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ON CHEBYSHEV CENTERS IN METRIC SPACES

T. D. Narang

Abstract. A Chebyshev center of a set A in a metric space (X, d) is a
point of X best approximating the set A i.e., it is a point x0 ∈ X such
that supy∈A d(x0, y) = infx∈X supy∈A d(x, y). We discuss the existence and
uniqueness of such points in metric spaces thereby generalizing and extending
several known result on the subject.

1. Introduction

Let (X, d) be a metric space and A a subset of X . We consider the problem of
choosing an element of X which best represents the set A. If x is any particular
element of X chosen to represent the set A, the error incurred will be sup{d(x, y) :
y ∈ A}. In order that this quantity is finite, it is necessary and sufficient that the
set A is bounded. So, we make this assumption. Then x0 ∈ X will best represent
the set A when this error is minimum i.e., supy∈A d(x0, y) = infx∈X supy∈A d(x, y).
Such an element x0 ∈ X is called a Chebyshev center of the set A. The notion
of Chebyshev centers is an important concept in the theory of optimization. A
systematic study of Chebyshev centers was initiated by Garakavi [4]. Subsequently,
this study has been taken up by many researchers. Several results are known on the
existence and uniqueness of Chebyshev centers (see [2–6], [8–11], and references
cited therein).

In this paper, we also discuss some results on the existence and uniqueness of
Chebyshev centers when the underlying spaces are metric spaces thereby extending
and generalizing several known results on the subject. We start with few definitions
and basic facts.

Let A be a bounded subset of a metric space (X, d). A Chebyshev center (or
center) of A is the center of the minimal closed ball containing A i.e., it is an
element xA ∈ X for which supy∈A d(xA, y) = infx∈X supy∈A d(x, y). The number
r(A) ≡ infx∈X supy∈A d(x, y), is called the Chebyshev radius of A. This r(A) is
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the radius of the smallest ball in X (if one exists) which contains the set A. The
Chebyshev radius r(A) of A always satisfies r(A) > 1

2 diam A. The centers of all
such balls are just the centers of A. We denote the collection of such centers by
Z(A) i.e., Z(A) = {xA ∈ X : supy∈A d(xA, y) = r(A)} is the set of centers of
balls of minimal radius covering A. It is easy to see that Z(A) is a bounded closed
subset of X , r(A) > 0 if and only if A contains at least two points, r(A) = r(A)
and Z(A) = Z(A).

Example 1.1. The Chebyshev radius of the line segment [a, b] in the real line
(with usual metric) is 1

2 (b − a) and its Chebyshev center is 1
2 (a + b).

Example 1.2. [3] In the Euclidian space, the Chebyshev radius of a circle or
sphere is its ordinary radius and its Chebyshev center is the ordinary center. The
center of an acute triangle is the center of its circumscribing circle.

Example 1.3. [3] In the space (R2, ‖.‖∞), the Centers of the set {(x, 0) : |x| 6
1} is the set {(0, y) : |y| 6 1}.

A sequence {yn} in a subset A of X is called a maximizing sequence for x ∈ X

if lim d(x, yn) = sup{d(x, y) : y ∈ A}. The set A is said to be nearly compact [6] if
every maximizing sequence in A for any x ∈ X has a convergent subsequence in A.

Clearly, every compact set in a metric space is nearly compact but converse is
not true [6].

The set A is said to be remotal if for each x ∈ X there exists an element y0 ∈ A

farthest from x i.e., d(x, y0) = sup{d(x, y) : y ∈ A}.
A nearly compact set (compact set) in a metric space is remotal.
Let (X, d) be a metric space and I = [0, 1] be the closed unit interval. A

continuous mapping W : X × X × I → X is said to be a convex structure on
X [14] if for all x, y ∈ X, λ ∈ I, d(W (x, y, λ), u) 6 λd(x, u) + (1 − λ)d(y, u) for all
u ∈ X . The metric space together with a convex structure is called a convex metric
space [14] and is denoted by (X, d, W ).

A convex metric space (X, d, W ) is said to be strictly convex [7] (see also [1])
if for every x, y ∈ X and r > 0, d(x, p) 6 r, d(y, p) 6 r imply d(W (x, y, λ), p) < r

unless x = y, where p is arbitrary but fixed point of X .
A convex metric space (X, d, W ) is said to be uniformly convex [13] (see also

[1, 12]) if for any ε > 0 there exists δ > 0 such that for all r > 0 and x, y, p ∈ X

with d(x, p) 6 r, d(y, p) 6 r and d(W (x, y, 1
2 ), p) > r − δ, we have d(x, y) < ε.

A subset A of a convex metric space (X, d, W ) is said to be convex [14] if for
every x, y ∈ K and 0 6 λ 6 1, W (x, y, λ) ∈ K.

2. Main Results

Regarding the existence and uniqueness of Chebyshev centers, the following
result of Smith [5] is well known.

If X is a strictly convex Banach space, then every compact set in X has at
most one center in X . If X is an E-space, then each compact convex set in X has
a unique center.
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It is not known whether the E-propery also suffices for the uniqueness of Cheby-
shev centers for arbitrary bounded subsets. However, it is known (see [5]) that every
bounded subset of a uniformly convex Banach space has a unique center.

The following generalization of the result of Smith was proved by the author
in [9]:

If X is a reflexive strictly convex dual Banach space, then every convex remotal
set A in X has a unique center.

In this paper, we further generalize and extend the result of Smith to strictly
convex metric spaces and also show that for bounded subsets of uniformly convex
metric spaces, Chebyshev center is also unique. For this, we start with proving few
lemmas.

Lemma 2.1. If A is a bounded subset of a convex metric space (X, d, W ), then
Z(A) is a convex subset of X.

Proof. Suppose x, y ∈ Z(A) and 0 6 λ 6 1. Then supz∈A d(x, z) = r(A) =
supz∈A d(y, z). Consider

sup
z∈A

d(W (x, y, λ), z) 6 sup
z∈A

[λd(x, z) + (1 − λ)d(y, z)]

6 λ sup
z∈A

d(x, z) + (1 − λ) sup
z∈A

d(y, z) as 0 6 λ 6 1

6 λr(A) + (1 − λ)r(A) = r(A) = inf
u∈X

sup
z∈A

d(u, z)

6 sup
z∈A

d(W (x, y, λ), z).

This gives supz∈A d(W (x, y, λ), z) = r(A) and so W (x, y, λ) ∈ Z(A). Hence Z(A)
is convex. �

Lemma 2.2. Let A be a bounded subset of a metric space (X, d). Then the
mapping fA : X → R defined by fA(x) = supz∈A d(x, z) is (Lipschitz) continuous
on X.

Proof. Let x, y ∈ X . For any z ∈ A, the inequality d(x, z) 6 d(x, y) + d(y, z)
gives

sup
z∈A

d(x, z) 6 d(x, y) + sup
z∈A

d(y, z)

i.e., fA(x) 6 d(x, y) + fA(y). This implies |fA(x) − fA(y)| 6 d(x, y) for all x, y ∈ X

and the result follows. �

Lemma 2.3. Let A be a bounded subset of a metric space (X, d) such that
the continuous map fA : X → R attains its infimum at some point of X; then
Z(A) 6= φ.

Proof. Let x∗ ∈ X be such that fA(x∗) = infx∈X fA(x) i.e., supy∈A d(y, x∗)
= infx∈X supy∈A d(y, x). Therefore, x∗ ∈ Z(A). �

The following theorem deals with the uniqueness of Chebyshev centers in
strictly convex metric spaces.
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Theorem 2.1. Let A be a remotal subset of a strictly convex metric space
(X, d, W ). Then Z(A) is at most a singleton.

Proof. Suppose x, y ∈ Z(A), x 6= y. Then W (x, y, 1
2 ) ∈ Z(A) by Lemma 2.1

i.e., supz∈A d(W (x, y, 1
2 ), z) = r(A). Since A is a remotal subset of X , there exists

some u ∈ A such that

(2.1) d(W (x, y, 1
2 ), u) = r(A).

Now x ∈ Z(A) ⇒ supz∈A d(x, z) = r(A) ≡ infv∈X supz∈A d(v, z). This gives
d(x, u) 6 r(A). Similarly, y ∈ Z(A) will give d(y, u) 6 r(A). Since X is strictly
convex, d(W (x, y, 1

2 ), u) < r(A) unless x = y. This contradicts (2.1) and hence
Z(A) is a singleton. �

If there exists x∗ ∈ X such that fA(x∗) = infx∈X fA(x), then x∗ ∈ X is a
Chebyshev center of A. So, the problem of existence of Chebyshev centers reduces
to the problem of minimizing fA on X .

Therefore using Lemma 2.3 and Theorem 2.1, we obtain

Theorem 2.2. Let A be a remotal subset of a strictly convex metric space
(X, d, W ) such that fA : X → R attains its infimum on X; then Z(A) is exactly a
singleton.

Since a compact (nearly compact) subset of a metric space is remotal, we obtain

Corollary 2.1. Let A be a a compact (nearly compact) subset of a strictly
convex metric space (X, d, W ) such that fA : X → R attains its infimum on X;
then Z(A) is exactly a singleton.

Since a continuous mapping defined on a compact space always attains its
infimum, using Lemma 2.2, we obtain

Corollary 2.2. Let A be a remotal subset of a strictly convex compact metric
space (X, d, W ); then Z(A) is exactly a singleton.

The following theorem deals with uniqueness of Chebyshev centers for bounded
subsets of metric spaces. For Banach spaces this result is given in [5].

Theorem 2.3. Let A be a bounded subset of a uniformly convex metric space
(X, d, W ); then Z(A) is at most a singleton.

Proof. Suppose x, y ∈ Z(A), x 6= y i.e., supz∈A d(x, z) = supz∈A d(y, z) =
r(A). Then by Lemma 2.1, W (x, y, 1

2 ) ∈ Z(A) i.e.,

sup
z∈A

d(W (x, y, 1
2 , z) = r(A) ≡ inf

u∈X
sup
z∈A

d(u, z).

So, there exists a sequence {zn} in A such that

(2.2) d(W (x, y, 1
2 , zn)) → r(A).

Also, d(x, zn) 6 r(A), d(y, zn) 6 r(A) for all n. Now (2.2) implies that for every
δ > 0 there exists a positive integer m such that d(W (x, y, 1

2 , zn)) > r(A) − δ for
all n > m.
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Let d(x, y) = ε > 0. Since (X, d, W ) is uniformly convex, there exists a δ > 0
such that d(x, zm) 6 r(A), d(y, zm) 6 r(A) and d(W (x, y, 1

2 ), zm) > r(A) − δ imply
d(x, y) < ε, a contradiction and hence x = y. �

Using Lemma 2.3, we obtain:

Theorem 2.4. Let A be a bounded subset of a uniformly convex metric space
(X, d, W ) such that the map fA : X → R attains its infimum on X; then Z(A) is
exactly a singleton.

Remark. Let A be a bounded subset of a metric space (X, d) and ε > 0. An
ε-Chebyshev center (or ε-center) of A is an element xA ∈ X such that

sup
y∈A

d(xA, y) 6 inf
x∈X

sup
y∈A

d(x, y) + ε

It will be interesting to study ε-Chebyshev centers in different abstract spaces.
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