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SUBCLASSES OF HARMONIC UNIVALENT

FUNCTIONS ASSOCIATED WITH

GENERALIZED RUSCHEWEYH OPERATOR

Jacek Dziok, Sibel Yalçın, and Şahsene Altınkaya

Abstract. We introduce a new subclass of functions defined by multiplier
differential operator and give coefficient bounds for these subclasses. Also, we
obtain necessary and sufficient convolution conditions, distortion bounds and
extreme points for these subclasses of functions.

1. Introduction

A real-valued function u is said to be harmonic in a domain D ⊂ C if it has
continuous second order partial derivatives in D, which satisfy the Laplace equation
∆u := ∂2u

∂x2 + ∂2u
∂y2 = 0. A harmonic mapping f of the simply connected domain D

is a complex-valued function of the form f = h+ g, where h and g are analytic in
D. We call h and g analytic and co-analytic part of f , respectively (see [4]). The
Jacobian of f is given by Jf(z) = |fz(z)|2 − |fz(z)|2 = |h′(z)|2 − |g′(z)|2. A result
of Lewy [16] states that f is locally univalent if and only if its Jacobian is never
zero, and is sense-preserving if the Jacobian is positive.

Let H indicate the class of harmonic functions in the unit disc U. By SH we
indicate the class of function f ∈ H of the form

(1.1) f(z) = z +
∞

∑

n=2

(

anz
n + bnzn

)

(z ∈ U),

which are univalent and sense-preserving in U and h(0) = h′(0) − 1 = 0, g(0) = 0.
Also note that H reduces to the class A of analytic functions in U if co-analytic
part of f is identically zero.

We say that a function f ∈ SH is harmonic starlike in U(r) if ∂
∂t (arg f(reit)) > 0

(0 6 t 6 2π) i.e., f maps the circle ∂U(r) onto a closed curve that is starlike with
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respect to the origin. It is easy to verify, that the above condition is equivalent to

Re
DHf(z)

f(z)
> 0 (|z| = r), DHf(z) := zh′(z) − zg′(z).

Ruscheweyh [20] introduced an operator Rm : A → A, defined by

Rmf(z) =
z(zm−1f(z))(m)

m!
(m ∈ N0 = N ∪ {0}, z ∈ U).

The Ruscheweyh derivative Rm was extended in [18] (see also [7, 9, 11, 23]) on
the class of harmonic functions. Let Dm,λ

H
: H → H represent the linear operator

defined for a function f = h+ g ∈ H by

Dm,λ
H

f := λDm+1
H

f + (1 − λ)Dm
Hf (0 6 λ 6 1),(1.2)

Dm
Hf := Rmh+ (−1)mRmg.

We say that a function f ∈ H is subordinate to a function F ∈ H, and write
f(z) ≺ F (z) (or simply f ≺ F ) if there exists a complex-valued function ω which
maps U into oneself with ω(0) = 0, such that f(z) = F (ω(z)) (z ∈ U).

Let A,B be real parameters, −B 6 A < B 6 1. We represent by Sm,λ
H

(A,B),
the class of functions f ∈ SH such that

(1.3)
DH

(

Dm,λ
H

f
)

(z)

Dm,λ
H

f(z)
≺

1 +Az

1 +Bz
.

The class Sm
H

(A,B) := Sm,0
H

(A,B) was investigated in [6]. In particular, the
class Sm

H
(α) := Sm

H
(2α − 1, 1) (0 6 α < 1) is related to the class of Sălăgean-type

harmonic functions studied by Yalçin [22]. The classes SH(A,B) := S0
H

(A,B), and
KH(A,B) := S1

H
(A,B) were defined in [7] (see also [8]).

Making use of the techniques and methodology used by Dziok [7], we will give
necessary and sufficient conditions, distortion bounds, compactness and extreme
points for the classes defined above. Some applications of the main results are also
considered.

2. Analytic criteria

For functions f1, f2 ∈ H of the form

(2.1) fl(z) =
∞

∑

k=0

(

al,kz
k + bl,kzk

)

(z ∈ U, l ∈ {1, 2})

we define the Hadamard product or convolution of f1 and f2 by

(f1 ∗ f2)(z) =
∞

∑

k=0

(

a1,ka2,kz
k + b1,kb2,kzk

)

(z ∈ U).

In our first theorem, we obtain the necessary and sufficient conditions for har-
monic functions in Sm,λ

H
(A,B).
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Theorem 2.1. Let f ∈ SH. Then f ∈ Sm,λ
H

(A,B) if and only if

f(z) ∗Dm,λ
H

ψξ(z) 6= 0 (z ∈ U0 = Ur {0}, |ξ| = 1),

where

ψξ(z) = z
1 +Bξ − (1 +Aξ)(1 − z)

(1 − z)2 − z
1 +Bξ + (1 +Aξ)(1 − z)

(1 − z)2 (z ∈ U0).

Proof. Let f ∈ SH be of the form (1.1). Then f ∈ Sm,λ
H

(A,B) if and only if
it satisfies (1.3), or equivalently

DH

(

Dm,λ
H

f
)

(z)

Dm,λ
H

f(z)
6=

1 +Aξ

1 +Bξ
(z ∈ U0, |ξ| = 1).

Since

DH

(

Dm,λ
H

h
)

(z) = Dm,λ
H

h(z) ∗
z

(1 − z)2 , Dm,λ
H

h(z) = Dm,λ
H

h(z) ∗
z

1 − z
,

the above inequalities yield
(

1 +Bξ
)

DH

(

Dm,λ
H

f
)

(z) −
(

1 +Aξ
)

Dm,λ
H

f(z)

=
(

1 +Bξ
)

DH

(

Dm,λ
H

h
)

(z) −
(

1 +Aξ
)

Dm,λ
H

h(z)

− (−1)m
[

(

1 +Bξ
)

DH

(

Dm,λ
H

g
)

(z) +
(

1 +Aξ
)

Dm,λ
H

g(z)
]

= Dm,λ
H

h(z) ∗

(

(1 +Bξ)z

(1 − z)2 −
(1 +Aξ)z

1 − z

)

− (−1)mDm,λ
H

g(z) ∗

(

(1 +Bξ)z

(1 − z)2 +
(1 +Aξ)z

1 − z

)

= f(z) ∗Dm,λ
H

ψξ(z) 6= 0 (z ∈ U0, |ξ| = 1).

Thus, f ∈ Sm,λ
H

(A,B) if and only if f(z) ∗Dm,λ
H

ψξ(z) 6= 0 for z ∈ U0, |ξ| = 1. �

Let f ∈ H be of the form (1.1). Thus, by (1.2) we have

Dm,λ
H

f(z) = z +
∞

∑

n=2

λnanz
n + (−1)m

∞
∑

n=2

λnbnz
n (z ∈ U),

where λn := (λ(n − 1) +m+ 1) n·...·(m+n)
(m+n)(m+1)! .

Theorem 2.2. If a function f ∈ H of the form (1.1) satisfies the condition

(2.2)
∞

∑

n=2

(αn|an| + βn|bn|) 6 B −A,

where

(2.3) αn = λn{n(1 +B) − (1 +A)}, βn = λn{n(1 +B) + (1 +A)},

then f ∈ Sm,λ
H

(A,B).
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Proof. It is clear that the theorem is true for the function f(z) ≡ z. Let
f ∈ H be a function of the form (1.1) and let there exist n ∈ N2 such that an 6= 0
or bn 6= 0. Since λn > λ2 > 1, we have

αn

B −A
> n,

βn

B −A
> n, n ∈ N2.

Thus, by (2.2) we get

(2.4)
∞

∑

n=2

(n|an| + n|bn|) 6 1

and

|h′(z)| − |g′(z)| > 1 −

∞
∑

n=2

n|an||z|n −

∞
∑

n=2

n|bn||z|n > 1 − |z|

∞
∑

n=2

(n|an| + n|bn|)

> 1 −
|z|

B −A

∞
∑

n=2

(αn|an| + βn|bn|) > 1 − |z| > 0 (z ∈ U).

Therefore, by (1.1) the function f is locally univalent and sense-preserving in U.
Moreover, if z1, z2 ∈ U, z1 6= z2, then

∣

∣

∣

∣

zn
1 − zn

2

z1 − z2

∣

∣

∣

∣

=

∣

∣

∣

∣

n
∑

l=1

zl−1
1 zn−l

2

∣

∣

∣

∣

6

n
∑

l=1

|z1|l−1|z2|n−l < n (n ∈ N2).

Hence, by (2.4) we have

|f(z1) − f(z2)| > |h(z1) − h(z2)| − |g(z1) − g(z2)|

=

∣

∣

∣

∣

z1 − z2 −

∞
∑

n=2

an(zn
1 − zn

2 )

∣

∣

∣

∣

−

∣

∣

∣

∣

∞
∑

n=2

bn(zn
1 − zn

2 )

∣

∣

∣

∣

> |z1 − z2| −

∞
∑

n=2

|an||zn
1 − zn

2 | −

∞
∑

n=2

|bn||zn
1 − zn

2 |

= |z1 − z2|

(

1 −

∞
∑

n=2

|an|
∣

∣

∣

zn
1 − zn

2

z1 − z2

∣

∣

∣
−

∞
∑

n=2

|bn|
∣

∣

∣

zn
1 − zn

2

z1 − z2

∣

∣

∣

)

> |z1 − z2|

(

1 −

∞
∑

n=2

n|an| −

∞
∑

n=2

n|bn|

)

> 0.

This leads to the univalence of f i.e., f ∈ SH. Therefore, f ∈ Sm,λ(A,B) if and
only if there exists a complex-valued function ω, ω(0) = 0, |ω(z)| < 1 (z ∈ U) such
that

DH

(

Dm,λ
H

f
)

(z)

Dm,λ
H

f(z)
=

1 +Aω(z)

1 +Bω(z)
(z ∈ U),

or equivalently

(2.5)

∣

∣

∣

∣

DH

(

Dm,λ
H

f
)

(z) −Dm,λ
H

f(z)

BDH

(

Dm,λ
H

f
)

(z) −ADm
H
f(z)

∣

∣

∣

∣

< 1 (z ∈ U).
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Thus, it is suffice to prove that
∣

∣DH

(

Dm,λ
H

f
)

(z) −Dm,λ
H

f(z)
∣

∣ −
∣

∣BDH

(

Dm,λ
H

f
)

(z) −ADm
Hf(z)

∣

∣ < 0 (z ∈ U0).

Indeed, letting |z| = r (0 < r < 1) we have
∣

∣DH

(

Dm,λ
H

f
)

(z) −Dm,λ
H

f(z)
∣

∣ −
∣

∣BDH

(

Dm,λ
H

f
)

(z) −ADm
Hf(z)

∣

∣

=

∣

∣

∣

∣

∞
∑

n=2

(n− 1)λnanz
n − (−1)m

∞
∑

n=2

(n+ 1)λnbnz
n

∣

∣

∣

∣

−

∣

∣

∣

∣

(B −A)z +
∞

∑

n=2

(Bn−A)λnanz
n + (−1)m

∞
∑

n=2

(Bn+A)λnbnz
n

∣

∣

∣

∣

6

∞
∑

n=2

(n− 1)λn|an|rn +
∞

∑

n=2

(n+ 1)λn|bn|rn − (B −A)r

+
∞

∑

n=2

(Bn−A)λn|an|rn +
∞

∑

n=2

(Bn+A)λn|bn|rn

6 r

{ ∞
∑

n=2

(

αn|an| + βn|bn|
)

rn−1 − (B −A)

}

< 0,

whence f ∈ Sm,λ
H

(A,B). �

Motivated by Silverman [21] we denote by T m (m ∈ {0, 1}) the class of func-
tions f ∈ H of the form (1.1) such that an = −|an|, bn = (−1)m|bn| (n = 2, 3, . . .)
i.e.,

(2.6) f = h+ g, h(z) = z −

∞
∑

n=2

|an|zn, g(z) = (−1)m
∞

∑

n=2

|bn|zn (z ∈ U).

These functions were intensively investigated by many authors (for example, see
[5,7–10,12,14,25]).

Moreover, let us define

Sm,λ
T

(A,B) := T m ∩ Sm,λ
H

(A,B)

where A,B are real parameters with B > max{0, A}.
The next theorem shows that condition (2.2) is also the sufficient condition for

functions f ∈ T m to be in the class Sm,λ
T

(A,B).

Theorem 2.3. Let f ∈ T m be a function of the form (2.6). Then f ∈

Sm,λ
T

(A,B) if and only if condition (2.2) holds true.

Proof. In view of Theorem 2.2 we need only to show that each function
f ∈ Sm,λ

T
(A,B) satisfies coefficient inequality (2.2). If f ∈ Sm,λ

T
(A,B), then it is

of the form (2.6) and it satisfies (2.5) or equivalently
∣

∣

∣

∣

−
∑∞

n=2(n− 1)λn|an|zn − (−1)2m
∑∞

n=2(n+ 1)λn|bn|zn

(B −A)z −
∑∞

n=2(Bn−A)λn|an|zn − (−1)2m
∑∞

n=2(Bn+A)λn|bn|zn

∣

∣

∣

∣

< 1.

Therefore, putting z = r (0 6 r < 1), we obtain
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(2.7)

∑∞

n=2

[

(n− 1)λn|an| + (n+ 1)λn|bn|
]

rn−1

(B −A) −
∑∞

n=2

{

(Bn−A)λn|an| + (Bn+A)λn|bn|
}

rn−1
< 1.

It is clear that the denominator of the left-hand side cannot vanish for r ∈ (0, 1).
Moreover, it is positive for r = 0, and in consequence for r ∈ (0, 1). Thus, by (2.7)
we have

(2.8)
∞

∑

n=2

(

αn|an| + βn|bn|
)

rn−1 < B −A (0 6 r < 1).

The sequence of partial sums {Sn} associated with the series
∑∞

n=2

(

αn|an|+βn|bn|
)

is a nondecreasing sequence. Moreover, by (2.8) it is bounded by B−A. Hence, the
sequence {Sn} is convergent and

∑∞

n=2

(

αn|an| + βn|bn|
)

= limn→∞ Sn 6 B − A,
which yields assertion (2.2). �

3. Topological properties

We consider the usual topology on H defined by a metric in which a sequence
{fn} in H converges to f if and only if it converges to f uniformly on each compact
subset of U. It follows from the theorems of Weierstrass and Montel that this
topological space is complete.

Let F be a subclass of the class H. A function f ∈ F is called an extreme

point of F if the condition f = γf1 + (1 − γ)f2 (f1, f2 ∈ F , 0 < γ < 1) implies
f1 = f2 = f . We shall use the notation EF to denote the set of all extreme points
of F . It is clear that EF ⊂ F .

We say that F is locally uniformly bounded if for each r, 0 < r < 1, there is a
real constant M = M(r) so that |f(z)| 6M (f ∈ F , |z| 6 r).

We say that a class F is convex if γf + (1 − γ)g ∈ F (f, g ∈ F , 0 6 γ 6 1).
Moreover, we define the closed convex hull of F as the intersection of all closed
convex subsets of H that contain F . We denote the closed convex hull of F by
co F .

A real-valued functional J : H → R is called convex on a convex class F ⊂ H
if

J
(

γf + (1 − γ)g
)

6 γJ (f) + (1 − γ)J (g) (f, g ∈ F , 0 6 γ 6 1).

The Krein–Milman theorem (see [15]) is fundamental in the theory of extreme
points. In particular, it implies the following lemma.

Lemma 3.1. [7, p. 45] Let F be a nonempty compact convex subclass of the

class H and J : H → R be a real-valued, continuous and convex functional on F .

Then max{J (f) : f ∈ F} = max{J (f) : f ∈ EF}.

Since H is a complete metric space, Montel’s theorem (see [17]) implies the
following lemma.

Lemma 3.2. A class F ⊂ H is compact if and only if F is closed and locally

uniformly bounded.

Theorem 3.1. The class Sm,λ
T

(A,B) is a convex and compact subset of H.
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Proof. Let f1, f2 ∈ Sm,λ
T

(A,B) be functions of the form (2.1), 0 6 γ 6 1.
Since

γf1(z) + (1 − γ)f2(z) = z −
∞

∑

n=2

{(

γ|a1,n| + (1 − γ)|a2,n|
)

zn

− (−1)m
(

γ|b1,n| + (1 − γ)|b2,n|
)

zn
}

,

and by Theorem 2.3, we have
∞

∑

n=2

{

αn

(

γ|a1,n| + (1 − γ)|a2,n|
)

+ βn

(

γ|b1,n| + (1 − γ)|b2,n|
)}

= γ

∞
∑

n=2

{

αn|a1,n| + βn|b1,n|
}

+ (1 − γ)
∞

∑

n=2

{

αn|a2,n| + βn|b2,n|
}

6 γ(B −A) + (1 − γ)(B −A) = B −A,

the function φ = γf1 + (1 − γ)f2 belongs to the class Sm,λ
T

(A,B). Hence, the class

is convex. Furthermore, for f ∈ Sm,λ
T

(A,B), |z| 6 r, 0 < r < 1, we have

|f(z)| 6 r +
∞

∑

n=2

(

|an| + |bn|
)

rn < r +
∞

∑

n=2

(

αn|an| + βn|bn|
)

6 r + (B − A).

Thus, we conclude that the class Sm,λ
T

(A,B) is locally uniformly bounded. By

Lemma 3.2, we only need to show that it is closed i.e., if fl ∈ Sm,λ
T

(A,B) (l ∈ N)

and fl → f , then f ∈ Sm,λ
T

(A,B). Let fl and f be given by (2.1) and (1.1),
respectively. Using Theorem 2.3 we have

(3.1)
∞

∑

n=2

(

|αnal,n| + |βnbl,n|
)

6 B −A (l ∈ N).

Since fl → f , we conclude that |al,n| → |an| and |bl,n| → |bn| as l → ∞ (n ∈ N).
The sequence of partial sums {Sn} associated with the series

∑∞

n=2(αn|an|+βn|bn|)
is a nondecreasing sequence. Moreover, by (3.1) it is bounded by B−A. Therefore,
the sequence {Sn} is convergent and

∑∞

n=2

(

αn|an|+βn|bn|
)

= limn→∞ Sn 6 B−A.

This gives condition (2.2), and, in consequence, f ∈ Sm,λ
T

(A,B). �

Theorem 3.2. We have ESm,λ
T

(A,B) = {hn : n ∈ N} ∪ {gn : n ∈ N2} where

(3.2) h1(z) = z, hn(z) = z −
B −A

αn
zn, gn(z) = z + (−1)mB −A

βn
zn (z ∈ U).

Proof. Suppose that 0 < γ < 1 and gn = γf1 + (1 − γ)f2, where f1, f2 ∈

Sm,λ
T

(A,B) are functions of the form (2.1). Then, by (2.2) we have |b1,n| = |b2,n| =
B−A

βn
, and, in consequence, a1,l = a2,l = 0 for l ∈ N2 and b1,l = b2,l = 0 for l ∈ N2 r

{n}. It follows that gn = f1 = f2, and consequently gn ∈ ES∗
T

(A,B). Similarly,
we verify that the functions hn of the form (3.2) are the extreme points of the class
Sm,λ

T
(A,B). Now, suppose that a function f belongs to the set ESm,λ

T
(A,B) and
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f is not of the form (3.2). Then there exists l ∈ N2 such that 0 < |al| <
B−A

αl
or

0 < |bl| <
B−A

βl
. If 0 < |al| <

B−A
αl

, then putting

γ =
αl|al|

B −A
, ϕ =

1

1 − γ
(f − γhl),

we have that 0 < γ < 1, hl 6= ϕ and f = γhl + (1 − γ)ϕ. Thus, f /∈ ESm,λ
T

(A,B).
Similarly, if 0 < |bl| <

B−A
βl

, then putting

γ =
βl|bl|

B −A
, φ =

1

1 − γ
(f − γgl),

we have that 0 < γ < 1, gl 6= φ and f = γgl + (1 − γ)φ. It follows that f /∈

ESm,λ
T

(A,B). �

4. Applications

It is clear that if the class F = {fn ∈ H : n ∈ N} is locally uniformly bounded,
then

co F =

{ ∞
∑

n=1

γnfn :
∞

∑

n=1

γn = 1, γn > 0 (n ∈ N)

}

.

Thus, by Theorem 1.3 we have the following corollary.

Corollary 4.1.

Sm,λ
T

(A,B) =

{ ∞
∑

n=1

(γnhn + δngn) :
∞

∑

n=1

(γn + δn) = 1 (δ1 = 0, γn, δn > 0)

}

,

where hn, gn are defined by (3.2).

For each fixed value of n ∈ N2, z ∈ U, the following real-valued functions are
continuous and convex on H:

J (f) = |an|, J (f) = |bn|, J (f) = |f(z)|, J (f) = |DHf(z)| (f ∈ H).

Moreover, for γ > 1, 0 < r < 1, the real-valued functional

J (f) =

(

1

2π

∫ 2π

0

∣

∣f
(

reiθ
)∣

∣

γ
dθ

)1/γ

(f ∈ H)

is also continuous and convex on H.
Therefore, by Lemma 3.1 and Theorem 1.3 we have the following corollaries.

Corollary 4.2. Let f ∈ Sm,λ
T

(A,B), |z| = r < 1. Then

r −
B −A

(λ+m+ 1)(1 + 2B −A)
r2

6 |f(z)| 6 r +
B −A

(λ+m+ 1)(1 + 2B −A)
r2,

r −
B −A

(1 + 2B −A)
r2 6

∣

∣Dm,λ
H

f(z)
∣

∣ 6 r +
B −A

(1 + 2B −A)
r2,

The result is sharp. The function h2 of the form (3.2) is the extremal function.
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Corollary 4.3. Let f ∈ Sm,λ
T

(A,B) be a function of the form (2.6). Then

|an| 6 B−A
αn

, |bn| 6 B−A
βn

(n ∈ N2), where αn, βn are defined by (2.3). The result is

sharp. The functions hn, gn of the form (3.2) are the extremal functions.

Corollary 4.4. Let 0 < r < 1, γ > 1. If f ∈ Sm,λ
T

(A,B), then

1

2π

∫ 2π

0

∣

∣f(reiθ)
∣

∣

γ
dθ 6

1

2π

∫ 2π

0

∣

∣h2(reiθ)
∣

∣

γ
dθ,

1

2π

∫ 2π

0

∣

∣DHf(z)
∣

∣

γ
dθ 6

1

2π

∫ 2π

0

∣

∣DHh2(reiθ)
∣

∣

γ
dθ,

where h2 is the function defined by (3.2).

The following covering result follows from Corollary 4.2.

Corollary 4.5. If f ∈ Sm,λ
T

(A,B), then U(r) ⊂ f(U), where

r = 1 −
B −A

(λ +m+ 1)(1 + 2B −A)
.

The class Sm
H

(A,B) is related to harmonic starlike functions, harmonic convex
functions and harmonic Janowski functions.

The classes SH(α) := S0
H

(2; 2α − 1, 1) and KH(α) := KH(2; 2α − 1, 1) were
investigated by Jahangiri [10] (see also [2, 19]). They are the classes of starlike
and convex functions of order α, respectively. Finally, the classes SH := SH(0) and
KH := KH(0) are the classes of functions which are starlike and convex in U(r),
for all r ∈ (0, 1〉. We should notice, that the classes S(A,B) := SH(A,B) ∩ A and
K(A,B) := KH(A,B) ∩ A are introduced by Janowski [13].

The class Sm
H

(A,B) generalize also classes of starlike functions of complex order.
The class CSH(γ) := SH(1 − 2γ, 1), γ ∈ C r {0}, was defined by Yalçin and
Öztürk [24]. In particular, if we put γ := 1−α

1+eiη , η ∈ R, then we obtain the class

RSH(α, η) := SH

(

2α−1+eiη

1+eiη , 1
)

studied by Yalçin et al. [25]. It is the class of

functions f ∈ H0 such that Re
{

(1 + eiη)DHf(z)
f(z) − eiη

}

> α (z ∈ U).
Applying the obtained results to the classes defined above, we can obtain new

and also well-known results (see for example [1–3,5–14,19,21–25].

Remark 4.1. The results obtained in classes of harmonic functions can be
transferred to corresponding classes of analytic functions.

Acknowledgements. The authors would like to thank the referees for valu-
able suggestions and comments.
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