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WEAK ASSOCIATIVITY
AND QUASIGROUP UNITS

Aleksandar Krapež

Abstract. We investigate a family of identities similar to weak associativity:
x(y/y) · z = x · (y/y)z which might imply the existence of the {left, right, mid-
dle} unit in a quasigroup. A partial solution to Krapež, Shcherbacov Problem
concerning such identities and consequently to similar well known Belousov’s
Problem is obtained. Another problem by Krapež and Shcherbacov is solved
affirmatively, showing that there are many single identities determining unipo-
tent loops among quasigroups.

1. Introduction

We concern ourselves with the old problem of Belousov [1]:

Problem 1.1. How to recognize identities which force quasigroups satisfying
them to be loops?

and its generalization:

Problem 1.2 (Krapež, Shcherbacov [10]). How to recognize identities which
force quasigroups satisfying them to have the {left, right, middle} unit?

There are many results relevant to these two problems. See [10] and the ref-
erences given there. For example, the important identity of associativity as well as
Moufang and Bol identities are all known to be particular solutions of Problems
1.1 and/or 1.2. However, these problems are not solved in general. We give here
one family of solutions based on the result by Smith [17] and its generalization by
Krapež and Shcherbacov [10]

2. Quasigroups

Eighty years did pass from the moment when quasigroups were defined for
the first time (Moufang [14]). But the interest in them is strong and growing
steadily. Some of it comes from the well established connections to combinatorics
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(the Cayley table of a quasigroup is latin square; Steiner quasigroups and Steiner
loops generate Steiner triple systems – see Evans [4]) and to geometry (3-nets
can be coordinatized by quasigroups – see Belousov [2]). But it also comes from
applications in statistics (the theory of experimental design – Fisher [6]), physics
(the theory of relativity – Ungar [18]) and in particular from its increasing use
in cryptography (see for example Kościelny [7], Markovski [12, 13], Krapež [8],
Shcherbacov [16], Krömer et al. [11]). The recent introduction of fuzzy quasigroups
(Krapež, Šešelja, Tepavčević [9]) enables applications in engineering where fuzzy
mathematics is used.

* * *

Of the two usual ways to define quasigroups we choose the one which treats
them as algebras with three binary operations. A few related weaker algebras
are also defined. Basic facts about quasigroups can be found in Belousov [1],
Pflugfelder [15], Chein, Pflugfelder, Smith [3], Shcherbacov [16]. We expect the
reader to be familiar with just the few elementary results needed (see [10]).

Definition 2.1. An algebra (Q; F, G) is a left quasigroup if it satisfies:

xF (xGy) = y and xG(xFy) = y.

An algebra (Q; F, H) is a right quasigroup if it satisfies:

(xHy)Fy = x and (xFy)Hy = x.

An algebra (Q; F, G, H) is a quasigroup if (Q; F, G) is left and (Q; F, H) is right
quasigroup.

If we have a (left, right) quasigroup we say that F is a (left, right) quasigroup
operation. Moreover, we conveniently say that groupoid (Q; F ) is a quasigroup if
the operation F is a quasigroup operation. There is no harm in that if we keep in
mind that groupoid (Q; F ) and algebra (Q; F, G, H) have different properties. For
example, the class of all quasigroups is a variety while the class of all groupoids
with quasigroup operations is not.

Often, we write G = F −1, H = −1F for these, so called inverse operations of F .
The operation G = F −1(H = −1F ) exists if and only if F is left (right) quasigroup
operation and then G(H) is also a left (right) quasigroup operation.

Definition 2.2. A groupoid (Q; F ) is a left (right) cancellation groupoid, iff
aFx = aFy ⇒ x = y (xFa = yFa ⇒ x = y) for all a, x, y ∈ Q.

When we use multiplicative notation (i.e., if operations ·, \, / correspond to
F, G, H respectively), we also use the customary symbols: ∗, \, /, //, \\ for parastro-
phes of ·:

x · y = z iff x\z = y iff z/y = x iff

y ∗ x = z iff z\\x = y iff y//z = x.

In this case the quasigroup axioms take the more familiar form:

x\xy = y xy/y = x

x(x\y) = y (x/y)y = x.
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It will be usefull to define three partitions of the set Π = {·, ∗, /, \, //, \\} of all
parastrophes of ·.

Definition 2.3. The partitions are given in the following table:

1st class 2nd class 3rd class

The first partition: λ = {∗, \\} ρ = {·, /} µ = {\, //}
The second partition: L = {/, //} R = {\, \\} M = {·, ∗}
The third partition: ℓ = {·, \} r = {∗, //} m = {/, \\}

* * *

The definition of various types of units is conveniently collected in the Ta-
ble 1. The alternative definitions may be formulated either in the language {·, e}
of groupoids with constant (indicated by (1)) or in the language of quasigroups
(indicated by (3)).

Table 1. Units in quasigroups

Unit Symbol Identities (1) Identities (3)

none (Q) x = x x = x
left (eQ) ex = x x/x = y/y

right (Qe) xe = x x\x = y\y
middle (U) xx = e xx = yy
ℓ + r (Q1) ex = x, xe = x x/x = y\y
ℓ + m (eU) ex = x, xx = e x/x = yy
r + m (Ue) xe = x, xx = e x\x = yy

ℓ + r + m (U1) ex = x, xe = x, xx = e x/x = y\y = zz

Definition 2.4. A quasigroup (Q; ·, \, /) is:

• A left (right) loop if (Q; ·) has a left (right) unit.
• An unipotent quasigroup if (Q; ·) has a middle unit.
• A loop if it has both left and right units.
• An unipotent left (right) loop if it has left (right) and middle units.
• An unipotent loop if it has left, right and middle units.

The following result is well known:

Theorem 2.1. Any {left, right, middle} unit of a quasigroup (Q; ·, \, /) is its
unique idempotent.

We see that an operation · has a unit iff \ and / are both unipotent, i.e., they
have the (common) middle unit. Similar connections between different kinds of
units in various parastrophes of a quasigroup (Q; ·) are given in the Table 2 (see
also [10]).
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Table 2. Units of parastrophic operations

· ∗ / \ \\ //
ℓ r m ℓ r m
r ℓ r m m ℓ
m m ℓ r ℓ r

For example, the entry m in the row r and the column \\ of Table 2, means that
the middle unit e of the operation \\ (x\\x = e) is the right unit of the operation ·
(x · e = x).

We see that every type of quasigroup from Table 1 may be defined by the single
identity. The only exceptions are unipotent loops which require two identities.
Krapež and Shcherbacov posed the related problem in [10]:

Problem 2.1. Is there a single identity (in the language {·, \, /}) which defines
unipotent loops among quasigroups?

Problem 2.1 is solved in Section 3 and, independently, in Fempl-Mađarević,
Krapež [5].

All lattices of classes of quasigroups, defined above in one of the two languages
mentioned, are isomorphic to the generic lattice given in Figure 1.

✍✌
✎☞
Q

✍✌
✎☞✑✑

✑✑

eQ ✍✌
✎☞
U ✍✌

✎☞◗
◗

◗
◗

Qe

✍✌
✎☞✓

✓
✓
✓
✓
✓

eU ✍✌
✎☞✓

✓
✓
✓
✓
✓

❙
❙

❙
❙

❙
❙

Q1 ✍✌
✎☞❙

❙
❙

❙
❙
❙

Ue

✍✌
✎☞✑✑

✑
✑

◗
◗

◗
◗

U1

Figure 1. Generic lattice of classes of quasigroups

3. The identity (xA(yBy))Cz = xC((yDy)(−1D)z)

Smith proved in [17, Proposition 1.3]:

Theorem 3.1. A nonempty quasigroup (Q, ·, \, /) is a loop iff

x(y/y) · z = x · (y/y)z.
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Krapež and Shcherbacov used this theorem and internal symmetry of quasi-
groups to give five more similar results in [10]:

Theorem 3.2. A nonempty quasigroup (Q, ·, \, /) is a loop iff

x(y\y) · z = x · (y\y)z.

A nonempty quasigroup (Q, ·, \, /) is an unipotent left loop iff any of:

(x\yy)\z = x\(yy\z)

(x\(y/y))\z = x\((y/y)\z).

A nonempty quasigroup (Q, ·, \, /) is an unipotent right loop iff any of:

(x/yy)/z = x/(yy/z)

(x/(y\y))/z = x/((y\y)/z).

We generalize both these statements:

Theorem 3.3. Let (Q; A) be a left quasigroup, (Q; B) a groupoid, (Q; C) a
cancellative groupoid and let (Q; D) be a right quasigroup. If they satisfy the identity

(WA) (xA(yBy))Cz = xC((yDy)(−1D)z)

then there are e, i ∈ Q such that:

• e is the right unit for A,
• e is the middle unit for B,
• i is the middle unit for D.

The converse also holds.

Proof. 1) Assume that e is the right unit for A and the middle unit for B,
while i is the middle unit for D. Then xAe = x, yBy = e and yDy = i, which
implies i(−1D)z = z. Replacing, we get (xA(yBy))Cz = (xAe)Cz = xCz =
xC(i(−1D)z) = xC((yDy)(−1D)z).

2) Conversely, let a left quasigroup (Q; A), a groupoid (Q; B), a cancellative
groupoid (Q; C) and a right quasigroup (Q; D) satisfy identity (WA).

2a) Replace z in (WA) by y. We get (xA(yBy))Cy = xC((yDy)(−1D)y). As
D is a right quasigroup, we get (xA(yBy))Cy = xCy. Since C is cancellative, we
reduce it to xA(yBy) = x. Using the fact that A is a left quasigroup, we finally get
xA−1x = yBy. This implies that A−1 and B have the common middle unit, say e.
It also follows that e is right unit for A.

2b) Since e is middle unit of B and right unit of A, we have (xA(yBy))Cz =
(xAe)Cz = xCz. Therefore xCz = xC((yDy)(−1D)z). However, C is cancellative
and we may cancel from the left to get z = (yDy)(−1D)z. Since D is a right
quasigroup, it follows that yDy = zDz proving D unipotent. Therefore, D has a
middle unit i. �

We are particularly interested in the case where A, B, C, D are parastrophes of
the same quasigroup (Q; ·). This has two immediate consequences:

• All four operations are quasigroups;
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• The existence of unit e for A, B and i for D implies (Theorem 2.1) that
i = e is some kind of unit in (Q; ·) (see Table 2).

On the contrary, the choice of C does not impose any restriction on ·, therefore we
can choose C arbitrarily.

Let us try to describe all cases that may happen for various choices of A, B, C, D.
There are 64 = 1296 possible cases. Every choice of (A, B, C, D) ∈ Π4 makes (WA)
equivalent to one of (eQ), (Qe), (U), (Q1), (eU), (Ue), (U1).

The utility of partitions given in the Definition 2.3 now becomes apparent:

Lemma 3.1. If {A ∈ λ, A ∈ ρ, A ∈ µ} then the quasigroup (Q; ·) has a {left,
right, middle} unit.

Proof. Use Table 2. �

Analogously:

Lemma 3.2. Let F denote one of the operations B or D. If {F ∈ L, F ∈
R, F ∈ M} then the quasigroup (Q; ·) has a {left, right, middle} unit.

It is easy now to distinguish the tuples (A, B, C, D) of parastrophes of · which
force (Q; ·) to have the left (and only left!) unit:

Theorem 3.4. ((WA) ⇔ (eQ)) iff A ∈ λ, B ∈ L, C ∈ Π, D ∈ L.

Proof. By Theorem 3.3, the tuple (A, B, C, D) satisfies (WA) iff there is an
element e ∈ Q such that xAe = x, xBx = e, xDx = e. All three identities are
equivalent to e · x = x (i.e., to (eQ)) iff A ∈ λ, B ∈ L, D ∈ L. The statement of the
Theorem follows. �

Consequently, there are 48 = 6 × 23 instances of (WA) equivalent to (eQ).
We can introduce a short notation for the conditions on tuples:

Definition 3.1. Let ω ∈ {λ, ρ, µ}, X, Y ∈ {L, R, M} and w ∈ {ℓ, r, m}.

• ωXY is defined to mean A ∈ ω, B ∈ X , C ∈ Π, D ∈ Y .
• XwY is defined to mean E ∈ Π, F ∈ X , G ∈ w, H ∈ Y .

Theorem 3.4 may be written now as: (WA) ⇔ (eQ)) iff λLL.
Analogously, there are 48 (WA)-identites equivalent to (Qe) (resp. (U)):

Theorem 3.5. (1) ((WA) ⇔ (Qe)) iff ρRR. (2) ((WA) ⇔ (U)) iff µMM .

Similarly, there are 288 = 6 × 48 identities equivalent to (Q1) (resp. (eU),
(Ue), (U1)):

Theorem 3.6. We have

(1) ((WA) ⇔ (Q1)) iff exactly one of: λLR, λRL, λRR, ρLL, ρLR, ρRL.
(2) ((WA) ⇔ (eU)) iff exactly one of: λLM, λML, λMM, µLL, µLM, µML.
(3) ((WA) ⇔ (Ue)) iff exactly one of: µMR, µRM, µRR, ρMM, ρMR, ρRM .
(4) ((WA) ⇔ (U1)) iff exactly one of: λMR, λRM, µLR, µRL, ρLM, ρML.

Theorem 3.6, item (4) gives us 288 solutions of Problem 2.1. One of them is
presented in the following example.
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Example 3.1. Let us consider the identity:

(3.1) ((x/x)/y)z = y(z/(x\x)).

Using parastrophic operations we may write (3.1) in the form:

(3.2) (y//(x/x))z = y((x\x)//z).

It is a special case of WA–identity with A = //, B = /, C = ·, D = \. It follows that
A ∈ µ, B ∈ L, D ∈ R. By Theorem 3.6 identity (3.2) (therefore (3.1)) is equivalent
to (U1).

4. The identity xE((yF y)Gz) = (xH−1(yHy))Ez

Let us consider the identity

(4.1) xE((yFy)Gz) = (xH−1(yHy))Ez.

It looks similar to (WA) and the first idea is to use the same methods (under
appropriate conditions on E, F, G, H) as were used in Theorem 3.3. The idea is
sound and can be carried out, but there is an easier way as we shall show proving
the following:

Theorem 4.1. Let (Q; E) be a cancellative groupoid, (Q; F ) be a groupoid,
(Q; G) be a right quasigroup and let (Q; H) be a left quasigroup. If they satisfy the
identity (4.1) then there are e, i ∈ Q such that:

• e is the middle unit for F
• e is the left unit for G
• i is the middle unit for H.

The converse also holds.

Proof. Let us make a sequence of equivalent transformations of (4.1):

((yFy)Gz)E∗x = zE∗(xH−1(yHy))

(zG∗(yFy))E∗x = zE∗((yH∗y)(H−1)∗x)

and, because of (H−1)∗ = −1(H∗):

(zG∗(yFy))E∗x = zE∗((yH∗y)(−1(H∗))x)

which is (WA) for A = G∗, B = F, C = E∗, D = H∗. By Theorem 3.3 there are
e, i ∈ Q such that: G∗(x, e) = x, F (x, x) = e and H∗(x, x) = i which is exactly
what is needed.

The converse holds by direct computation. �

The following lemma is analogous to Lemmas 3.1 and 3.2.

Lemma 4.1. If {G ∈ ℓ, G ∈ r, G ∈ m} then the quasigroup (Q; ·) has a {left,
right, middle} unit.

We can prove now:

Corollary 4.1. We have:

(1) ((4.1) ⇔ (eQ)) iff LℓL
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(2) ((4.1) ⇔ (Qe)) iff RrR
(3) ((4.1) ⇔ (U)) iff MmM
(4) ((4.1) ⇔ (Q1)) iff exactly one of: LℓR, LrL, LrR, RℓL, RℓR, RrL
(5) ((4.1) ⇔ (eU)) iff exactly one of: LℓM, LmL, LmM, MℓL, MℓM, MmL
(6) ((4.1) ⇔ (Ue)) iff exactly one of: RrM, RmR, RmM, MrR, MrM, MmR
(7) ((4.1) ⇔ (U1)) iff exactly one of: LrM, LmR, RℓM, RmL, MℓR, MrL.

Case (7) gives us 288 solutions of Problem 2.1 but not all of them are new.
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