e.g., [6, 10, 13], however we
recall definitions and some properties.

Definition 3.1. The homogeneous Besov space Ḃs
p,q and Triebel–Lizorkin

space Ḟ s
p,q are the sets of f ∈ S′

∞ such that ‖f‖Ḃs
p,q

:= (
∑

j∈Z
2jsq‖Qjf‖q

p)1/q < ∞

and ‖f‖Ḟ s
p,q

:= ‖(
∑

j∈Z
2jsq |Qjf |q)1/q‖p < ∞, respectively.

Ȧs
p,q are quasi-Banach spaces for the above quasi-seminorms, and do not depend

on functions ρ and γ. We have in particular:
• S∞ →֒ Ȧs

p,q →֒ S′
∞,

• the homogeneity property ‖f‖Ȧs
p,q

≡ λn/p−s‖f(λ(·))‖Ȧs
p,q

(∀λ > 0, ∀f ∈

Ȧs
p,q),

• an equivalent quasi-seminorm ‖f‖Ȧs
p,q

≡
∑

|α|=m ‖f (α)‖Ȧs−m
p,q

(∀m ∈ N, ∀f ∈

Ȧs
p,q) (see [5, Proposition 5] and [6, Proposition 8]),

• and some embeddings Ȧs
p,q1

→֒ Ȧs
p,q2

if q1 < q2, Ḃs
p,min(p,q) →֒ Ḟ s

p,q →֒

Ḃs
p,max(p,q). If s1 > s2, 0 < p1 < p2 < ∞, 0 < q, r 6 ∞ and s1 − n/p1 = s2 − n/p2,

then Ḃs1
p1,q →֒ Ḃs2

p2,q →֒ Ḃ
s2−n/p2

∞,q , Ḟ s1
p1,q →֒ Ḃs2

p2,p1
and Ḟ s1

p1,q →֒ Ḟ s2
p2,r, see [10,

Theorem 2.1].

Definition 3.2. Let a > 0. The poised homogeneous space of Besov Ḃs,a
p,q is

the set of f ∈ S′
∞ such that ‖f‖Ḃs,a

p,q
:= (

∑
j∈Z

2jsq‖(1 + 2j| · |)aQjf‖q
p)1/q < ∞.

The most properties of Ḃs
p,q are hold for the Ḃs,a

p,q -case, e.g., Ḃs,0
p,q = Ḃs

p,q,

Ḃs,a
p,q →֒ Ḃs,a

p,q1
if q 6 q1, Ḃs,a

p,q →֒ Ḃs1,a
p1,q if s− n/p = s1 − n/p1 and p < p1, . . .

In connection with the number ν (see Section 1) we have the following charac-
terization, see [4, Proposition 4.6]:
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Proposition 3.2. For all f ∈ Ȧs
p,q, the series

∑
j∈Z

Qjf converges in S′
ν to

an element denoted by σν(f) which satisfies f = [σν(f)]P in S′
∞ and ∂ασν(f) ∈ C̃0

for all |α| = ν.

By this proposition we have a continuous linear mapping f 7→ σν(f) from Ȧs
p,q

to S′
ν . In this context we recall the notion of realization.

Definition 3.3. Let k ∈ N0 ∪{∞}. Let E be a vector subspace of S′
∞ endowed

with a quasi-norm such that E →֒ S′
∞. A realization of E in S′

k is a continuous
linear mapping σ : E → S′

k such that [σ(f)]P = f (∀f ∈ E). The image set σ(E)
is called the realized space of E.

4. Proofs

We begin by the following assertion, an estimate of Nikol’skij-type representa-
tion method.

Proposition 4.1. Let r, µ and ω be real numbers given as in Theorem 2.1.
Let a1, a2, b1, b2 be positive numbers such that 0 < a1 < b1 and 0 < a2 < b2. Let
(uj)j∈Z and (vj)j∈Z be sequences in S′, such that

• ûj and v̂j have compact supports in the annulus a12j 6 |ξ| 6 b12j and
a22j 6 |ξ| 6 b22j, respectively,

• A := (
∑

j∈Z
2jsq‖uj‖q

p)1/q < ∞ and B := (
∑

j∈Z
2jµω‖vj‖ω

r )1/ω < ∞.

(i) Then
∑

j∈Z
uj ∗vj converges in S′

ν to an element denoted by u⊛v, satisfying

(4.1) ‖u⊛ v‖p 6 cAB,

where the positive constant c depends only on the parameters n, s, p, q, a1, a2, b1 and
b2, with c = 1 if p > 1.

(ii) If 0 < p < ∞, then we can replace A and B by A1 := ‖(
∑

j∈Z
2jsq |uj|q)1/q‖p

and B1 := ‖(
∑

j∈Z
2jµω |vj |ω)1/ω‖r, with A1 < ∞ and B1 < ∞, respectively, in the

preceding statement.

Proof. Step 1: proof of (i). Substep 1.1: convergence in S′
ν . We first note that

if b1 < a2 or b2 < a1 then uj ∗ vj = 0, so these cases are excluded. We introduce
a radial and positive function η ∈ D(Rn r {0}) supported in min(a1/2, a2/2) 6

|ξ| 6 max(2b1, 2b2), and η(ξ) = 1 for min(a1, a2) 6 |ξ| 6 max(b1, b2). We define

the operators ηj := η(2−jD) (∀j ∈ Z), i.e., η̂jf := η(2−j(·))f̂ , then we have
uj ∗ vj = ηj(uj ∗ vj). Taking η’s properties into account, we can write 〈uj ∗ vj , ϕ〉 =
〈uj ∗ vj , ηjϕ〉 for all ϕ ∈ Sν , and prove

(4.2)
∑

j∈Z

|〈uj ∗ vj , ηjϕ〉| < ∞.

The case 1 < p 6 ∞: We begin by |〈uj ∗ vj , ηjϕ〉| 6 ‖uj ∗ vj‖p‖ηjϕ‖p′ . By
Lemma 3.2, ‖ηjϕ‖p′ 6 cζm(ϕ) min(2−jN , 2jν). Then using Young’s inequality, we
get
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∑

j∈Z

|〈uj ∗ vj , ηjϕ〉| 6 c1ζm(ϕ)
∑

j∈Z

min(2−jN , 2jν)
(
2js‖uj‖p

)(
2−sj‖vj‖1

)
(4.3)

6 c2AB.

The case 0 < p 6 1: We estimate the first term in (4.2) as |〈uj ∗ vj , ηjϕ〉| 6
‖uj ∗vj‖1‖ηjϕ‖∞. Then, ‖ηjϕ‖∞ 6 cζm(ϕ) min(2−jN , 2jν) (see Lemma 3.2). Also,
by definition of ν we have ν +n/p−n > 0. Then choosing an integer N > n/p−n
and using both Bernstein and convolution inequalities, we obtain

∑

j∈Z

|〈uj ∗ vj , ηjϕ〉| 6 c1ζm(ϕ)
∑

j∈Z

2(n/p−n)j min(2−jN , 2jν)‖uj ∗ vj‖p(4.4)

6 c2

∑

j∈Z

2(n/p−n)j min(2−jN , 2jν)
(
2js‖uj‖p

)(
2j(n/p−n−s)‖vj‖p

)

6 c3AB
∑

j∈Z

2(n/p−n)j min(2−jN , 2jν) 6 c4AB.

Substep 1.2: proof of (4.1). First, assume that 1 6 p 6 ∞. By inequalities of
Young and Hölder with exponents q and q′ for q > 1, we have

(4.5)
∑

j∈Z

‖uj ∗ vj‖p 6
∑

j∈Z

(2js‖uj‖p)(2−js‖vj‖1) 6 AB.

For 0 < q 6 1, we use the following elementary inequality

(4.6)
( ∑

j

aj

)d

6
∑

j

ad
j , ∀aj > 0, 0 < d 6 1,

in the second term of (4.5) with d := q, then

(4.7)
∑

j∈Z

(2js‖uj‖p)(2−js‖vj‖1) 6
( ∑

j∈Z

(2js‖uj‖p)q
)1/q

sup
k∈Z

(2−ks‖vk‖1) 6 AB.

Clearly that (4.5) and (4.7) describe the behaviour of constant c in the right-hand
side of (4.1), that is c = 1.

Second, let 0 < p < 1. By using (4.6) with d := p and convolution inequality,
we get

(4.8) ‖u⊛v‖p 6

( ∑

j∈Z

‖uj ∗vj‖p
p

)1/p

6 c
( ∑

j∈Z

(2js‖uj‖p)p(2j(n/p−n−s)‖vj‖p)p
)1/p

.

• If p < q, we apply Hölder inequality with exponents q/p and ω/p, the last
term in (4.8) is bounded by cAB.

• If q 6 p < 1, we use (4.6) with d := q/p, and the last term in (4.8) is bounded
by

c1

( ∑

j∈Z

(2js‖uj‖p)q(2j(n/p−n−s)‖vj‖p)q
)1/q

6 c2AB.

Step 2: proof of (ii). Substep 2.1: convergence in S′
ν . We use the notations

of Substep 1.1. From (4.3), if 1 < p < ∞, as (2js‖uj‖p)(2−sj‖vj‖1) 6 A1B1
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(∀j ∈ Z), then (4.2) holds. Similar if 0 < p 6 1, i.e., as in (4.4) since it holds
(2js‖uj‖p)(2j(n/p−n−s)‖vj‖p) 6 A1B1 (∀j ∈ Z).

Substep 2.2: proof of (4.1) with A1 and B1. Assume that 1 6 p < ∞. By
Hölder inequality with exponents q and q′ for q > 1, and by Minkowski inequality
with respect to Lp, we have

(4.9)
∥∥∥

∑

j∈Z

|uj ∗ vj |
∥∥∥

p
6

∥∥∥
∫

Rn

∑

j∈Z

(
2js|uj(· − y)|

)(
2−js|vj(y)|

)
dy

∥∥∥
p

6

∫

Rn

∥∥∥
( ∑

j∈Z

2jsq|uj(· − y)|q
)1/q∥∥∥

p

( ∑

j∈Z

2−jsq′

|vj(y)|q
′

)1/q′

dy = A1B1.

For 0 < q 6 1, we use (4.6) with d := q in the first line of (4.9), then

(4.10)
∥∥∥

∑

j∈Z

|uj ∗ vj |
∥∥∥

p
6

∥∥∥
∫

Rn

( ∑

j∈Z

2jsq |uj(· − y)|q
)1/q

sup
k∈Z

2−ks|vk(y)|dy
∥∥∥

p

6

∫

Rn

∥∥∥
( ∑

j∈Z

2jsq|uj(· − y)|q
)1/q∥∥∥

p
sup
k∈Z

2−ks|vk(y)|dy = A1B1.

As above in (4.5) and (4.7), inequalities (4.9)–(4.10) show that the constant c in
the right-hand side of (4.1) is equal to 1.

Now, the case 0 < p < 1. We first suppose p < q (here q ∈]0,∞]). From (4.8)
and by Hölder inequality with exponents q/p and ω/p, we get

(4.11)
( ∑

j∈Z

‖uj ∗ vj‖p
p

)1/p

6 c
( ∑

j∈Z

(2js‖uj‖p)q
)1/q( ∑

j∈Z

(2j(n/p−n−s)‖vj‖p)ω
)1/ω

.

Since p 6 ω, by Minkowski inequality, the right-hand side of (4.11) is bounded by

c1

∥∥∥
( ∑

j∈Z

(2js|uj |)q
)1/q∥∥∥

p

∥∥∥
( ∑

j∈Z

(2j(n/p−n−s)|vj |)ω
)1/ω∥∥∥

p
6 c2A1B1.

Second, suppose that q 6 p < 1. Again, from (4.8) and since ℓq(Z) →֒ ℓp(Z),
we have

( ∑

j∈Z

‖uj ∗ vj‖p
p

)1/p

6 c1

( ∑

j∈Z

(2js‖uj‖p)p
)1/p

sup
k∈Z

2k(n/p−n−s)‖vk‖p

6 c1B1

∥∥∥
( ∑

j∈Z

(2js|uj |)p
)1/p∥∥∥

p
6 c2B1

∥∥∥
( ∑

j∈Z

(2js|uj|)q
)1/q∥∥∥

p
= c2A1B1.

Hence the proof is complete. �

Proof of Theorem 2.1. It suffices to apply Proposition 4.1 with both uj :=

Qjf and vj := Q̃jθ. �

Proof of Theorem 2.2. Let f ∈ ˙̃As
p,q and θ ∈ E ′ (S, respectively) be such

that [θ]P ∈ Ȧµ
r,ω .
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Step 1: preparation. We first note that θ ∈ E ′ (S, respectively) and f ∈ S′

imply θ∗f ∈ S′ (see [9, p. 21] and [15, Theorem 30.2, p. 317]). Also, for all ϕ ∈ Sν ,
we have θ∗ ˇ̄ϕ ∈ Sν ; indeed, in case θ ∈ E ′ this follows by Lemma 3.1, in case θ ∈ S it
suffices to apply the Fourier’s properties. Then, by Proposition 3.2, for all ϕ ∈ Sν ,
it holds

〈θ ∗ f, ϕ〉 = 〈f, θ ∗ ˇ̄ϕ〉 =
∑

j∈Z

〈Qjf, θ ∗ ˇ̄ϕ〉(4.12)

=
∑

j∈Z

〈Qjf, Q̃jθ ∗ ˇ̄ϕ〉 =
∑

j∈Z

〈Qjf ∗ Q̃jθ, ϕ〉.

Hence θ ∗ f = θ⊛ f in S′
ν , and Proposition 4.1 with uj := Qjf and vj := Q̃jθ gives

‖θ ⊛ f‖p 6 c‖[θ]P‖Ȧµ
r,ω

‖[f ]P‖Ȧs
p,q
.

Step 2. We set gk := θ ∗ f − θ ∗ (S−kf) for k ∈ N0. Then the sequence (gk)k∈N0

has the following properties:
• Since gk =

∑
j>−k Qjf ∗ Q̃jθ in S′

ν (the proof is easy as in (4.12)), by Step 1,

(4.13) ‖gk‖p 6 c‖[θ]P‖Ȧµ
r,ω

‖[f ]P‖Ȧs
p,q

(∀k ∈ N0).

• gk tends to θ ∗ f pointwise; indeed, assume that p > 1, then by Young and Bern-
stein inequalities, we have ‖Qjf∗Q̃jθ‖∞ 6 ‖Qjf‖p‖Q̃jθ‖p′ 6 c2jn/p‖Qjf‖p‖Q̃jθ‖1,
then

|gk(x) − θ ∗ f(x)| 6 c1

∑

j6−k

(2sj‖Qjf‖p)(2−sj‖Q̃jθ‖1)2jn/p(4.14)

6 c22−kn/p‖[θ]P‖Ḃ−s
1,∞

‖[f ]P‖Ḃs
p,∞

, ∀x ∈ R
n,

then we use the embeddings Ȧs
p,q →֒ Ḃs

p,∞ and Ȧ−s
1,q′ →֒ Ḃ−s

1,∞, on the one hand.
On the other, suppose 0 < p < 1, and again by Young and Bernstein inequalities,
we have ‖Qjf ∗ Q̃jθ‖∞ 6 ‖Qjf‖∞‖Q̃jθ‖1 6 c2n(2/p−1)j‖Qjf‖p‖Q̃jθ‖p, then

|gk(x) − θ ∗ f(x)| 6 c1

∑

j6−k

(2sj‖Qjf‖p)(2(n/p−n−s)j‖Q̃jθ‖p)2jn/p(4.15)

6 c22−kn/p‖[θ]P‖
Ḃ

n/p−n−s
p,∞

‖[f ]P‖Ḃs
p,∞

, ∀x ∈ R
n,

and use both Ȧs
p,q →֒ Ḃs

p,∞ and Ȧ
n/p−n−s
p,ω →֒ Ḃ

n/p−n−s
p,∞ . Now, it suffices to take

k → +∞ in, both, (4.14) and (4.15), to obtain the desired result.
Finally, by writing (4.13) as

∫
Rn |gk(x)|pdx 6 c‖[θ]P‖p

Ȧµ
r,ω

‖[f ]P‖p

Ȧs
p,q

if p < ∞,

and applying Fatou’s lemma to the sequence (|gk|p)k∈N0
(recall that |gk|p tends to

|θ ∗ f |p also pointwise), inequality (2.3) follows. However, if p = ∞, we take an
arbitrary ε > 0, then there exists a number k0 ∈ N0 such that

|θ ∗ f(x)| 6 |gk(x) − θ ∗ f(x)| + ‖gk‖∞ 6 ε+ ‖gk‖∞ (∀k > k0, ∀x ∈ R
n);

but ‖gk‖∞ 6 c‖[θ]P‖Ḃ−s

1,q′

‖[f ]P‖Ḃs
∞,q

for all k ∈ N0 (see again (4.13)). By arbitrari-

ness of ε, we deduce estimate (2.3). The proof is complete. �
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Proof of Proposition 2.1. It suffices to apply the homogeneity argument
(see Section 3) and Theorems 2.1–2.2. �

Proof of Theorem 2.3. The convergence of
∑

j∈Z
Q̃jθ2−k ∗ Qjf in S′

ν can

be done as in the proof of Proposition 4.1/Substep 1.1. The details will be omitted.
As above, its limit will be denoted by θ2−k ⊛ f .

Step 1: proof of (i). Substep 1.1: the case p > 1. Applying Young’s inequality,
we obtain ‖θ2−k ⊛ f‖p is bounded by

∑
j∈Z

‖Qjf‖p‖Q̃jθ2−k ‖1. By the identity

(4.16) Q̃jθ2−k = 2knQ̃j−kθ(2
k(·)),

we have 2ks‖θ2−k ⊛ f‖p is bounded by
∑

j∈Z
2js2−(j−k)s‖Qjf‖p‖Q̃j−kθ‖1; we set

l := j − k, then

(4.17)
( ∑

k∈Z

2ksq‖θ2−k ⊛ f‖q
p

)1/q

6

( ∑

k∈Z

( ∑

l∈Z

2(l+k)s2−ls‖Ql+kf‖p‖Q̃lθ‖1

)q)1/q

.

– If q > 1, then by Minkowski inequality, we estimate (4.17) by

∑

l∈Z

( ∑

k∈Z

2(l+k)sq‖Ql+kf‖q
p

)1/q

‖Q̃lθ‖12−ls 6 ‖f‖Ḃs
p,q

‖θ‖Ḃ−s
1,1

.

– If 0 < q 6 1, then by using (4.6) we again estimate (4.17) by
( ∑

l∈Z

2−lsq‖Q̃lθ‖
q
1

∑

k∈Z

2(l+k)sq‖Ql+kf‖q
p

)1/q

6 ‖f‖Ḃs
p,q

‖θ‖Ḃ−s
1,q
.

Observe that c = 1 in the right-hand side of above inequalities.
Substep 1.2: the case 0 < p < 1. By using (4.6), the convolution in Lp and

(4.16), we have 2ks‖θ2−k ⊛f‖p 6 c(
∑

j∈Z
2jsp2(j−k)(n/p−n−s)p‖Qjf‖p

p‖Q̃j−kθ‖
p
p)1/p

is bounded by

(4.18) c
( ∑

l∈Z

2(l+k)sp2l(n/p−n−s)p‖Ql+kf‖p
p‖Q̃lθ‖

p
p

)1/p

.

Now, we estimate (
∑

k∈Z
2ksq‖θ2−k ⊛ f‖q

p)1/q as the following (we separate the
estimate with respect to q into two cases):
– If p 6 q (here q ∈]0,∞]), by both (4.18) and Minkowski inequality, we have the
bound

c1

( ∑

l∈Z

2l(n/p−n−s)p‖Q̃lθ‖
p
p

{ ∑

k∈Z

2(l+k)sq‖Ql+kf‖q
p

}p/q)1/p

6 c2‖f‖Ḃs
p,q

‖θ‖
Ḃ

n/p−n−s
p,p

.

– If q < p, by using again both (4.18) and (4.6) with d := q/p, we have the bound

c1

( ∑

l∈Z

2l(n/p−n−s)q‖Q̃lθ‖
q
p

∑

k∈Z

2(l+k)sq‖Ql+kf‖q
p

)1/q

6 c2‖f‖Ḃs
p,q

‖θ‖
Ḃ

n/p−n−s
p,q

.

Therefore, the desired estimates hold.
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Step 2: proof of (ii). This can be done as in Step 2 of the proof of Theorem 2.2.
We briefly outline it. We fix k ∈ Z and introduce the sequence (gl,k)l∈N0

defined
by gl,k := θ2−k ∗ f − θ2−k ∗ (S−lf) for l ∈ N0, which satisfies (as above) both

( ∑

k∈Z

2ksq‖gl,k‖q
p

)1/q

6 c‖[θ]P‖Ḃµ
r,t

‖[f ]P‖Ḃs
p,q

(∀l ∈ N0),

and gl,k tends to θ2−k ∗ f pointwise as l → +∞ for all k ∈ Z. Hence it suffices to
apply twice the Fatou lemma in the last inequality. �

Proof of Theorem 2.4. Using the Peetre-maximal function

Q∗,a
j f(x) := sup

y∈Rn

(1 + |2jy|)−a|Qjf(x− y)| (x ∈ R
n, j ∈ Z, a > 0),

we have at our disposal the following characterization of F -spaces (see e.g., [8,
p. 45]):

Proposition 4.2. Let a > n/min(p, q). Then the expression ‖f‖∗
Ḟ s

p,q

:=

‖(
∑

j∈Z
2jsq|Q∗,a

j f |q)1/q‖p is an equivalent quasi-seminorm in Ḟ s
p,q.

For the convergence of
∑

j∈Z
Q̃jθ2−k ∗Qjf in S′

ν to θ2−k ⊛f , the same technique
used in the proof of Proposition 4.1 will be applied here, but some changes are
needed; so we use the same notations. For all ϕ ∈ Sν , we have |〈Q̃jθ2−k ∗Qjf, ηjϕ〉|

is bounded by cζm(ϕ) min(2−jN , 2jν)‖Q̃jθ2−k ∗Qjf‖p (∀j ∈ Z), where ηj is defined

such that ηj(Q̃jθ2−k ∗ Qjf) = Q̃jθ2−k ∗ Qjf (∀j ∈ Z). Now, by (4.16) and for a

real a > n/min(p, q), it suffices to observe that ‖Q̃jθ2−k ∗Qjf‖p is bounded by

∥∥∥
∫

Rn

Q̃j−kθ(y)Qjf(· − 2−ky)dy
∥∥∥

p
6 ‖Q∗,a

j f‖p

∫

Rn

|Q̃j−kθ(y)|(1 + 2j−k|y|)ady

6 c2−ks‖f‖Ḟ s
p,∞

‖θ‖Ḃ−s,a
1,∞

.

Hence the convergence of the series
∑

j∈Z
|〈Q̃jθ2−k ∗Qjf, ϕ〉| for all k ∈ Z.

Step 1: proof of (i). We estimate (
∑

k∈Z
2ksq|

∑
j∈Z

Q̃jθ2−k ∗ Qjf |q)1/q as the

following: if q > 1, using the identity (4.16) and Minkowski inequality (twice), then
it is bounded by

∫

Rn

( ∑

k∈Z

( ∑

j∈Z

2ks|Qjf(· − 2−ky)Q̃j−kθ(y)|
)q)1/q

dy

6

∫

Rn

∑

l∈Z

2−ls|Q̃lθ(y)|
( ∑

k∈Z

2(k+l)sq |Qk+lf(· − 2−ky)|q
)1/q

dy (m := k + l)

6

( ∑

m∈Z

2msq|Q∗,a
m f |q

)1/q ∑

l∈Z

2−ls‖(1 + 2l| · |)aQ̃lθ‖1;

if 0 < q 6 1, by (4.16) and (4.6) with d := q, then as above the desired term is
bounded by
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( ∑

k∈Z

∑

j∈Z

{ ∫

Rn

2ks|Qjf(· − 2−ky)Q̃j−kθ(y)|dy
}q)1/q

6

( ∑

j∈Z

2jsq|Q∗,a
j f |q

∑

l∈Z

{2−ls‖(1 + 2l| · |)aQ̃lθ‖1}q
)1/q

.

Then we calculate the Lp quasi-norm of (
∑

k∈Z
2ksq|

∑
j∈Z

Q̃jθ2−k ∗Qjf |q)1/q and
the desired estimate is obtained.

Step 2: proof of (ii). Similar to Step 2/proof of Theorem 2.3. �

5. Concluding Remarks

5.1. Applications. 1. For any function f , we define the differences ∆m
h f :=∑m

j=0

(
m
j

)
(−1)m−jf(· + jh) =

∑m
j=0

(
m
j

)
(−1)m−jδ−jh ∗ f (where δ−jh is the Dirac

distribution at the point x := −jh). As Qkδ−jh = 2knF−1γ(2k(· + jh)), then

[δ−jh]P ∈ Ḃ
n/u−n
u,∞ (0 < u 6 ∞). We now see when [δ−jh]P ∈ Ḃµ

r,ω:
• For p > 1; here r := 1 and µ := −s. We have −s = n − n, ω = ∞ (i.e.,

0 < q 6 1).
• For 0 < p < 1; here r := p and µ := −s− n + n/p = n/p − n, ω = ∞ (i.e.,

q 6 p < 1).
Consequently, ∀q ∈]0, 1], ∀p > q and ∀m ∈ N, by Theorem 2.2 it holds

‖∆m
h f‖p 6 c‖[f ]P‖Ḃ0

p,q
(∀f ∈ ˙̃B0

p,q, ∀h ∈ R
n).

This estimate fails with only the assumption [f ]P ∈ Ḃ0
p,q. Indeed, let f(x) := xm

1 ,
then ‖[f ]P‖Ḃ0

p,q
= 0, while ∆m

h f(x) = m!hm
1 (∀x, h ∈ Rn), implies ‖∆m

h f‖p = ∞.

2. Let ̺ be a C∞ function on R such that ̺(t) = 1 for t 6 e−3 and ̺(t) = 0 for
t > e−2. For α > −n and β > 0, we set θα,β(x) := |x|α(− log |x|)−β̺(|x|), x ∈ Rn.
This type of functions have been studied in e.g., [7, p. 82]. We have θα,β ∈ E ′;
indeed, let ϕ ∈ C∞, then using polar coordinates and as sup|x|6e−2 |ϕ(x)| 6 c < ∞,
we find

∫

Sn−1

∫ e−2

0
rn+α−1(− log r)−β |̺(r)||ϕ(ry)|drdy 6 c2−βe−2(n+α)‖̺‖∞.

To continue, we need to introduce inhomogeneous Besov Bs
p,q and Triebel–Lizorkin

F s
p,q spaces (p < ∞ in F s

p,q-case). We denote by As
p,q for either Bs

p,q or F s
p,q, and

use the abbreviations B, F to indicate them.

Definition 5.1. The spaces Bs
p,q and F s

p,q are the sets of f ∈ S′ such that

‖f‖Bs
p,q

:= ‖S0f‖p +
( ∑

j>1

2jsq‖Qjf‖q
p

)1/q

< ∞,

‖f‖F s
p,q

:= ‖S0f‖p +
∥∥∥
( ∑

j>1

2jsq|Qjf |q
)1/q∥∥∥

p
< ∞,

respectively.
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Proposition 5.1. (See e.g., [17, p. 98]) Let s be such that s > (n/p − n)+.
Then ‖f‖p + ‖[f ]P‖Ȧs

p,q
is an equivalent quasi-norm in As

p,q.

Assume that β > 0. By [14, Lemmas 1-2, pp. 44-47] we have, e.g., θα,β ∈

A
α+n/r
r,ω for α 6= 0, α+ n/r > (n/r − n)+ and βω > 1 (βr > 1 in F -case); also for

α = 0 and (β + 1)ω > 1 ((β + 1)r > 1 in F -case). But in that case, by Proposition

5.1, A
α+n/r
r,ω →֒ Ȧ

α+n/r
r,ω ; (at now r ∈]0,∞], r 6= ∞ in F -case, and ω ∈]0,∞]).

Now, for all s < 0, α := −s − n, r := min(1, p) and ω as in (2.1), it holds

‖θ−n−s,β ∗ f‖p 6 c‖[f ]P‖Ȧs
p,q

(∀f ∈ ˙̃As
p,q), where βω > 1 (βr > 1 in F -case) for

α 6= 0, and (β + 1)ω > 1 ((β + 1)r > 1 in F -case) for 0 < p < ∞ and α = 0.

Remark 5.1. We note that other cases on the parameters (e.g., the case θα,β ∈
Aµ

r,ω with µ > α+ n/r) can be obtained from the properties of θα,β , see [14], etc.

3. Let X be the characteristic function of the unit cube [−1, 1]n in R
n. Clearly

that X̂ (ξ) = i−n
∏n

j=1(eiξj − e−iξj )/ξj . Using the development of
∏n

j=1(eiξj −

e−iξj ) (see [1, I §8.1/(13), p. 98]), and we define a function ψ ∈ S∞ by ψ̂(ξ) :=
γ(ξ)/(ξ1 . . . ξn), we find

QkX (x) = 2−kn(2iπ)−n

∫

Rn

eix·ξ
{
ei(ξ1+···+ξn) −

n∑

j=1

ei(ξ1+···−ξj+···+ξn)

+ (−1)2
n−1∑

j=1

n∑

j1=2
j1>j

ei(ξ1+···−ξj−ξj1
+···+ξn) + (−1)3

n−2∑

j=1

n−1∑

j1=2
j1>j

n∑

j2=3
j2>j1

ei(ξ1+···−ξj−ξj1
−ξj2

+···+ξn) + · · · + (−1)−ne−i(ξ1+···+ξn)
}
ψ̂(2−kξ) dξ,

which implies

inQkX (x) = ψ(2k(x1 + 1, . . . , xn + 1)) −

n∑

j=1

ψ(2k(x1 + 1, . . . , xj − 1, . . . , xn + 1))

+ (−1)2
n−1∑

j=1

n∑

j1=2
j1>j

ψ(2k(x1 + 1, . . . , xj − 1, xj1
− 1, . . . , xn + 1))

+ (−1)3
n−2∑

j=1

n−1∑

j1=2
j1>j

n∑

j2=3
j2>j1

ψ(2k(x1 + 1, . . . , xj − 1, xj1
− 1, xj2

− 1, . . . , xn + 1))

+ · · · + (−1)−nψ(2k(x1 − 1, . . . , xn − 1)) (there are 2n terms).

Consequently, we have ‖QkX ‖u 6 2n/α2−kn/u‖ψ‖u for all u ∈]0,∞], α := min(1, u),
and all k ∈ Z. On the other hand, as X ∈ L1 ∩ Lu, then S0X = X −

∑
k>1 QkX

implies

‖S0X ‖u = ‖X ‖u +
( ∑

k>1

‖QkX ‖α
u

)1/α

6 ‖X ‖u + c1

( ∑

k>1

2−knα/u
)1/α

6 c2.
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All these facts give X ∈ Bt
u,v with, either t < n/u, or t = n/u and v = ∞.

We now turn to the application of the above results, looking for [X ]P ∈ Ḃµ
r,ω:

• For p > 1; here µ := −s and r := 1. By Proposition 5.1, we have [X ]P
belongs to Ḃ−s

1,q′ for −n < s < 0 and 0 < q 6 ∞, belongs to Ḃn
1,∞ with 0 < q 6 1.

• For 0 < p 6 1; here µ := −s− n+ n/p and r := p. We have [X ]P belongs to

Ḃ
−s−n+n/p
p,ω for −n < s < 0 and 0 < q 6 p or p 6 min(1, q), belongs to Ḃ

n/p
p,∞ with

0 < q 6 p 6 1.
We conclude that for, either −n < s < 0 and 0 < q 6 ∞, or s = −n and

0 < q 6 1, it holds ‖X ∗ f‖p 6 c‖[f ]P‖Ḃs
p,q

(∀f ∈ ˙̃Bs
p,q), where the constant c

depends only on n, s, p, q.

5.2. An extension to homogeneous Sobolev spaces. The homogeneous
Sobolev spaces Ẇm

p (1 6 p 6 ∞, m ∈ N0) is the set of distributions f such

that f (α) ∈ Lp for all |α| = m and endowed with the seminorm ‖f‖Ẇ m
p

:=
∑

|α|=m ‖f (α)‖p. The quotient Ẇm
p /Pm is a Banach space in S′

m for this norm.

Theorem 5.1. Let 1 6 p < ∞ and m ∈ N0. There exists a constant c > 0 such
that ‖θ∗f‖Ẇ m

p
6 c‖[θ]P‖Ḃ0

1,1
‖f‖Ẇ m

p
for all f ∈ Ẇm

p and all θ satisfying [θ]P ∈ Ḃ0
1,1

and either θ ∈ S or θ ∈ E ′.

Proof. We note that θ ∗ f is well defined, see Lemma 3.1 or [9, p. 21] or [15,
p. 317].

First, we have Ẇm
p →֒ Ḃm

p,∞. Indeed, since ‖Qjg‖p 6 c‖g‖p (∀j ∈ Z and

∀g ∈ Lp), then Lp →֒ Ḃ0
p,∞; now ‖f‖Ḃm

p,∞

=
∑

|α|=m ‖f (α)‖Ḃ0
p,∞

yields the desired

embedding. Let now f ∈ Ẇm
p . We have f (α) ∈ C̃0 (∀|α| = m), see example (i) just

after Definition 2.1. Consequently f (α) ∈ ˙̃B0
p,∞ (∀|α| = m), and by Theorem 2.2 it

holds ‖θ ∗ f (α)‖p 6 c‖[θ]P‖Ḃ0
1,1

‖f‖Ḃm
p,∞

. Since θ ∗ f (α) = (θ ∗ f)(α), then the desired

estimate follows. �

Remark 5.2. Similar to Theorem 5.1’s proof, ‖θ∗f‖Ẇ m+k
∞

6 c‖[θ]P‖Ḃk
1,1

‖f‖Ẇ m
∞

(k = 1, 2, . . .) for all f ∈ Ẇm
∞ and all θ satisfying [θ]P ∈ Ḃk

1,1 and either θ ∈ S or
θ ∈ E ′. On the other hand, Subsection 5.1 can be adapted according to Theorems
2.3, 2.4 and 5.1.
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