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SOME RESULTS IN TYPES OF

EXTENSIONS OF MV -ALGEBRAS

F. Forouzesh, F. Sajadian, and M. Bedrood

Abstract. We introduce the notions of zero divisor and extension, contrac-
tion of ideals in MV -algebras and several interesting types of extensions of
MV -algebras. In particular, we show what kinds of extensions MV -algebras
will lead in a homeomorphism of the spectral topology and inverse topology
on minimal prime ideals. Finally, we investigate the relations among types of
extensions of MV -algebras.

1. Introduction and preliminaries

Chang introduced MV -algebras to provide algebraic semantics for Łukasiewicz
in finite-valued propositional logic [3]. Also, Busneag and Piciu introduced ∧-
closed systems of an MV -algebra and they introduced the notion of MV -algebra
of fractions and proved constructively the existence of a maximal MV -algebra of
quotients [2].

Eslami introduced prime spectrum of a BL-algebra and investigated some prop-
erties of them [5]. Forouzesh et al. introduced the spectral topology and quasi-
spectral topology of prime A-ideals in MV -modules and proved some properties of
them. They showed that the set of all prime A-ideals in an MV -module is Haus-
dorff and disconnected [6]. Forouzesh et al. introduced the inverse topology on
Min(A) and proved that it is compact, Hausdorff space, T0-space and T1-space [8].

In this paper, the set of all zero divisors of an MV -algebra A, is denoted by
ZA and the relation between zero divisors and the chain MV -algebra A is studied.
In addition, we show that if A is a chain, then only idempotent elements of A are
0 and 1.

Also, we prove that if A is an MV -algebra, PS : A → A[S] is a homomorphism
MV -algebra, I ∈ Id(A) and {0} ∈ Spec(A), then Ie = {λ ∈ A[S] : λ = x

S
, x ∈ I}.

Also, we define min-extension of MV -algebras and prove that if B →֒ A is a
min-extension of MV -algebras, then ψ : Min(A) → Min(B) by ψ(P ) = P ∩ B is
continuous with respect to both the spectral topology and the inverse topology.
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We define good extension,f -extension, f∗-extension , quasi good extension,
quasi f -extension and quasi f∗-extension of MV -algebras and prove that good
extension of MV -algebras has property violations. Furthermore, we show that A
is an f -extension of MV -algebra B if and only if map of ψ : Min(A) → Min(B) by
ψ(P ) = P ∩B with respect to the spectral topology is a homeomorphism.

Also, we show that A is a quasi f∗-extension of an MV -algebra B if and only if
map ψ : Min(A) → Min(B) by ψ(P ) = P ∩B with respect to the inverse topology
is a homeomorphism.

We recollect some definitions and results which will be used in the following:

Definition 1.1. [3] An MV -algebra is a structure (A,⊕, ∗, 0) where ⊕ is a
binary operation, ∗, is a unary operation, and 0 is a constant such that the following
axioms are satisfied for any a, b ∈ A:

(MV1) (A,⊕, 0) is an Abelian monoid,
(MV2) (a∗)∗ = a,

(MV3) 0∗ ⊕ a = 0∗,
(MV4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

Note that we have 1 = 0∗ and the auxiliary operation ⊙ which are as follows:

x⊙ y = (x∗ ⊕ y∗)∗.

We recall that the natural order determines a bounded distributive lattice struc-
ture such that

x ∨ y = x⊕ (x∗ ⊙ y) = y ⊕ (x⊙ y∗) and x ∧ y = x⊙ (x∗ ⊕ y) = y ⊙ (y∗ ⊕ x).

We recall that an element a ∈ A is complemented if there is an element b ∈ A
such that a ∨ b = 1 and a ∧ b = 0.

Definition 1.2. [3] A subalgebra of an MV -algebra A is a subset B of A
containing the zero element of A, that it is closed under the operations of A and is
equipped with the restriction to B of these operations.

Lemma 1.1. [4] In each MV -algebra, the following relations hold for all
x, y, z ∈ A:

(1) x 6 y if and only if y∗ 6 x∗,
(2) If x 6 y, then x⊕ z 6 y ⊕ z and x⊙ z 6 y ⊙ z, x ∧ z 6 y ∧ z,
(3) x 6 y if and only if x∗ ⊕ y = 1 if and only if x⊙ y∗ = 0,
(4) x, y 6 x ⊕ y and x ⊙ y 6 x, y, x 6 nx = x ⊕ x ⊕ · · · ⊕ x and xn =

x⊙ x⊙ · · · ⊙ x 6 x,
(5) x⊕ x∗ = 1 and x⊙ x∗ = 0,
(6) If x 6 y and z 6 t, then x⊕ z 6 y ⊕ t,
(7) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z),
(8) x∧(y⊕z) 6 (x∧y)⊕ (x∧z), x∧(x1 ⊕· · ·⊕xn) 6 (x∧x1)⊕· · ·⊕ (x∧xn),

for all x1, . . . , xn ∈ A; in particular (mx) ∧ (ny) 6 mn(x ∧ y) for every
m,n > 0.

(9) If e ∈ B(A), then e ∧ e∗ = 0, e ∨ e∗ = 1, where B(A) is the set of all
complemented elements of L(A) such that L(A) is distributive lattice with
0 and 1 on A.
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Also for any two elements x, y ∈ A, x 6 y if and only if x and y satisfy condition
(3) in the above lemma.

Definition 1.3. [4] An ideal of an MV -algebra A is a nonempty subset I of
A satisfying the following conditions:

(I1) If x ∈ I, y ∈ A and y 6 x, then y ∈ I,
(I2) If x, y ∈ I, then x⊕ y ∈ I.

We denote by Id(A) the set of all ideals of an MV -algebra A.

Definition 1.4. [4] Let I be an ideal of an MV -algebra A. Then I is a proper
ideal of A, if I 6= A.

• [4] A proper ideal I of an MV -algebra A is called prime ideal if for all
x, y ∈ A, x∧ y ∈ I, then x ∈ I or y ∈ I. We denote by Spec(A) the set of
all prime ideals of an MV -algebra A.

• [4] An ideal I of an MV -algebra A is called a minimal prime ideal of A:
1) I ∈ Spec(A);
2) If there exists Q ∈ Spec(A) such that Q ⊆ I, then I = Q.

We denote by Min(A) the set of all prime minimal ideals of an MV -algebra A.

Definition 1.5. [4] Let X and Y be two MV -algebras. A function f : X → Y
is called homomorphism of MV -algebras if and only if

(1) f(0) = 0, (2) f(x⊕ y) = f(x) ⊕ f(y), (3) f(x∗) = (f(x))∗.

Theorem 1.1. [4] Let A and B be MV -algebras, f : A → B be a homomor-
phism of MV -algebras and P ∈ Spec(B). Then f−1(P ) ∈ Spec(A). Also, the
intersection of prime ideals of an MV -algebra is a prime ideal.

Definition 1.6. [10] A nonempty subset S of an MV -algebra is called ∧-
closed system in A, if 1 ∈ S and x, y ∈ S implies x ∧ y ∈ S.

We denote by S(A) the set of all ∧-closed systems of A (clearly 1, A ∈ S(A)).
For S ∈ S(A) in the MV -algebra A, we consider the relation θS defined by (x, y) ∈
θS if and only if there exists e ∈ S ∩B(A) such that x ∧ e = y ∧ e.

Lemma 1.2. [10] θS is a congruence on A.

For x ∈ A, we denote by x
S

the equivalence class of x relative to θS and by

A[S] =
A

θS

.

By PS : A → A[S], we denote the canonical map defined by PS(x) = x
S

, for every

x ∈ A. Clearly, 0 = 0
S

and 1 = 1
S

are in A[S] and for every x, y ∈ A, we have

x

S
⊕ y

S
=

(x⊕ y)

S
,

( x

S

)∗

=
x∗

S
.

So, PS is an onto morphism of MV -algebras [10].

Remark 1.1. [10] Since for every s ∈ S ∩ B(A), s ∧ s = s ∧ 1, we conclude
that s

S
= 1

S
. Hence PS(S ∩B(A)) = 1.
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Theorem 1.2. [10] Let S be a ∧-closed system of an MV -algebra A and
I ∈ Id(A) such that I ∩ S = ∅. Then there exists a prime ideal P of A such that
I ⊆ P and P ∩ S = ∅.

Definition 1.7. [10] Let X be a nonempty subset of MV -algebra A. Then
AnnA(X) = {a ∈ A : a ∧ x = 0, ∀x ∈ X} is called the annihilator of X .

Definition 1.8. [10] An MV -algebra A is called chain if for all a, b ∈ A, a
and b are comparable elements of A.

Remark 1.2. [10] Let A be an MV -algebra. Then a ∧ a∗ = 0, for all a ∈ A
if and only if A is Boolean algebra. It is proved a ⊙ a = a, for all a ∈ A in an
MV -algebra.

Note: Let A be an MV -algebra and I be an ideal of A. We define

vA(I) = {P ∈ Spec(A) : I ⊆ P} uA(I) = {P ∈ Spec(A) : I * P}
VA(I) = Min(A) ∩ vA(I) UA(I) = Min(A) ∩ uA(I)

VA(a) = {P ∈ Min(A) : a ∈ P} UA(a) = {P ∈ Min(A) : a /∈ P}
Lemma 1.3. [5] Let τ(A) = {v(I) : I ∈ Id(A)} and X = Spec(A). Then τ(A)

satisfies the axioms for closed set in a topological space. Hence τA = {uA(I) : I ∈
Id(A)} is a topology on Spec(A), which is called spectral topology of A.

Lemma 1.4. [1] Let A be a nonempty MV -algebra. Then β = {uA(a) : a ∈ A}
is a base for a topology on Spec(A).

Lemma 1.5. [8] Let A be a nonempty MV -algebra. The collection β = {VA(I) :
I ∈ Id(A)} is a base for a topology on Min(A).

Remark 1.3. [8] The induced topology of base

β = {VA(I) : I is finitely generated ideal of A}
is called the inverse topology. When equipped with the inverse topology on Min(A),
we shall write Min−1(A).

Notation. UA(a) is called a basic open set with respect to spectral topology
on Min(A) and VA(I) is a basic open set with respect to the inverse topology on
Min(A). Obviously, {VA(a) : a ∈ A} is a subbasis for inverse topology.

Theorem 1.3. [8] Let A be an MV -algebra and P ∈ Spec(A). Then P ∈
Min(A) if and only if for each x ∈ P , there exists r ∈ A− P such that x ∧ r = 0.

Theorem 1.4. [8] Let A be an MV -algebra, P ∈ Min(A) and I is finitely
generated ideal. Then I ⊆ P if and only if AnnA(I) * P .

Lemma 1.6. [8] Let A be an MV -algebra. If we have 0 6= x ∈ A, then there
exists P ∈ Min(A) such that x /∈ P .

Definition 1.9. [7] Let A be an MV -algebra and I ∈ Id(A) be a proper ideal
of A. Radical of an ideal I is intersection of all maximal ideals of A contain I, it is
denoted by

√
I. We proved that radical of I is as follows:

√
I = {a ∈ A : a⊙ na ∈ I, for all n ∈ N}.
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Definition 1.10. [10] Let X ⊆ A. The ideal of A generated by X will be
denoted by (X ]. We have

(X ] = {a ∈ A | a 6 x1 ⊕ x2 ⊕ · · · ⊕ xn, for some n ∈ N and xi ∈ X, 1 6 i 6 n}
In particular, (a] = {x ∈ A | x 6 na, for some n ∈ N}.

We denote by (a1, a2, . . . , an], the ideal of A generated by X = {a1, a2, . . . , an}.

Remark 1.4. [2] If P is a prime ideal of an MV -algebra A, then S = A− P
is an ∧-closed system. We denote A[S] by AP . The set PAP = { x

S
: x ∈ P} is

a unique maximal ideal of AP . In other words, AP is a local MV -algebra. The
process of passing from A to AP is called localization at P .

Remark 1.5. Let I and J be finitely generated ideals of an MV -algebra A.
Obviously I ∨ J = (I ∪ J ] is a finitely generated ideal.

2. Zero divisors of a subset of an MV -algebra

Definition 2.1. Let X be a nonempty subset of A. The set of all zero-divisors
of X is denoted by ZX(A) and is defined as follows:

ZX(A) = {a ∈ A : ∃0 6= x ∈ X such that x ∧ a = 0}.
Zero element of an MV -algebra is a zero-divisor, which is called trivial zero-divisor.
We denote by ZA the set of all zero-divisors of an MV -algebra A.

Notation. It can be easily shown that AnnA(X) ⊆ ZX(A).

Example 2.1. Let A = {0, a, b, c, d, 1}, where 0 < a, c < d < 1 and 0 < a <
b < 1. Define ⊙, ⊕ and ∗ as follows:

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1

⊕ 0 a b c d 1
0 0 a b c d 1
a a b b d 1 1
b b b b 1 1 1
c c d 1 c d 1
d d 1 1 d 1 1
1 1 1 1 1 1 1

∗ 0 a b c d 1
1 d c b a 0

Then (A,⊕,⊙, ∗, 0, 1) is an MV -algebra [10]. Obviously, ZA = {0, a, b, c} and
AnnA(A) = {0}.

Notation. Let A be an MV -algebra. A is without non-trivial zero divisor if
and only if A is a chain. We can easily show that an MV -algebra A is chain if and
only if for all x, y ∈ A, x ∧ y = 0, implies x = 0 or y = 0. Hence we have:

Theorem 2.1. Let A be an MV -algebra. Then I0 = {0} is prime ideal if and
only if A is a chain.

We recall that an element a of A is called idempotent if a2 = a ⊙ a, then we
can prove that if a and b are idempotent elements, then a⊙ b = a ∧ b [10].
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Theorem 2.2. Let A be a chain. Then only idempotent elements of A are 0
and 1.

Proof. Obviously 0 and 1 are idempotent elements of A. Let 0 6= e ∈ A be
idempotent. We know that e ∧ e∗ = e ⊙ e∗ = 0, since A is a chain, so e∗ = 0. It
follows that e∗∗ = 0∗ = 1. Hence e = 1. �

Remark 2.1. Let A be an MV -algebra. If a, b ∈ ZA, then a ⊕ b and a∗ may
not be zero-divisors. In Example 2.1, we have a ⊕ c = d and a∗ = d such that a
and c are zero-divisors but d is not zero-divisor of A and a∗ = d.

Theorem 2.3. Let L and K be nonempty subsets of A. Then the following
statements hold:

(1) 0 ∈ ZL(A);
(2) If L ⊆ K, then ZL(A) ⊆ ZK(A);
(3) ZL∩K(A) ⊆ ZL(A) ∩ ZK(A).
(4) If {0} is a prime ideal and L,K ∈ Id(A), then ZL∩K(A) = ZL(A) ∩

ZK(A).
(5) If L = {1}, then ZL(A) = {0},
(6) ZL∪K(A) = ZL(A) ∪ ZK(A).

Proof. (1) Since for all x ∈ L, 0 ∧ x = 0, we get 0 ∈ ZL(A)

(2) Let x ∈ ZL(A). Then there exists 0 6= l ∈ L such that x ∧ l = 0, since
L ⊆ K, we get l ∈ K. Thus ZL(A) ⊆ ZK(A).

(3) We have

a ∈ ZL∩K(A) ⇒ ∃0 6= x ∈ L ∩K such that a ∧ x = 0

⇒ 0 6= x ∈ L such that a ∧ x = 0 and x ∈ K such that a ∧ x = 0

⇒ a ∈ ZL(A) ∩ ZK(A)

(4) By (3), ZL∩K(A) ⊆ ZL(A) ∩ ZK(A). Since K,L ∈ Id(A), we get L ∩K ∈
Id(A) [4]. Now we have

a ∈ ZL(A) ∩ ZK(A) ⇒ a ∈ ZL(A) and a ∈ ZK(A)

⇒ ∃0 6= x ∈ L, a ∧ x = 0 and ∃0 6= y ∈ L, a ∧ y = 0

⇒ (a ∧ x) ∧ (a ∧ y) = a ∧ (x ∧ y) = 0.

Since x∧ y 6 x ∈ L, and x∧ y 6 y ∈ K, we obtain x∧ y ∈ L∩K and since {0} is a
prime ideal, so 0 6= x∧y. We get a ∈ ZL∩K(A). Thus ZL(A) ∩ZK(A) ⊆ ZL∩K(A).
Therefore ZL(A) ∩ ZK(A) = ZL∩K(A).

(5) It is clear.

(6) We have

a ∈ ZL∪K(A) ⇒ ∃0 6= x ∈ L ∪K such that a ∧ x = 0

⇒ 0 6= x ∈ L or 0 6= x ∈ K such that a ∧ x = 0

⇒ a ∈ ZL(A) ∪ ZK(A).
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So ZL∪K(A) ⊆ ZL(A) ∪ ZK(A).

a ∈ ZL(A) ∪ ZK(A) ⇒ a ∈ ZL(A) or a ∈ ZK(A)

⇒ ∃0 6= x ∈ L, a ∧ x = 0 or ∃0 6= y ∈ K, a ∧ y = 0

⇒ ∃0 6= x ∈ L ⊆ L ∪K, a ∧ x = 0 or

∃0 6= y ∈ K ⊆ L ∪K, a ∧ y = 0

⇒ a ∈ ZL∪K(A).

Thus ZL(A) ∪ ZK(A) ⊆ ZL∪K(A). Therefore ZL(A) ∪ ZK(A) = ZL∪K(A). �

In the following example, we show that equality in (4) is not true in general.

Example 2.2. In Example 2.1, let L = {b, d},K = {1, a, d}. Then L∩K = {d}.
Now we have ZL = ZK = {0, c}, but ZL∩K = {0}.

3. Extension and contraction ideals of MV -algebras

The following example shows that the MV -homomorphic image of an ideal is
not necessarily an ideal.

Example 3.1. Let A = {0, a, b, 1}, where 0 < a, b < 1. Define ⊙, ⊕ and ∗ as
follows:

⊙ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

⊕ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

∗ 0 a b 1
1 b a 0

Then (A,⊕,⊙, ∗, 0, 1) is an MV -algebra [10]. Consider MV -homomorphism
f : A → A such that f(0) = 0, f(a) = 1, f(b) = 0 and f(1) = 1. It is clear
I = {0, a} is an ideal of A, while f(I) = {0, 1} is not an ideal of A.

Theorem 3.1. Let A,B be MV -algebras and f : A → B be a homomorphism
of MV -algebras. If we have I ∈ Id(A), then

(f(I)] = {b ∈ B : b 6 f(a1) ⊕ f(a2) ⊕ · · · ⊕ f(an) such that a1, a2, . . . , an ∈ I}
is an ideal of B.

Proof. Obviously, 0 ∈ (f(I)]. Let x, y ∈ (f(I)]. Then there exist ai, bj ∈ I,
1 6 i 6 n, 1 6 j 6 m, such that x 6 f(a1) ⊕ f(a2) ⊕ · · · ⊕ f(an) and y 6 f(b1) ⊕
f(b2)⊕· · ·⊕f(bm), we get x⊕y 6 f(a1)⊕f(a2)⊕· · ·⊕f(an)⊕f(b1)⊕f(b2)⊕· · ·⊕
f(bm), so x⊕y ∈ (f(I)]. Let x ∈ (f(I)] and y 6 x. So there exists ai ∈ I, 1 6 i 6 n
such that x 6 f(a1)⊕f(a2)⊕· · · ⊕f(an), thus y 6 x 6 f(a1)⊕f(a2)⊕· · · ⊕f(an),
we obtain y ∈ (f(I)]. Therefore (f(I)] ∈ Id(B). �

Remark 3.1. Let f : A → B be a homomorphism of MV -algebras.

(1) Let I ∈ Id(A) and J ∈ Id(B). We denoted by Ie ideal generated by f(I)
and Jc ideal f−1(J), which Ie is called, extension ideal of I and Ic is
called contraction ideal of I.
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(2) Let I1, I2 ∈ Id(A) and J1, J2 ∈ Id(B). Obviuosly, if we have I1 ⊆ I2 and
J1 ⊆ J2, then Ie

1 ⊆ Ie
2 and Jc

1 ⊆ Jc
2 .

Theorem 3.2. Let f : A → B be a homomorphism of MV -algebras, I1, I2 ∈
Id(A) and J1, J2 ∈ Id(B). Then

(1) I1 ⊆ Iec
1 ;

(2) Jce
1 ⊆ J1;

(3) Ie
1 = Iece

1 ;
(4) Jcec

1 = Jc
1

(5) (I1 ∨ I2)e = Ie
1 ∨ Ie

2 ;
(6) (J1 ∩ J2)c = Jc

1 ∩ Jc
2 ;

(7)
√

Jc
1 = (

√
J1)c.

Proof. (1) We have x ∈ I1 ⇒ f(x) ∈ f(I1) ⊆ Ie
1 ⇒ f(x) ∈ Ie

1 ⇒ x ∈ Iec
1 .

(2) We have f(f−1(J1)) ⊆ J1 ⇒ (f(f−1(J1))] ⊆ (J1] ⇒ Jce
1 ⊆ J1.

(3) By (1), we have I1 ⊆ Iec
1 , now by Remark 3.1(2), we get Ie

1 ⊆ Iece
1 . By (2),

we have Iece
1 ⊆ Ie

1 . Therefore Ie
1 = Iece

1 .

(4) By (2), we have Jce
1 ⊆ J1, so by Remark 3.1(2), Jcec

1 ⊆ Jc
1 . By (1) on Jc

1 ,
we have Jc

1 ⊆ Jcec
1 . Therefore Jcec

1 = Jc
1 .

(5) First we show that f(I1 ∨ I2) = f(I1) ∨ f(I2). Obviously, f(I1) ∨ f(I2) ⊆
f(I1 ∨ I2). We have

b ∈ f(I1 ∨ I2) ⇒ b = f(a) such that a ∈ I1 ∨ I2

⇒ a 6 x⊕ y such that x ∈ I1, y ∈ I2 and b = f(a) 6 f(x) ⊕ f(y)

⇒ b ∈ f(I1) ∨ f(I2) ⇒ f(I1 ∨ I2) ⊆ f(I1) ∨ f(I2).

Therefore f(I1 ∨ I2) = f(I1) ∨ f(I2). Now we have

f(I1 ∨ I2) = f(I1) ∨ f(I2) ⊆ Ie
1 ∨ Ie

2 ⇒ (f(I1 ∨ I2)] ⊆ Ie
1 ∨ Ie

2

⇒ (I1 ∨ I2)e ⊆ Ie
1 ∨ Ie

2 .

Also, we have

I1 ⊆ I1 ∨ I2, I2 ⊆ I1 ∨ I2 ⇒ f(I1) ⊆ f(I1 ∨ I2), f(I2) ⊆ f(I1 ∨ I2)

⇒ Ie
1 ⊆ (I1 ∨ I2)e, Ie

2 ⊆ (I1 ∨ I2)e

⇒ Ie
1 ∨ Ie

2 ⊆ (I1 ∨ I2)e.

Therefore Ie
1 ∨ Ie

2 = (I1 ∨ I2)e.
(6) We know that J1 ∩ J2 ⊆ J1 and J1 ∩ J2 ⊆ J2. Also, by Remark 3.1(2),

(J1 ∩ J2)c ⊆ Jc
1 and (J1 ∩ J2)c ⊆ Jc

2 , hence (J1 ∩ J2)c ⊆ Jc
1 ∩ Jc

2 . Let

x ∈ Jc
1 ∩ Jc

2 ⇒ x ∈ Jc
1 and x ∈ Jc

2 ⇒ f(x) ∈ J1 and f(x) ∈ J2

⇒ f(x) ∈ J1 ∩ J2 ⇒ x ∈ (J1 ∩ J2)c ⇒ Jc
1 ∩ Jc

2 ⊆ (J1 ∩ J2)c.

Therefore Jc
1 ∩ Jc

2 = (J1 ∩ J2)c.

(7) By Definitions 1.5 and 1.9 , we have
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x ∈ (
√

J1)c ⇔ f(x) ∈ (
√

J1) ⇔ f(x) ⊙ nf(x) ∈ J1, ∀n ∈ N

⇔ f(x⊙ nx) ∈ J1 ⇔ x⊙ nx ∈ f−1(J1) = Jc
1 , ∀n ∈ N

⇔ x ∈
√

Jc
1 �

Theorem 3.3. Let A be an MV -algebra, PS : A → A[S] be homomorphism
MV -algebra, I ∈ Id(A) and {0} ∈ Spec(A). Then Ie =

{

λ ∈ A[S] : λ = x
S
, x ∈ I

}

.

Proof. Let λ ∈ Ie. Then we have λ = x
S

such that λ 6 PS(a1) ⊕ PS(a2) ⊕
· · · ⊕ PS(an) such that ai ∈ I, 1 6 i 6 n, x ∈ A. We define b := a1 ⊕ a2 ⊕ . . . an

and show that x ∈ I.
x

S
6 PS(a1) ⊕ PS(a2) ⊕ · · · ⊕ PS(an)

⇒ x

S
6
a1

S
⊕ a2

S
⊕ . . .

an

S
⇒ x

S
6
a1 ⊕ a2 ⊕ . . . an

S
⇒ x

S
6
b

S

⇒ x

S
⊙

( b

S

)∗

=
0

S
⇒ ∃e ∈ B(A) ∩ S such that (x⊙ b∗) ∧ e = 0 ∧ e = 0

⇒ x⊙ b∗ = 0 (Since {0} is a prime ideal of A)

⇒ x 6 b ⇒ x ∈ I �

Lemma 3.1. Let A be an MV -algebra and PS : A → A[S] be homomorphism
MV -algebra and Q ∈ Id(A), {0} ∈ Spec(A) such that B(A) ∩ S ∩ Q 6= ∅. Then
Qe = A[S].

Proof. Suppose that x ∈ B(A) ∩ S ∩Q. By Theorem 3.3, we obtain x
S

∈ Qe.

Since x ∧ x = 1 ∧ x, we get 1
S

= x
S

. Hence 1
S

∈ Qe. Thus Qe = A[S]. �

Theorem 3.4. Let A be an MV -algebra and PS : A → A[S] be homomorphism
MV -algebra, ρ ∈ Spec(A[S]), and 0 ∈ Spec(A). Then

(1) ρ = ρce. (2) B(A) ∩ S ∩ ρc = ∅.

Proof. (1) Let x ∈ ρ. Then x = a
S

such that a ∈ A. We get PS(a) = a
S

= x ∈
ρ, then a ∈ ρc. It follows from Theorem 3.3 that x ∈ ρce. Then we obtain ρ ⊆ ρce.
By Theorem 3.2(2), we have ρce ⊆ ρ. Therefore ρ = ρce

(2) Let B(A) ∩ S ∩ ρc 6= ∅. Since ρ ∈ Spec(A[S]), by Theorem 1.1, we imply
ρc ∈ Spec(A). Now by (1) and Lemma 3.1, we have ρce = ρ = A[S], which is a
contradiction. �

Theorem 3.5. Let A be an MV -algebra. PS : A → A[S] is homomorphism
MV -algebra such that Q ∈ Id(A), {0} ∈ Spec(A) and B(A) ∩ S ∩Q = ∅. Then

(1) Qec = Q, (2) Qe ∈ Spec(A[S]).

Proof. (1) By Theorem 3.2(1), we get Q ⊆ Qec. Let a ∈ Qec. Then PS(a) =
a
S

∈ Qe, by Theorem 3.3, we get a ∈ Q. So Qec ⊆ Q. Therefore Qec = Q.
(2) We must show that Qe $ A[S]. Let Qe = A[S]. Then Qec = (A[S])c by

(1), we have Q = Qec = (A[S])c = A, which is a contradiction. Let a
S
, b

S
∈ A[S]

such that a
S

∧ b
S

∈ Qe. It follows from Theorem 3.3 that

a

S
∧ b

S
=
a ∧ b

S
∈ Qe ⇒ a ∧ b ∈ Q ⇒ a ∈ Q or b ∈ Q ⇒ a

S
∈ Qe or

b

S
∈ Qe �
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4. Extensions of MV -algebras

Definition 4.1. Let B be subalgebra of MV -algebra A. Then A is an exten-
sion of B, and B →֒ A, is called an inclusion.

Theorem 4.1. Let B →֒ A be an inclusion of MV -algebras. Then for each
P ∈ Spec(B), there exists Q ∈ Min(A) such that Q ∩ B ⊆ P . Furthermore, if
P ∈ Min(B), then there exists Q ∈ Min(A) such that P = Q ∩B.

Proof. Seting D = {Q ∈ Spec(A) : Q ∩ B ⊆ P}. By Zorn’s lemma, it is
sufficient to show that D 6= ∅. Let

ψ : B → BP , b 7→ b

S
; ϕ : A → AP , a 7→ a

S
; φ : BP → AP , b 7→ b

S
.

Let T be a maximal ideal of AP . Put Q = ϕ−1(T ), which by Theorem 1.1, Q is a
prime ideal of A. But φ−1(T ) is a prime ideal of BP , so φ−1(T ) ⊆ PBP . Now let
a ∈ Q ∩B. We get

a ∈ Q ⇒ ϕ(b) =
b

S
⇒ b

S
∈ φ−1(T ) ⊆ PBP ⇒ ∃t ∈ P such that

b

S
=

t

S
⇒ ∃e ∈ B(A) ∩ S such that b ∧ e = t ∧ e 6 t ∈ P

⇒ b ∧ e ∈ P (Since P is a prime ideal of A and e /∈ P )

⇒ b ∈ P.

So Q ∩B ⊆ P , it follows that D 6= ∅. We define 6 on D by

∀Q1, Q2 ∈ D; Q1 6 Q2 ⇔ Q2 ⊆ Q1.

Obviously, 6 is a partial order relation on D. Let {Qi}i∈I be a chain of elements
of D. It follows from Theorem 1.1 that

⋂

i∈I

Qi ∈ Spec(A) and

(

⋂

i∈I

Qi

)

∩B ⊆ Qi ∩B ⊆ P.

⋂

i∈I Qi is an upper bounded of chain in D, so by Zorn’s lemma, D has a maximal
element F . Now, we show that F ∈ Min(A). Let E ∈ Spec(A) such that E ⊆ F . It
follows that F 6 E, so E ∩A ⊆ F ∩B ⊆ P , hence F = E. Thus F ∈ Min(A). �

Definition 4.2. An inclusion B →֒ A of MV -algebras is called min-extension,
if for all P ∈ Min(A), P ∩ B ∈ Min(B). When B →֒ A is min-extension, we let
ψ : Min(A) → Min(B) be the map defined by ψ(P ) = P ∩B.

Definition 4.3. Let S = {a ∈ A : a /∈ ZA}. Obviously S is a ∧-closed system
of A. A[S] is called classic MV -algebra and we denote it by q(A).

Example 4.1. If {0} is a prime ideal of an MV -algebra A, then extension
A →֒ q(A) is a min-extension. Let ρ ∈ Min(q(A)). By Theorem 1.1, ρ∩A ∈ Spec(A)
and by Theorem 3.4(1), we have ρce = ρ. If ρ ∩ A /∈ Min(A), then there exists
Q ∈ Spec(A) such that Q $ ρ∩A, so Qe $ ρce = ρ. But Q ∈ Spec(A), we consider
two cases.

Case 1. If Q ∩ S ∩B(A) = ∅, then by Theorem 3.5(2), Qe ∈ Spec(q(A)). On
the other hand Qe $ ρ, which is a contradiction, (since ρ ∈ Min(q(A))).
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Case 2. If Q ∩ S ∩ B(A) 6= ∅, then by Lemma 3.1, we get Qe = q(A). So
q(A) $ ρ, which is a contradiction. Therefore ρ ∩A ∈ Min(A).

Theorem 4.2. The inclusion of MV -algebras B →֒ A is a min-extension if
and only if whenever P ∈ Min(A) and b ∈ P ∩B, then there exists a ∈ B−P such
that a ∧ b = 0.

Proof. Let B →֒ A be a min-extension, P ∈ Min(A) and b ∈ P ∩ B. Then
P ∩ B ∈ Min(B). By Theorem 1.4, AnnB(b) * P ∩ B, we get that there exists
a ∈ AnnA(b) such that a /∈ P ∩B. Hence there exists a ∈ B−P such that a∧b = 0.

Conversely, let P ∈ Min(A) and P ∩B /∈ Min(B). By Theorem 1.3, there exists
b ∈ P ∩B such that for all a ∈ B − P , a ∧ b 6= 0, which is a contradiction. �

Theorem 4.3. Let B →֒ A be a min-extension of MV -algebra. Then ψ : Min(A)
→ Min(B) by ψ(P ) = P ∩B is continuous with respect to both the spectral topology
and the inverse topology.

Proof. Let I be an ideal of B and b ∈ B. Then

ψ−1(VB(I)) = {P ∈ Min(A) : I ⊆ P} = VA(I),

ψ−1(UB(a)) = {P ∈ Min(A) : b /∈ P} = UA(b).

We get that map ψ is continuous with respect to both the spectral and the inverse
topologies. �

Definition 4.4. (1) An inclusion B →֒ A is a good extension, if for each a ∈ A,
then there exists b ∈ B such that AnnA(a) = AnnA(b).

(2) An inclusion B →֒ A is an f -extension, if for each P ∈ Min(A) and each
a ∈ A− P , there exists b ∈ B − P such that AnnA(a) ⊆ AnnA(b).

(3) An inclusion B →֒ A is f∗-extension, if for each P ∈ Min(A) and each
a ∈ P then there exists b ∈ B ∩ P such that AnnA(b) ⊆ AnnA(a).

In the above definitions, if one replaces the term b with a finitely generated
ideal of A, then one gets the notions of quasi good extension, quasi f -extension,
and quasi f∗-extension.

Example 4.2. Consider extension of an MV -algebra in Example 3.1. Since
for all x ∈ A, there exists y ∈ B2 such that AnnA(x) = AnnA(y), we get B2 →֒ A
is a good extension. But AnnA(b) 6= AnnA(0) and AnnA(b) 6= AnnA(1), we obtain
B1 →֒ A is not a good extension. We have

A− I1 = {a, b, d, 1}, A− I2 = {c, d, 1},
B2 − I1 = {b, 1}, B2 − I2 = {c, 1}, B1 − I2 = {1},

I1 ∩B1 = I2 ∩B1 = {0}, I1 ∩B2 = {0, c}, I2 ∩B2 = {0, b}.
Obviously, B2 →֒ A is an f -extension and since AnnA(c) * AnnA(1), and AnnA(0)
= A * AnnA(a), we get B1 →֒ A is not f -extension and f∗-extension.

Theorem 4.4. Let B →֒ A and A →֒ C be two inclusions of MV -algebras.
Then B →֒ C is a good extension if and only if B →֒ A and A →֒ C are good
extensions.
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Proof. Let B →֒ C be a good extension and a ∈ A. Since A is a subalgebra
of C, so there exists b ∈ B such that AnnC(a) = AnnC(b). Since A is a subalgebra
of C, we conclude AnnA(a) = AnnA(b). Hence B →֒ A is a good extension.

Now, let x ∈ C. Since B →֒ C is a good extension, there exists y ∈ B such that
AnnC(x) = AnnC(y). Since B is a subalgebra of A, we obtain y ∈ A, it follows
that A →֒ C is a good extension.

Conversely, let B →֒ A and A →֒ C be good extensions. Suppose that x ∈ C.
Since A →֒ C is a good extension, there exists y ∈ A such that AnnC(x) = AnnC(y).
On the other hand B →֒ A is a good extension, so there exists z ∈ B such that
AnnA(y) = AnnA(z). Now we show that AnnC(x) = AnnC(z). Let α ∈ AnnC(x)
and α /∈ AnnC(z). We have

α /∈ AnnC(z) ⇒ α /∈ AnnA(z) ⇒ α /∈ AnnA(y),

which is a contradiction. Thus AnnC(x) ⊆ AnnC(z).
Let β ∈ AnnC(z) and β /∈ AnnC(x). We have

β /∈ AnnC(x) ⇒ β /∈ AnnC(y) ⇒ β /∈ AnnA(y) ⇒ β /∈ AnnA(z) ⇒ β /∈ AnnC(z),

which is a contradition. Then AnnC(z) ⊆ AnnC(x). Therefore AnnC(x) =
AnnC(z) and so B →֒ C is a good extension. �

Theorem 4.5. A (quasi) good extension is both (quasi) f -extension and f∗-
extension.

Proof. Let B →֒ A be a good extension. So for every a ∈ A, there exists
b ∈ B such that AnnA(a) = AnnA(b). Let P ∈ Min(A). We consider two cases:

Case 1. Let a ∈ A − P . It follows from Theorem 1.4 that AnnA(b) =
AnnA(a) ⊆ P , by Theorem 1.4, we have b ∈ B − P , so B →֒ A is an f -extension.

Case 2. Let a ∈ P . By Theorem 1.4, AnnA(b) = AnnA(a) * P , by Theorem
1.4, b ∈ P , we get B →֒ A is a f∗-extension. �

Lemma 4.1. Let A be an MV -algebra. For every P ∈ Spec(A), there exists
F ∈ Min(A) such that F ⊆ P .

Proof. Let D = {Q ∈ Spec(A) : Q ⊆ P}. First we show that D 6= ∅. Since
P ∈ Spec(A) and P ⊆ P , it follows that D 6= ∅. We define 6 on D by

∀Q1, Q2 ∈ D; Q1 6 Q2 ⇔ Q2 ⊆ Q1.

Obviously, 6 is a partial order relation on D. Let {Qi}i∈I be a chain of elements
of D and

⋂

i∈I Qi ∈ Spec(A). We get
⋂

i∈I Qi is an upper bounded of chain in
D, so by Zorn’s lemma, D has a maximal element F . We show that F ∈ Min(A).
Let there exist E ∈ Spec(A) such that E ⊆ F . It follows that F 6 E. Since F is
maximal of D, so F = E. Thus F ∈ Min(A). �

Theorem 4.6. Let B →֒ A be an f -extension of MV -algebras. Then map
ψ : Min(A) → Min(B) by ψ(P ) = P ∩B is a bijection map.

Proof. We first show that map ψ is a well defined map. Let P ∈ Min(A) but
P ∩B /∈ Min(B). By Lemma 4.1, there exists Q ∈ Min(B) such that Q $ P ∩B. By
Theorem 4.1, there exists U ∈ Min(A) such that Q = U ∩B. Since U,P ∈ Min(A),
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without loss of generality, we can let U * P , this means there exists x ∈ U −P and
by hypothesis, there exists y ∈ B−P such that AnnA(x) ⊆ AnnA(y). By Theorem
1.4, AnnA(x) * U , hence AnnA(y) * U . So there exists e ∈ AnnA(y) such that
e /∈ U , but 0 = y∧ e ∈ U . Thus y ∈ U . Hence y ∈ U ∩B = Q, and so y ∈ P , which
is a contradiction.

Now, we show that map ψ is an injection map. Let P,Q ∈ Min(A) such that
P 6= Q. Without loss of generality choose x ∈ P −Q and by hypothesis there exists
y ∈ B − Q such that AnnA(x) ⊆ AnnA(y). But x ∈ P , by Theorem 1.4, we have
AnnA(x) * P , hence AnnA(y) * P . So there exists e ∈ AnnA(y) such that e /∈ P
and since 0 = y ∧ e ∈ P , thus y ∈ P , we get y ∈ B ∩ P but y /∈ B ∩ Q. Thus
P ∩B 6= Q ∩B. Therefore map ψ is one to one. It follows from Theorem 4.1 that
map ψ is surjective. �

Corollary 4.1. An f -extension of MV -algebras is a min-extension.

Remark 4.1. Let A be an MV -algebra and a ∈ A. Obviously, AnnA((a]) =
AnnA(a).

Theorem 4.7. An extension B →֒ A is an f -extension if and only if it is a
quasi f -extension.

Proof. Let B →֒ A be an f -extension and P ∈ Min(A) and a ∈ A − P . So
there exists b ∈ B − P . Such that AnnA(a) ⊆ AnnA(b). Let I = (b]. By Remark
4.1, we get AnnA(I) = AnnA(b), hence AnnA(a) ⊆ AnnA(I). Thus B →֒ A is a
quasi f -extension.

Conversely, let B →֒ A be a quasi f -extension, P ∈ Min(A) and a ∈ A − P .
Hence there exists finitely generated ideal I of B such that I * P and AnnA(a) ⊆
AnnA(I). Since I * P , so there exists x ∈ I such that x /∈ P , clearly AnnA(I) ⊆
AnnA(x). Hence there exists x ∈ B−P . Such that AnnA(a) ⊆ AnnA(x). Therefore
B →֒ A is an f -extension. �

Remark 4.2. [9] A homeomorphism is a continuous and bijection function
between topological space that has a continuous inverse function.

Theorem 4.8. An extension B →֒ A is an f -extension of MV -algebras if and
only if ψ : Min(A) → Min(B) by ψ(P ) = P ∩B with respect to the spectral topology
is a homeomorphism.

Proof. Let B →֒ A be an f -extension of MV -algebras. By Corollary 4.1 and
Therorem 4.3, we get map ψ with respect to the spectral topology is continuous and
by Theorem 4.6, map ψ is bijection. Let a ∈ A. We have ψ(UA(a)) = {P ∩B : P ∈
Min(A), a /∈ P}. Let P ∩B ∈ ψ(UA(a)). Then a /∈ P . By hypothesis there exists
b ∈ B − P . Such that AnnA(a) ⊆ AnnA(b). Hence P ∩B ∈ UB(b) so ψ(UA(a)) ⊆
UB(b). Now, let M ∈ UB(b). Then by Theorem 4.1, there exists Q ∈ Min(A)
such that M = Q ∩ B. Since b /∈ M , we get b /∈ Q. Hence AnnA(b) ⊆ Q. But
AnnA(a) ⊆ AnnA(b) ⊆ Q, by Theorem 1.4, we obtain a /∈ Q. Hence Q ∈ UA(a), so
M = Q∩B ∈ ψ(UA(a)). We get UB(b) ⊆ ψ(UA(a)). Therefore UB(b) = ψ(UA(a)).
Hence ψ is an open map.
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Conversely, let P ∈ Min(A), a ∈ A − P . Then P ∈ UA(a). Since map ψ
is a homeomorphism, ψ(UA(a)) is a subset open of Min(B). Hence there exists
I ∈ Id(B) such that UB(I) = ψ(UA(a)). But P ∈ UA(a), so ψ(P ) = P ∩B ∈ UB(I),
thus I * P , so there exists b ∈ I such that b /∈ P . We show that AnnA(a) ⊆
AnnA(b). Let x ∈ AnnA(a). Then x ∈ A and x∧ a = 0. Suppose Q ∈ Min(A). We
consider two cases:

Case 1. Let Q ∈ VA(b). Then b ∈ Q, Since b ∧ x 6 b, we obtain b ∧ x ∈ Q.
Case 2. Let Q ∈ UA(b). Then b /∈ Q, hence I * Q. Since I ⊆ B and I * Q,

we have I * Q ∩ B. Thus ψ(Q) = Q ∩ B ∈ UB(I) = ψ(UA(a)). But map ψ is
bijection, then a /∈ Q. Since a ∧ x = 0, we get x ∈ Q. Since x ∈ Q and b ∧ x 6 x,
we obtain b ∧ x ∈ Q. Hence for every Q ∈ Min(A), b ∧ x ∈ Q. By Lemma 1.6,
we obtain b ∧ x = 0. Therefore x ∈ AnnA(b). Hence B →֒ A is an f -extension of
MV -algebras. �

Corollary 4.2. B →֒ A is a quasi f -extension of MV -algebras if and only if
ψ : Min(A) → Min(B) by ψ(P ) = P ∩ B with respect to the spectral topology is a
homeomorphism.

Theorem 4.9. Suppose that B →֒ A is an f -extension of MV -algebras. B →֒
A is a good extension if and only if ψ : Min(A) → Min(B) by ψ(P ) = P ∩B, maps
basis open sets to basis open sets, with respect to the spectral topology.

Proof. Let B →֒ A be an f -extension of MV -algebras. Hence for every a ∈ A,
there exists b ∈ B such that AnnA(a) = AnnA(b). We show that ψ(UA(a)) = UA(b).
Let P ∈ Min(A) and a ∈ A−P . Then P ∈ UA(a) and ψ(P ) = P ∩B ∈ Min(B). By
Theorem 1.4, we get AnnA(a) = AnnA(b) ⊆ P , and so by Theorem 1.4, we conclude
b /∈ P . Then b /∈ P ∩ B, that is, P ∩ B ∈ UB(b). Hence ψ(UA(a)) ⊆ UB(b). Let
M ∈ UB(b). We get M ∈ Min(B) and b /∈ M , so by Theorem 4.1, there exists
Q ∈ Min(A) such that ψ(Q) = Q ∩ B = M . If a ∈ Q, then by Theorem 1.4,
AnnA(a) * Q and Since AnnA(a) ⊆ AnnA(b), we have AnnA(a) ⊆ AnnA(b) * Q
and by Theorem 1.4, we have b ∈ Q. Hence b ∈ M , which is a contradiction.
So a /∈ Q, that is, Q ∈ UA(a). But ψ(Q) = M , we get M ∈ ψ(UA(a)), hence
UB(b) ⊆ ψ(UA(a)). Therefore ψ(UA(a)) = UB(b).

Conversely, let a ∈ A. By hypothesis, there exists b ∈ B such that ψ(UA(a)) =
UB(b). We show that AnnA(a) = AnnA(b). Let P ∈ Min(A). We consider two
cases:

Case 1. Let P ∈ UA(a). By hypothesis, we get ψ(P ) = P ∩ B ∈ UB(b), so
b /∈ P ∩ B, by Theorem 1.4, we get AnnA(b) ⊆ P and AnnA(a) ⊆ P . Since for
all x ∈ AnnA(a) and y ∈ AnnA(b), we have x ∧ b 6 x and y ∧ a 6 y, we obtain
a ∧ AnnA(b) ⊆ P and b ∧ AnnA(a) ⊆ P .

Case 2. Let P ∈ VA(a). By hypothesis, we conclude ψ(P ) = P ∩ B ∈ VB(b),
hence b ∈ P ∩ B. By Theorem 1.4, we get AnnA(b) * P and AnnA(a) * P . Since
for all x ∈ AnnA(a) and y ∈ AnnA(b), we have x ∧ b 6 b and y ∧ a 6 a, hence
a ∧ AnnA(b) ⊆ P and b ∧ AnnA(a) ⊆ P .

We imply that for all P ∈ Min(A), a∧ AnnA(b) ⊆ P and b∧ AnnA(a) ⊆ P . By
Lemma 1.6, we obtain a ∧ AnnA(y) = b ∧ AnnA(a) = 0. Let x ∈ AnnA(a). Then
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b ∧ x = 0, and so x ∈ AnnA(b), thus AnnA(a) ⊆ AnnA(b). By similar way, we can
obtain AnnA(b) ⊆ AnnA(a). We get AnnA(a) = AnnA(b). Therefore B →֒ A is a
good extension of MV -algebras. �

Lemma 4.2. Let B →֒ A be a extension of MV -algebras. For every P ∈ Min(A)
and finitely generated ideal I of B, I ⊆ P ∩B if and only if AnnA(I) * P .

Proof. Let I ⊆ P ∩ B and J = Ie. Hence J ⊆ P , It follows from Theorem
1.4 that AnnA(J) * P . By Remark 4.1, we get AnnA(J) = AnnA(I), and so
AnnA(I) * P .

Conversely, let AnnA(I) * P . Then there exists α ∈ AnnA(I) such that α /∈ P .
We get α ∧ I = 0. Thus I ⊆ P . Therefore I ⊆ P ∩B. �

Theorem 4.10. Let B →֒ A be a quasi f∗-extension of MV -algebras. Then
map ψ : Min(A) → Min(B) by ψ(P ) = P ∩B is a bijection.

Proof. First, we show that map ψ is well defined. Let P ∈ Min(A). Then
ψ(P ) = P ∩ B ∈ Spec(B). Suppose that there exists Q ∈ Min(B) such that
Q $ P ∩ B. By Theorem 4.1, there exists M ∈ Min(A) such that Q = M ∩ B. If
M 6= P , then by hypothesis for every a ∈ M − P , there exists finitely generated
ideal I of B such that I ⊆ M ∩ B and AnnA(I) ⊆ AnnA(a), since I ⊆ Q ⊆ P ,
by Lemma 4.2, we obtain AnnA(I) * P . Hence AnnA(a) * P , so there exists
x ∈ AnnA(a) such that x /∈ P . Since x∧ a = 0 and x /∈ P , we conclude that a ∈ P ,
which is a contradiction. Thus M = P and ψ(P ) = P ∩ B ∈ Min(B). Now, we
show that map ψ is injection. Let P,Q ∈ Min(A) such that P 6= Q. Without loss
of generality, let a ∈ P − Q. By hypothesis, there exists finitely generated ideal I
of B such that I ⊆ P ∩B and AnnA(I) ⊆ AnnA(a). Since a /∈ Q, by Theorem 1.4,
AnnA(a) ⊆ Q. Hence AnnA(I) ⊆ Q and by Lemma 4.2, we deduce that I * Q∩B.
Hence there exists r ∈ I −Q such that r ∈ P ∩B −Q ∩B. So P ∩B 6= Q ∩B. It
is follows ψ(P ) 6= ψ(Q). By Theorem 4.1, we imply that ψ is surjective. Therefore
map ψ is bijective. �

Corollary 4.3. Every quasi f∗-extension B →֒ A of MV -algebras, is a min-
extension.

Theorem 4.11. Suppose B →֒ A is a extension of MV -algebras. A is a quasi
f∗-extension of B if and only if map ψ : Min(A) → Min(B) by ψ(P ) = P ∩B with
respect to the inverse topology is a homeomorphism.

Proof. Let B →֒ A be a quasi f∗-extension of MV -algebras. By Theorem
4.10, map ψ is bijection and by Theorem 4.3 map ψ is continuous respect to inverse
topology. Now we prove that ψ−1 is continuous. Let a ∈ A and Q ∈ ψ(VA(a)).
Then there exists P ∈ VA(a) such that ψ(P ) = P ∩ B = Q. By hypothesis there
exists finitely generated ideal I of B such that I ⊆ P ∩ B = Q and AnnA(I) ⊆
AnnA(a). Hence Q ∈ VB(I), that is, ψ(VA(a)) ⊆ VB(I). Let M ∈ VB(I). We
get M ∈ Min(B) and I ⊆ M . By Theorem 4.1, there exists T ∈ Min(A) such
that T ∩ B = M , so I ⊆ T . It follows from Theorem 1.4 that AnnB(b) ⊆ T . So
AnnA(a) * T , by Theorem 1.4, we get a ∈ T . Hence M = T ∩B ∈ ψ(VA(a)), and
so VB(I) ⊆ ψ(VA(a)). Therefore ψ(VA(a)) = VB(I).
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Conversely, let map ψ respect to the inverse topology be a homeomorphism.
Suppose P ∈ Min(A) and a ∈ P . Since VA(a) is an open subset of Min−1(A), so

ψ(VA(a)) is a open subset of Min−1(B) such that P ∩ B ∈ ψ(VA(a)). Since map
ψ is open, there exists finitely generated ideal I of B such that P ∩ B ∈ VB(I) =
ψ(VA(a)). We show that AnnA(I) ⊆ AnnA(a). Let t ∈ AnnA(I) and Q ∈ Min(A).
We consider two cases:

Case 1. Let a ∈ Q, since a ∧ t 6 a, we get a ∧ t 6 Q.
Case 2. Let a /∈ Q, hence Q /∈ VA(a). Since map ψ is bijection, we obtain

Q ∩ B /∈ ψ(VA(a)). Hence we get Q ∩ B /∈ VB(I). Thus I * Q ∩ B. Then I * Q.
If x ∈ AnnA(I) then 0 = x∧ I ⊆ Q, that is, x ∈ Q. Hence AnnA(I) ⊆ Q, so t ∈ Q.
Since a ∧ t 6 t, we have a ∧ t ∈ Q.

Therefore for all Q ∈ Min(A), a∧ t ∈ Q. By Lemma 4.2, we have a∧ t = 0. So
t ∈ AnnA(a). Hence AnnA(I) ⊆ AnnA(a). �

Theorem 4.12. Let B →֒ A be a quasi f∗-extension of MV -algebras. Then
B →֒ A is a quasi good extension if and only if ψ : Min(A) → Min(B) by ψ(P ) =
P ∩B, maps basis open sets to inverse topology basis open sets, with respect to the
inverse topology.

Proof. Let B →֒ A be a quasi f∗-extension. By Corollary 4.3, map ψ is well
defined. Let J = (a1, a2, . . . , an] be a finitely generated ideal of A. So for every
1 6 i 6 n, there exists a finitely generated ideal Ii of B such that AnnA(Ii) =
AnnA(ai). Let I = I1 ∨ I2 ∨ · · · ∨ In. By Remark 1.5, I is a finitely generated ideal.
We show that ψ(VA(J)) = VB(I). Let P ∈ VA(J), hence ψ(P ) = P ∩B ∈ ψ(VA(J))
and J ⊆ P . By Theorem 1.4, for every 1 6 i 6 n, AnnA(ai) * P , so AnnA(Ii) * P ,
we obtain there exists x ∈ AnnA(Ii) such that x /∈ P . Since x ∧ Ii = 0 and x /∈ P ,
we have Ii ⊆ P . Hence I ⊆ P ∩ B. We get P ∩ B ∈ VB(I), it follows that
ψ(VA(J)) ⊆ VB(I). Let Q ∈ VB(I). Then Q ∈ Min(B) and I ⊆ Q. By Theorem
4.1, there exists P ∈ Min(A) such that Q = P ∩ B, hence I ⊆ P . By Theorem
1.4, AnnA(I) * P , so for every 1 6 i 6 n,AnnA(Ii) * P , thus AnnA(ai) * P .
We get that there exists x ∈ AnnA(ai) such that x /∈ P . Obviously ai ∈ P , hence
J ⊆ P . So we have P ∈ VA(J) and ψ(P ) = P ∩B = Q. Hence VB(I) ⊆ ψ(VA(J)).
Therefore VB(I) = ψ(VA(J)).

Conversely, let a ∈ A. Put J = (a]. By hypothesis, there exists finitely
generated ideal I of B such that ψ(VA(J)) = VB(I). We show that AnnA(a) =
AnnA(I). Let P ∈ Min(A). We consider two cases:

Case 1. Let P ∈ UA(I). Then ψ(P ) = P ∩ B ∈ UB(I), we get a /∈ P and
I * P ∩ B. By Theorem 1.4, we obtain AnnA(a) ⊆ P and AnnA(I) ⊆ P . We
know that for every x ∈ AnnA(I), α ∈ I and y ∈ AnnA(a), we have a ∧ x 6 x and
α ∧ y 6 y. Hence a ∧ x ∈ P and α ∧ y ∈ P .

Case 2. Let P ∈ VA(I). Then ψ(P ) = P ∩B ∈ VB(I), we deduce that a ∈ P
and I ⊆ P ∩ B. By Theorem 1.4, we get AnnA(a) * P and AnnA(I) * P . We
know that for every x ∈ AnnA(I), we have α ∈ I and y ∈ AnnA(a), a ∧ x 6 a and
α ∧ y 6 α. Hence a ∧ x ∈ P and α ∧ y ∈ P .

Therefore for every P ∈ Min(A), we get a ∧ AnnA(I) ⊆ P and I ∧ AnnA(a) ⊆
P . By Lemma 1.6, we have a ∧ AnnA(I) = 0 and I ∧ AnnA(a) = 0. Now, we



SOME RESULTS IN TYPES OF EXTENSIONS OF MV -ALGEBRAS 177

show that AnnA(a) = AnnA(I). Let x ∈ AnnA(a). Then x ∧ I = 0, we get
x ∈ AnnA(I). Hence AnnA(a) ⊆ AnnA(I). Similarly, AnnA(I) ⊆ AnnA(a), we
conclude AnnA(a) = AnnA(I). �
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