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FUNCTIONS WITH CONSTANT SUMS OVER

A HYPERPLANE AND APPLICATIONS

Kanet Ponpetch, Sukrawan Mavecha, and

Vichian Laohakosol

Abstract. Two functional equations exhibiting functions with constant sums
over points lying in a hyperplane are solved, and the results are applied to
characterize major trigonometric and hyperbolic functions.

1. Introduction

In a recent paper [4], the first and third authors solved a functional equation
with n parameters, representing the angles of a convex n-gon, and used it to charac-
terize the tangent function. This functional equation generalizes the one originally
considered by Davison [3] and later proved by Benz [2] where the parameters are the
three angles of a triangle. More specifically, the case n = 3 which is Davison-Benz’s
theorem states that the function f : (0, π/2) → (0,∞) satisfying

(1.1) f(x)f(y)f(z) = f(x) + f(y) + f(z) (x, y, z ∈ (0, π/2))

with

(1.2) x+ y + z = π

is of the form

f(x) = tan
(

kx+ (1 − k)
π

3

)

(x ∈ (0, π/2)),

with an arbitrary constant k ∈ [−1/2, 1]. Since tanA tanB tanC = tanA+tanB+
tanC for any triangle ABC, the functional equation (1.1) indeed yields a charac-
terization of the tangent function. One natural question is whether there are func-
tional equations derived through generalizing the well-known trigonometric and
hyperbolic identities

sin(x1 + x2) = sin x1 cosx2 + cosx1 sinx2,(1.3)

cos(x1 + x2) = cosx1 cosx2 − sinx1 sinx2,(1.4)

sinh(y1 + y2) = sinh y1 cosh y2 + cosh y1 sinh y2,(1.5)
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cosh(y1 + y2) = cosh y1 cosh y2 + sinh y1 sinh y2(1.6)

that can be used to characterize the sine, cosine and other major hyperbolic func-
tions. This question will be affirmatively confirmed as consequences of our main
theorems here.

Analyzing the proof in [4], we see the following key steps:

• first, the functional equation, generalization of (1.1), is bijectively transformed
into a new functional equation, henceforth referred to as a constant sum func-

tional equation or CSFE for short, showing that the unknown function pos-
sesses a constant sum over a set of n parameters lying in a hyperplane, i.e.,
points subject to a condition generalizing (1.2), referred to as a hyperplane

condition or HC for short;
• second, by suitable change of variables the CSFE and HC are simplified in

order to determine all the possible solution functions;
• third, the modified CSFE for each possible solution function is strategically

transformed into a Cauchy additive functional equation over restricted do-
mains, and its shape is determined.

Note that this approach bears results resembling the following one in the book
of Kannappan [5, Theorem 1.76, p. 58]: the functions fi : (0, 1) → R satisfy the
functional equation

n
∑

i=1

fi(pi) = 0, 0 < pi < 1 (i = 1, . . . , n),

n
∑

i=1

pi = 1,

for arbitrary (but fixed) n > 3, if and only if, there exists an additive function
A : R → R such that

fi(x) = A(x) + bi, x ∈ (0, 1),

where bi (i = 1, . . . , n) are constants with A(1) +
∑n

i=1 bi = 0.
In the present work, we push our earlier investigation further by solving two

general CSFE’s, one for a finite number of unknown functions and the other for a
single unknown function, subject to two types of HC’s extending the work in [4].
The results so obtained are then applied to characterize the sine, cosine and other
major hyperbolic functions.

Our two main theorems are:

Theorem 1.1. Let n be an integer > 3, and let I denote the closed interval

[a, b] with b > a. Then the functions φi : I → R (i = 1, 2, . . . , n) satisfy the CSFE

(1.7)

n
∑

i=1

φi(xi) = T1, xi ∈ I (i = 1, 2, . . . , n),

subject to the HC

(1.8)

n
∑

i=1

xi = T2,
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where T1, T2 are real constants with

(1.9)
n(2a+ b)

3
< T2 <

n(a+ 2b)

3
,

if and only if, there exists an additive function A : R → R such that

φi(x) = A(x) −A(T2/n) + γi (i = 1, 2, . . . , n),

where the constants γi satisfy

(1.10)

n
∑

i=1

γi = T1.

Theorem 1.2. Let n be an integer > 3, and let I1 := (a, b), I2 := (c, d) be two

open intervals with b > a, d > c. Then the function φ : I1 → I2 satisfies the CSFE

(1.11)
n

∑

i=1

φ(xi) = U1,

subject to the HC

(1.12)

n
∑

i=1

xi = U2,

where U1, U2 are real constants, if and only if,

φ(x) = k
(

x−
U2

n

)

+
U1

n

for some fixed k lying in the range

max
{nc− U1

nb− U2
,
nd− U1

na− U2

}

< k < min
{nc− U1

na− U2
,
nd− U1

nb− U2

}

.

2. Proof of Theorem 1.1

From (1.9), we see that

(2.1) a <
2a+ b

3
<
T2

n
<
a+ 2b

3
< b, and a <

2a+ b

3
<
a+ b

2
<
a+ 2b

3
< b.

We start by making a change of variables to simplify the HC (1.8). Let

J := [a− T2/n, b− T2/n],

which is not a singleton, and define new unknown functions ψi : J → R (i =
1, . . . , n) by

(2.2) ψi(y) = φi

(

y +
T2

n

)

.

Observe that if y ∈ J , then y + T2/n ∈ I = [a, b]. Using (1.7), (1.8) and (2.2),
we get

(2.3)

n
∑

i=1

ψi(yi) = T1, subject to a simplified HC

n
∑

i=1

yi = 0 (yi ∈ J).
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There are three disjoint cases to be considered according to the three possibilities
on the sizes of T2/n− a and b− T2/n, i.e.,

T2/n− a > b− T2/n, T2/n− a < b− T2/n and T2/n− a = b − T2/n.

We give a detailed proof only for the first case as those for the other two are similar.
If T2/n− a > b− T2/n, i.e., T2/n > (a+ b)/2, then

H := [T2/n− b, b− T2/n] ⊂ J

is a closed interval, which is not a singleton, symmetric about the origin. Let
u, v ∈ H be such that u + v ∈ H . Using (2.3), we have ψ1(u) + ψ2(v) + ψ3(−u −
v) +

∑n

i=4 ψi(0) = T1, i.e.,

(2.4) ψ1(u) + ψ2(v) + ψ3(−u− v) = M1,

where M1 = T1 −
∑n

i=4 ψi(0). Interchanging u and v, we get

(2.5) ψ1(v) + ψ2(u) + ψ3(−v − u) = M1.

Subtracting (2.4) from (2.5) leads to ψ1(u) − ψ2(u) = ψ1(v) − ψ2(v), showing that
this expression must be a constant; call it c1. Thus,

(2.6) ψ2(v) = ψ1(v) − c1.

Substituting (2.6) into (2.4), we get

(2.7) ψ1(u) + ψ1(v) − c1 + ψ3(−u− v) = M1 (u, v, u+ v ∈ H).

Next, let p, q, r ∈ H be such that p+ q, p+ r, q + r, p+ q + r ∈ H . Using (2.7), we
have

ψ1(p) + ψ1(q + r) − c1 + ψ3(−p− q − r) = M1(2.8)

ψ1(p+ q) + ψ1(r) − c1 + ψ3(−p− q − r) = M1(2.9)

ψ1(q) + ψ1(p+ r) − c1 + ψ3(−p− q − r) = M1.(2.10)

Subtracting (2.9) and (2.8), we get ψ1(p + q) − ψ1(p) = ψ1(q + r) − ψ1(r), which
depends only on q; call it D(q). Thus,

ψ1(p+ q) = ψ1(p) +D(q).(2.11)

Similarly, subtracting (2.9) and (2.10) yields ψ1(p+q)−ψ1(q) = ψ1(p+r)−ψ1(r) =:
D(p), and so

(2.12) ψ1(p+ q) = ψ1(q) +D(p).

Equating (2.11) and (2.12), we arrive at ψ1(p) −D(p) = ψ1(q) −D(q), which must
then be a constant; call it d1. Thus, D(q) = ψ1(q) − d1. Replacing this last
expression into (2.11), we get

ψ1(p+ q) = ψ1(p) + ψ1(q) − d1,

i.e.,

ψ1(p+ q) − d1 = (ψ1(p) − d1) + (ψ1(q) − d1) (p, q, p+ q ∈ H).

From the result mentioned in the Remark 1.73 of [5, p. 57], we deduce that

(2.13) ψ1(p) = A1(p) + d1 (p ∈ H),
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for some unique additive function A1 : R → R.
We next extend the domain of ψ1. From (2.1), we know that (a−T2/n, T2/n−b)

and (2T2/n−(b+a), b−T2/n) are non-empty sets. Let w ∈ [a−T2/n, T2/n−b], and
choose s ∈ [2T2/n−(b+a), b−T2/n) ⊂ H in such a way that w+s ∈ [T2/n−b, 0) ⊂
H . Since −w − s ∈ (0, b− T2/n] ⊂ H , using (2.3), we have

ψ1(w) + ψ2(s) + ψ3(−w − s) +

n
∑

i=4

ψi(0) = T1,

i.e.,

(2.14) ψ1(w) + ψ2(s) + ψ3(−w − s) = M1.

Proceeding similarly, we get

(2.15) ψ1(s) + ψ2(w) + ψ3(−s− w) = M1.

Subtracting (2.14) and (2.15), we arrive at ψ1(w) − ψ2(w) = ψ1(s) − ψ2(s) = c2, a
constant, and so, using also (2.13),

ψ2(w) = ψ1(w) − c2,(2.16)

ψ2(s) = ψ1(s) − c2 = A1(s) + d1 − c2.(2.17)

Repeating the process again with ψ3 in place of ψ1, we get

ψ3(w) + ψ2(s) + ψ1(−w − s) = M1,(2.18)

ψ3(s) + ψ2(w) + ψ1(−s− w) = M1.(2.19)

Subtracting (2.18) and (2.19), we arrive at ψ3(w) − ψ2(w) = ψ3(s) − ψ2(s) = c′
2, a

constant, and so,

(2.20) ψ2(s) = ψ3(s) − c′
2.

Combining (2.17) and (2.20), we obtain

(2.21) ψ3(s) = A1(s) + d1 − (c2 − c′
2).

Substituting (2.21) and (2.16) into (2.19), using (2.13) and the additivity of the
function A1, we get

(2.22) ψ1(w) = A1(w) − 2d1 + 2c2 − c′
2 +M1 (w ∈ [a− T2/n, T2/n− b]).

Combining the two expressions in (2.13) and (2.22), the domain of the function ψ1

has been extended and so

ψ1(y) = A1(y) + d1 (y ∈ J).

Deriving in the same manner, we deduce that

(2.23) ψi(y) = Ai(y) + di (y ∈ J, i = 1, 2, . . . , n).

Keeping ψ2 fixed, but varying 1 to be any index i, (2.6) and (2.16) become

ψ2(y) = ψi(y) − ti (y ∈ J, i 6= 2)(2.24)

for some constants ti. Using (2.23) and (2.24), we have for all i 6= 2

Ai(y) + di − ti = ψ2(y),



70 PONPETCH, MAVECHA, AND LAOHAKOSOL

which shows that for all i, j, we have

(2.25) Ai(y) = Aj(y) + (dj − di) − (tj − ti) (y ∈ J).

Using (2.23) and (2.25), we deduce that there is an additive function A : R → R

such that

(2.26) ψi(y) = A(y) + γi (y ∈ J, i = 1, 2, . . . , n)

where γi’s are constants. Using (2.2) and (2.26), we see

φi(x) = A(x) −A(T2/n) + γi (x ∈ I, i = 1, 2, . . . , n).

The shapes of the solution functions and the associated condition (1.10) are easily
verified.

Remark. Technical condition (1.9) on the range of T2 is needed in the process
of choosing suitable variables in the necessity part of the proof, even though the
shape of solution function works without such restriction.

3. Proof of Theorem 1.2

Note first that na < U2 < nb, nc < U1 < nd. As in the proof of Theorem 1.1,
we begin with simplifying the HC (1.12). Let

J1 := (a− U2/n, b− U2/n) 6= φ,

and define ψ : J1 → I2 by

ψ(y) = φ
(

y +
U2

n

)

(y ∈ J1).

Functional equation (1.11) and the HC (1.12) become

(3.1)
n

∑

i=1

ψ(yi) = U1 subject to
n

∑

i=1

yi = 0 (yi ∈ J1).

Taking all yi = 0 in (3.1), we have

(3.2) ψ(0) = U1/n.

Again, there are three possibilities, namely,

U2/n− a > b− U2/n, U2/n− a < b− U2/n and U2/n− a = b− U2/n.

We treat only the first case and omit the proofs of the other two cases as they are
similar. If U2/n− a > b− U2/n, then

H1 := (U2/n− b, b− U2/n) ⊂ J1

is a non-empty open interval symmetric about the origin, and so (3.1) gives

ψ(u) + ψ(−u) +

n−2
∑

i=1

ψ(0) = U1 (u ∈ H1).

Combining this last relation with (3.2), we get

(3.3) ψ(−u) =
2U1

n
− ψ(u) (u ∈ H1).
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Next, substituting u, v ∈ H1 with u+ v ∈ H1 into (3.1) gives

ψ(u) + ψ(v) + ψ(−(u+ v)) +
n−3
∑

i=1

ψ(0) = U1.

Combining this with (3.2) and (3.3), we see that ψ is almost additive over H1, i.e.,

(3.4) ψ(u + v) = ψ(u) + ψ(v) − U1/n (u, v, u+ v ∈ H1).

Since (a− U2/n, U2/n− b) and (0, b− U2/n) are nonempty open intervals, substi-
tuting

w ∈ (a−U2/n, U2/n−b], s ∈ (0, b−U2/n) ⊂ H1 with w+s ∈ (U2/n−b, 0) ⊂ H1,

into (3.1) and using (3.3), we have

(3.5) ψ(w + s) = ψ(w) + ψ(s) − U1/n.

Relations (3.4) and (3.5) suggest that the function ψ can be transformed into an
additive function. To verify this, define β : J1 → (c− U1/n, d− U1/n) by

(3.6) β(y) = ψ(y) − U1/n (y ∈ J1),

so that (3.2) and (3.6) yield β(0) = 0, while (3.3) and (3.6) yield

β(−u) = −β(u) (u ∈ H1).

From (3.4) and (3.6), we get

(3.7) β(u + v) = β(u) + β(v) (u, v, u+ v ∈ H1).

Now using Remark 1.73 of [5, p. 57], there exists a unique additive function A : R →
R satisfying (3.7), which is an extension of β, i.e., A |H1

= β. Since the additive
function A is bounded on H1, by [1, Corollary 5 on p. 15], we have A(u) = ku
(u ∈ R), for some constant k. Thus,

(3.8) β(u) = ku (u ∈ H1).

From (3.5), (3.6) and (3.8), for w ∈ (a−U2/n, U2/n−b] ⊂ J1, s ∈ (0, b−U2/n) ⊂ H1

with w + s ∈ (U2/n− b, 0) ⊂ H1, we get

β(w) = β(w + s) − β(s) = k(w + s) − ks = kw

which yields β(y) = ky (y ∈ J1). Since β is the map from J1 := (a−U2/n, b−U2/n)
into (c− U1/n, d− U1/n), we have

max
{nc− U1

nb− U2
,
nd− U1

na− U2

}

< k < min
{nc− U1

na− U2
,
nd− U1

nb− U2

}

.

Reverting back to the definitions of β and ψ, we conclude that

ψ(y) = ky +
U1

n
(y ∈ J1), φ(x) = k

(

x−
U2

n

)

+
U1

n
(x ∈ I1).

The solution function is easily verified.
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4. Applications

A special case of Theorem 1.2 has already been used to characterize the tangent
function over a convex n-gon in [4]. In this section, we derive functional equations
that can be used to characterize

• major hyperbolic functions through applications of Theorem 1.1, and
• the sine and cosine functions through applications of Theorem 1.2.

We begin with the hyperbolic tangent function.

Lemma 4.1. Let n ∈ N, n > 3, let A1, . . . , An−1 ∈ R and let

h1(n) :=

⌊ n−1

2
⌋

∑

M=1

∑

16i1<i2<···<i2M6n−1

2M
∏

k=1

tanhAik

h2(n) :=

⌊ n−2

2
⌋

∑

M=0

∑

16i1<i2<···<i2M+16n−1

2M+1
∏

k=1

tanhAik
.

If 1 + h1(n) 6= 0, then

tanh(A1 + · · · +An−1) =
h2(n)

1 + h1(n)
.

Proof. We prove the lemma by induction on n > 3. The case n = 3 follows
at once from the identity

(4.1)
h2(3)

1 + h1(3)
=

tanhA1 + tanhA2

1 + tanhA1 tanhA2
= tanh(A1 +A2).

Assume that the assertion holds for n(> 3) and we aim to show that it is true for
n+ 1. By the hyperbolic tangent-sum formula (4.1) and the induction hypothesis,
we get

tanh(A1 + · · · +An−1 +An) =
tanh(A1 + · · · +An−1) + tanhAn

1 + tanh(A1 + · · · +An−1) tanhAn

=
h2(n) + (1 + h1(n)) tanhAn

1 + h1(n) + h2(n) tanhAn

.

We treat only the case of even n, as that of odd n is similar and is thus omitted.
If n is even, then ⌊(n− 1)/2⌋ = (n− 2)/2 = ⌊(n− 2)/2⌋, and so

h2(n) + (1 + h1(n)) tanhAn =

n−2

2
∑

M=0

∑

16i1<i2<···<i2M+16n−1

2M+1
∏

k=1

tanhAik

+ tanhAn +

n−2

2
∑

M=1

∑

16i1<i2<···<i2M6n−1

( 2M
∏

k=1

tanhAik

)

tanhAn

=
∑

16i16n

tanhAi1
+

n−2

2
∑

M=1

∑

16i1<i2<···<i2M+16n−1

2M+1
∏

k=1

tanhAik
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+

n−2

2
∑

M=1

∑

16i1<i2<···<i2M6n−1

( 2M
∏

k=1

tanhAik

)

tanhAn

=
∑

16i16n

tanhAi1
+

n−2

2
∑

M=1

∑

16i1<i2<···<i2M+16n

2M+1
∏

k=1

tanhAik
= h2(n+ 1)

1 + h1(n) + h2(n) tanhAn = 1 +

n−2

2
∑

M=1

∑

16i1<i2<···<i2M6n−1

2M
∏

k=1

tanhAik

+

n−2

2
∑

M=0

∑

16i1<i2<···<i2M+16n−1

( 2M+1
∏

k=1

tanhAik

)

tanhAn

= 1 +

n−2

2
∑

M=1

∑

16i1<i2<···<i2M6n−1

2M
∏

k=1

tanhAik

+

n

2
∑

M=1

∑

16i1<i2<···<i2M−16n−1

( 2M−1
∏

k=1

tanhAik

)

tanhAn

= 1 +

n−2

2
∑

M=1

∑

16i1<i2<···<i2M6n

2M
∏

k=1

tanhAik
+

n
∏

i=1

tanhAi = 1 + h1(n+ 1). �

Theorem 4.1. Let n ∈ N, n > 3, I := [a, b] with b > a. The functions

fi : I → (−1, 1) (i = 1, . . . , n) satisfying

(4.2)

n
∑

i=1

fi(xi) = −

⌊ n−1

2
⌋

∑

M=1

∑

16i1<···<i2M+16n

2M+1
∏

k=1

fik
(xik

), xi ∈ I (i = 1, . . . , n),

subject to the two conditions

n
∑

i=1

xi = L and 1 +

⌊ n−1

2
⌋

∑

M=1

∑

16i1<···<i2M6n−1

2M
∏

k=1

fik
(xik

) 6= 0,

where L is a constant belonging to the range
n(2a+b)

3 < L < n(a+2b)
3 , are given by

fi(x) = tanh(A(x) −A(L/n) + di) (i = 1, . . . , n),

where A is an additive function on R, and the constants di satisfy
∑n

i=1 di = 0.

Proof. For a suitable bijection (to be determined) φi : I → R (i = 1, . . . , n),
let

fi(x) = tanh(φi(x)) (i = 1, . . . , n).

Substituting into (4.2), we get
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n−1
∑

i=1

tanh(φi(xi)) + tanh(φn(xn))

= −

⌊ n−1

2
⌋

∑

M=1

∑

16i1<···<i2M+16n−1

2M+1
∏

k=1

tanh(φik
(xik

))

−

⌊ n−1

2
⌋

∑

M=1

∑

16i1<···<i2M6n−1

( 2M
∏

k=1

tanh(φik
(xik

))

)

tanh(φn(xn)),

which yields

∑⌊ n−1

2
⌋

M=0

∑

16i1<···<i2M+16n−1

∏2M+1
k=1 tanh(φik

(xik
))

1 +
∑⌊ n−1

2
⌋

M=1

∑

16i1<···<i2M6n−1

∏2M

k=1 tanh(φik
(xik

))
= tanh(−φn(xn)).

We work out the case of even n and omit similar derivation of the case n odd. If n
is even, then ⌊(n− 1)/2⌋ = (n− 2)/2, and so

∑

n−2

2

M=0

∑

16i1<···<i2M+16n−1

∏2M+1
k=1 tanh(φik

(xik
))

1 +
∑

n−2

2

M=1

∑

16i1<···<i2M6n−1

∏2M

k=1 tanh(φik
(xik

))
= tanh(−φn(xn)).

By Lemma 4.1, we have tanh(φ1(x1) + · · · + φn−1(xn−1)) = tanh(−φn(xn)). Since
the real hyperbolic tangent function is injective, we deduce that φ1(x1) + · · · +
φn−1(xn−1) + φn(xn) = 0, and Theorem 1.1 yields then that

φi(x) = A(x) −A(L/n) + di (x ∈ I; i = 1, . . . , n). �

The sought after functional equations for the trigonometric and hyperbolic sine
and cosine functions are guided by the following generalizations of the well-known
identies (1.3), (1.4), (1.5) and (1.6).

Lemma 4.2. Let n be an integer > 2.

I. If x1, . . . , xn ∈ (0, π), then

(4.3) sin(x1 + · · · + xn) =

⌊ n−1

2
⌋

∑

M=0

(−1)M
∑

16i1<···<i2M+16n

Sn(i1, . . . , i2M+1),

where

Sn(i1, . . . , i2M+1) :=

( 2M+1
∏

k=1

sinxik

cosxik

)( n
∏

j=1

cosxj

)

and

(4.4) cos(x1 + · · · + xn) =

⌊ n

2
⌋

∑

M=0

(−1)M
∑

16i1<···<i2M6n

Cn(i1, . . . , i2M ),

where Cn(i1, . . . , i2M ) :=

{

(
∏2M

k=1
sin xi

k

cos xi
k

)(
∏n

j=1 cosxj

)

if M 6= 0
∏n

j=1 cosxj if M = 0.
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II. If y1, . . . , yn ∈ R, then

(4.5) sinh(y1 + · · · + yn) =

⌊ n−1

2
⌋

∑

M=0

∑

16i1<···<i2M+16n

Sn(i1, . . . , i2M+1),

where

Sn(i1, . . . , i2M+1) :=

( 2M+1
∏

k=1

sinh yik

cosh yik

)( n
∏

j=1

cosh yj

)

and

(4.6) cosh(y1 + · · · + yn) =

⌊ n

2
⌋

∑

M=0

∑

16i1<···<i2M6n

Cn(i1, . . . , i2M ),

where Cn(i1, . . . , i2M ) :=

{

(
∏2M

k=1
sinh yi

k

cosh yi
k

)(
∏n

j=1 cosh yj

)

if M 6= 0
∏n

j=1 cosh yj if M = 0.

Proof. I. We prove both (4.3) and (4.4) simultaneously by induction on n; the
starting case n = 2 follows at once from the identities (1.3) and (1.4). Assume that
both (4.3) and (4.4) hold for n. We treat here only the case when n is odd, as the
other case is quite similar. In this case, ⌊n/2⌋ = (n− 1)/2, ⌊(n+ 1)/2⌋ = (n+ 1)/2.
First, consider the right-hand side of (4.3) for n+ 1, we have

n−1

2
∑

M=0

(−1)M
∑

16i1<···<i2M+16n+1

Sn+1(i1, . . . , i2M+1)

=

{ n−1

2
∑

M=0

(−1)M
∑

16i1<···<i2M+16n

( 2M+1
∏

k=1

sinxik

cosxik

)( n
∏

j=1

cosxj

)

}

cosxn+1

+

{ n−1

2
∑

M=0

(−1)M
∑

16i1<···<i2M6n

( 2M
∏

k=1

sinxik

cosxik

)( n
∏

j=1

cosxj

)

}

sinxn+1.

By induction hypothesis, this last right-hand expression is equal to

sin(x1 + · · · +xn) cosxn+1 + cos(x1 + · · · +xn) sin xn+1 = sin(x1 + · · · +xn +xn+1).

Next, consider the right-hand side of (4.4) for n+ 1,
n+1

2
∑

M=0

(−1)M
∑

16i1<···<i2M6n+1

Cn+1(i1, . . . , i2M )

=

{ n+1

2
∑

M=0

(−1)M
∑

16i1<···<i2M6n

( 2M
∏

k=1

sinxik

cosxik

)( n
∏

j=1

cosxj

)

}

cosxn+1

+

{ n+1

2
∑

M=0

(−1)M
∑

16i1<···<i2M−16n

( 2M−1
∏

k=1

sinxik

cosxik

)( n
∏

j=1

cosxj

)

}

sinxn+1
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=

{ n−1

2
∑

M=0

(−1)M
∑

16i1<···<i2M6n

( 2M
∏

k=1

sinxik

cosxik

)( n
∏

j=1

cosxj

)

}

cosxn+1

−

{ n−1

2
∑

M=0

(−1)M
∑

16i1<···<i2M+16n

( 2M+1
∏

k=1

sinxik

cosxik

)( n
∏

j=1

cosxj

)

}

sinxn+1,

where empty sums are defined to be 0. By induction hypothesis, the right-hand
expression is equal to

cos(x1 + · · · + xn) cosxn+1 − sin(x1 + · · · + xn) sin xn+1

= cos(x1 + · · · + xn + xn+1).

II. We prove both (4.5) and (4.6) simultaneously by induction on n; the starting
case n = 2 follows at once from identities (1.5) and (1.6). Assume that both (4.5)
and (4.6) hold for n. We treat here only the case when n is odd, as the other case
is quite similar. In this case, ⌊n/2⌋ = (n − 1)/2, ⌊(n + 1)/2⌋ = (n + 1)/2. First,
consider the right-hand side of (4.5) for n+ 1, we have

n−1

2
∑

M=0

∑

16i1<···<i2M+16n+1

Sn+1(i1, . . . , i2M+1)

=

{ n−1

2
∑

M=0

∑

16i1<···<i2M+16n

( 2M+1
∏

k=1

sinh yik

cosh yik

)( n
∏

j=1

cosh yj

)

}

cosh yn+1

+

{ n−1

2
∑

M=0

∑

16i1<···<i2M6n

( 2M
∏

k=1

sinh yik

cosh yik

)( n
∏

j=1

cosh yj

)

}

sinh yn+1.

By induction hypothesis, this last right-hand expression is equal to

sinh(y1 + · · · + yn) cosh yn+1 + cosh(y1 + · · · + yn) sinh yn+1

= sinh(y1 + · · · + yn + yn+1).

Next, consider the right-hand side of (4.6) for n+ 1,

n+1

2
∑

M=0

∑

16i1<···<i2M6n+1

Cn+1(i1, . . . , i2M )

=

{ n+1

2
∑

M=0

∑

16i1<···<i2M6n

( 2M
∏

k=1

sinh yik

cosh yik

)( n
∏

j=1

cosh yj

)

}

cosh yn+1

+

{ n+1

2
∑

M=0

∑

16i1<···<i2M−16n

( 2M−1
∏

k=1

sinh yik

cosh yik

)( n
∏

j=1

cosh yj

)

}

sinh yn+1
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=

{ n−1

2
∑

M=0

∑

16i1<···<i2M6n

( 2M
∏

k=1

sinh yik

cosh yik

)( n
∏

j=1

cosh yj

)

}

cosh yn+1

+

{ n−1

2
∑

M=0

∑

16i1<···<i2M+16n

( 2M+1
∏

k=1

sinh yik

cosh yik

)( n
∏

j=1

cosh yj

)

}

sinh yn+1,

where empty sums are defined to be 0. As before, the desired result now follows
from induction. �

Our final result is a characterization of the trigonometric and hyperbolic sine
and cosine functions.

Theorem 4.2. Let n be an integer > 3.

I. The functions f1, g1 : (0, π) → [−1, 1] satisfying

(4.7)

⌊ n

2
⌋

∑

M=0

(−1)M
∑

16i1<···<i2M6n

Cn(f1, g1; i1, . . . , i2M ) = (−1)n,

where Cn(f1, g1; i1, . . . , i2M ) :=

{

(
∏2M

k=1
f1(xi

k
)

g1(xi
k

)

)(
∏n

j=1 g1(xj)
)

if M 6= 0
∏n

j=1 g1(xj) if M = 0,
subject to the two conditions

sin−1 ◦f1 = cos−1 ◦g1(4.8)

x1 + · · · + xn = (n− 2)π

are given by

f1(x) =

{

sin
(

k1
(

x− (n−2)π

n

)

+ sπ
n

)

for n odd

sin
(

k2
(

x− (n−2)π

n

)

+ ℓπ
n

)

for n even

and

g1(x) =

{

cos
(

k1
(

x− (n−2)π

n

)

+ sπ
n

)

for n odd

cos
(

k2
(

x− (n−2)π

n

)

+ ℓπ
n

)

for n even

where s ∈ {1, 3, . . . , n−2} is an odd integer, ℓ ∈ {2, 4, . . . , n−2} is an even integer,

and k1, k2 are constants belonging to the ranges

max
{

−
s

2
,
s− n

n− 2

}

< k1 < min
{ s

n− 2
,
n− s

2

}

,

max
{

−
ℓ

2
,
ℓ− n

n− 2

}

< k2 < min
{ ℓ

n− 2
,
n− ℓ

2

}

.

II. The functions f2, g2 : (0, π) → [−1, 1] satisfying

(4.9)

⌊ n−1

2
⌋

∑

M=0

(−1)M
∑

16i1<···<i2M+16n

Sn(f2, g2; i1, . . . , i2M+1) = 0,
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where Sn(f2, g2; i1, . . . , i2M+1) :=
(

∏2M+1
k=1

f2(xi
k

)
g2(xi

k
)

)(
∏n

j=1 g2(xj)
)

, subject to the

two conditions

sin−1 ◦f2 = cos−1 ◦g2(4.10)

x1 + · · · + xn = (n− 2)π

are given by

f2(x) = sin
(

k
(

x−
(n− 2)π

n

)

+
sπ

n

)

,

g2(x) = cos
(

k
(

x−
(n− 2)π

n

)

+
sπ

n

)

,

where s ∈ {1, 2, 3, . . . , n− 2}, and k belongs to the range

max
{

−
s

2
,
s− n

n− 2

}

< k < min
{ s

n− 2
,
n− s

2

}

.

III. Let b > a, the functions fj : [a, b] → R and gj : [a, b] → [1,∞) (j = 1, . . . , n)
satisfying

⌊ n

2
⌋

∑

M=0

∑

16i1<···<i2M6n

Cn(fj , gj ; i1, . . . , i2M ) = 1,(4.11)

where Cn(fj , gj ; i1, . . . , i2M ) :=

{

(

∏2M

k=1
fi

k
(xi

k
)

gi
k

(xi
k

)

)(

∏n

j=1 gj(xj)
)

if M 6= 0
∏n

j=1 gj(xj) if M = 0,
subject to the two conditions

sinh−1 ◦fj = cosh−1 ◦gj (j = 1, . . . , n)(4.12)
n

∑

j=1

xj = L1,

where L1 is a constant belonging to the range
n(2a+b)

3 < L1 <
n(a+2b)

3 , are given by

fj(x) = sinh(A1(x) −A1(L1/n) + dj), gj(x) = cosh(A1(x) −A1(L1/n) + dj),

where A1 is an additive function on R and the constants dj satisfy
∑n

j=1 dj = 0.

IV. Let b > a. The functions fj : [a, b] → R and gj : [a, b] → [1,∞) (j = 1, . . . , n)
satisfying

(4.13)

⌊ n−1

2
⌋

∑

M=0

∑

16i1<···<i2M+16n

Sn(fj , gj ; i1, . . . , i2M+1) = 0,

where Sn(fj , gj ; i1, . . . , i2M+1) :=
(

∏2M+1
k=1

fi
k

(xi
k

)
gi

k
(xi

k
)

)(
∏n

j=1 gj(xj)
)

, subject to the

two conditions

sinh−1 ◦fj = cosh−1 ◦gj (j = 1, . . . , n)(4.14)
n

∑

j=1

xj = L2,
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where L2 is a constant belonging to the range
n(2a+b)

3 < L2 <
n(a+2b)

3 , are given by

fj(x) = sinh(A2(x) −A2(L2/n) + ℓj), gj(x) = cosh(A2(x) −A2(L2/n) + ℓj),

where A2 is an additive function on R and the constants ℓi satisfy
∑n

j=1 ℓj = 0.

Proof. I. By (4.8), there exists φ : (0, π) → (0, π) such that

f1(x) = sin(φ(x)) and g1(x) = cos(φ(x)) (x ∈ (0, π)).

Thus, (4.7) becomes

(−1)n =

⌊ n

2
⌋

∑

M=0

(−1)M
∑

16i1<···<i2M6n

Cn(sin φ, cosφ; i1, . . . , i2M ).

Invoking upon (4.4) of Lemma 4.2, we obtain cos(φ(x1) + · · · + φ(xn)) = (−1)n.
For odd n, we deduce that

φ(x1) + · · · + φ(xn) = sπ,

where s ∈ {1, 3, . . . , n − 2} is an odd integer. Theorem 1.2 implies then that the
solution of this last functional equation together with (4.2) is

φ(x) = k1

(

x−
(n− 2)π

n

)

+
sπ

n
,

for some fixed k1 belonging to the range max
{

− s
2 ,

s−n
n−2

}

< k1 < min
{

s
n−2 ,

n−s
2

}

.
Similarly, for n even, we deduce that

φ(x) = k2

(

x−
(n− 2)π

n

)

+
ℓπ

n
,

where ℓ ∈ {2, . . . , n− 2} is an even integer, and k2 belonging to the range

max
{

−
ℓ

2
,
ℓ− n

n− 2

}

< k2 < min
{ ℓ

n− 2
,
n− ℓ

2

}

.

II. By (4.10), there exists ψ : (0, π) → (0, π) such that

f2(x) = sin(ψ(x)) and g2(x) = cos(ψ(x)) (x ∈ (0, π)).

Thus, (4.9) becomes

0 =

⌊ n−1

2
⌋

∑

M=0

(−1)M
∑

16i1<···<i2M+16n

Sn(sinψ, cosψ; i1, . . . , i2M+1).

Using (4.3) of Lemma 4.2, we get sin(ψ(x1) + · · · + ψ(xn)) = 0, and so

ψ(x1) + · · · + ψ(xn) = sπ

for some s ∈ {1, 2, . . . , n − 2}. The desired result then follows immediately from
Theorem 1.2.
III. By (4.12), there exist φj : [a, b] → R (j = 1, . . . , n) such that

fj(x) = sinh(φj(x)), gj(x) = cosh(φj(x)) (j = 1, . . . , n).

Using (4.11) and (4.6), we get cosh(φ1(x1) + · · · + φn(xn)) = 1. Thus,

φ1(x1) + · · · + φn(xn) = 0.
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By Theorem 1.1, there exists an additive function A1 : R → R such that

φj(x) = A1(x) −A1(L/n) + dj (x ∈ [a, b]; j = 1, . . . , n),

where the constants dj satisfy
∑n

j=1 dj = 0.

IV. By (4.14), there exist ψj : [a, b] → R (j = 1, . . . , n) such that

fj(x) = sinh(ψj(x)), gj(x) = cosh(ψj(x)) (j = 1, . . . , n).

Using (4.13) and (4.5), we get sinh(ψ1(x1) + · · · + ψn(xn)) = 0. Thus,

ψ1(x1) + · · · + ψn(xn) = 0.

By Theorem 1.1, there exists an additive function A2 : R → R such that

ψj(x) = A2(x) −A2(L2/n) + ℓj (x ∈ [a, b], j = 1, . . . , n),

where the constants ℓj satisfy
∑n

j=1 ℓj = 0. �
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