SOME RESULTS IN TYPES OF EXTENSIONS OF $M V$-ALGEBRAS

F. Forouzesh, F. Sajadian, and M. Bedrood

Abstract

We introduce the notions of zero divisor and extension, contraction of ideals in $M V$-algebras and several interesting types of extensions of $M V$-algebras. In particular, we show what kinds of extensions $M V$-algebras will lead in a homeomorphism of the spectral topology and inverse topology on minimal prime ideals. Finally, we investigate the relations among types of extensions of $M V$-algebras.

1. Introduction and preliminaries

Chang introduced $M V$-algebras to provide algebraic semantics for Łukasiewicz in finite-valued propositional logic [3]. Also, Busneag and Piciu introduced \wedge closed systems of an $M V$-algebra and they introduced the notion of $M V$-algebra of fractions and proved constructively the existence of a maximal $M V$-algebra of quotients [2].

Eslami introduced prime spectrum of a $B L$-algebra and investigated some properties of them [5]. Forouzesh et al. introduced the spectral topology and quasispectral topology of prime A-ideals in $M V$-modules and proved some properties of them. They showed that the set of all prime A-ideals in an $M V$-module is Hausdorff and disconnected [6. Forouzesh et al. introduced the inverse topology on $\operatorname{Min}(A)$ and proved that it is compact, Hausdorff space, T_{0}-space and T_{1}-space [8].

In this paper, the set of all zero divisors of an $M V$-algebra A, is denoted by Z_{A} and the relation between zero divisors and the chain $M V$-algebra A is studied. In addition, we show that if A is a chain, then only idempotent elements of A are 0 and 1 .

Also, we prove that if A is an $M V$-algebra, $P_{S}: A \rightarrow A[S]$ is a homomorphism $M V$-algebra, $I \in \operatorname{Id}(A)$ and $\{0\} \in \operatorname{Spec}(A)$, then $I^{e}=\left\{\lambda \in A[S]: \lambda=\frac{x}{S}, x \in I\right\}$. Also, we define min-extension of $M V$-algebras and prove that if $B \hookrightarrow A$ is a min-extension of $M V$-algebras, then $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$ is continuous with respect to both the spectral topology and the inverse topology.

[^0]We define good extension, f-extension, f^{*}-extension , quasi good extension, quasi f-extension and quasi f^{*}-extension of $M V$-algebras and prove that good extension of $M V$-algebras has property violations. Furthermore, we show that A is an f-extension of $M V$-algebra B if and only if map of $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$ with respect to the spectral topology is a homeomorphism.

Also, we show that A is a quasi f^{*}-extension of an $M V$-algebra B if and only if $\operatorname{map} \psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$ with respect to the inverse topology is a homeomorphism.

We recollect some definitions and results which will be used in the following:
Definition 1.1. 3 An $M V$-algebra is a structure $(A, \oplus, *, 0)$ where \oplus is a binary operation, $*$, is a unary operation, and 0 is a constant such that the following axioms are satisfied for any $a, b \in A$:

$$
\begin{array}{ll}
\text { (MV1) }(A, \oplus, 0) \text { is an Abelian monoid, } & \text { (MV3) } 0^{*} \oplus a=0^{*}, \\
(\text { MV2 })\left(a^{*}\right)^{*}=a, & (\mathrm{MV} 4)\left(a^{*} \oplus b\right)^{*} \oplus b=\left(b^{*} \oplus a\right)^{*} \oplus a .
\end{array}
$$

Note that we have $1=0^{*}$ and the auxiliary operation \odot which are as follows:

$$
x \odot y=\left(x^{*} \oplus y^{*}\right)^{*} .
$$

We recall that the natural order determines a bounded distributive lattice structure such that

$$
x \vee y=x \oplus\left(x^{*} \odot y\right)=y \oplus\left(x \odot y^{*}\right) \quad \text { and } \quad x \wedge y=x \odot\left(x^{*} \oplus y\right)=y \odot\left(y^{*} \oplus x\right)
$$

We recall that an element $a \in A$ is complemented if there is an element $b \in A$ such that $a \vee b=1$ and $a \wedge b=0$.

Definition 1.2. 3] A subalgebra of an $M V$-algebra A is a subset B of A containing the zero element of A, that it is closed under the operations of A and is equipped with the restriction to B of these operations.

Lemma 1.1. 4 In each $M V$-algebra, the following relations hold for all $x, y, z \in A$:
(1) $x \leqslant y$ if and only if $y^{*} \leqslant x^{*}$,
(2) If $x \leqslant y$, then $x \oplus z \leqslant y \oplus z$ and $x \odot z \leqslant y \odot z, x \wedge z \leqslant y \wedge z$,
(3) $x \leqslant y$ if and only if $x^{*} \oplus y=1$ if and only if $x \odot y^{*}=0$,
(4) $x, y \leqslant x \oplus y$ and $x \odot y \leqslant x, y, x \leqslant n x=x \oplus x \oplus \cdots \oplus x$ and $x^{n}=$ $x \odot x \odot \cdots \odot x \leqslant x$,
(5) $x \oplus x^{*}=1$ and $x \odot x^{*}=0$,
(6) If $x \leqslant y$ and $z \leqslant t$, then $x \oplus z \leqslant y \oplus t$,
(7) $x \odot(y \vee z)=(x \odot y) \vee(x \odot z)$,
(8) $x \wedge(y \oplus z) \leqslant(x \wedge y) \oplus(x \wedge z), x \wedge\left(x_{1} \oplus \cdots \oplus x_{n}\right) \leqslant\left(x \wedge x_{1}\right) \oplus \cdots \oplus\left(x \wedge x_{n}\right)$, for all $x_{1}, \ldots, x_{n} \in A$; in particular $(m x) \wedge(n y) \leqslant m n(x \wedge y)$ for every $m, n \geqslant 0$.
(9) If $e \in B(A)$, then $e \wedge e^{*}=0$, $e \vee e^{*}=1$, where $B(A)$ is the set of all complemented elements of $L(A)$ such that $L(A)$ is distributive lattice with 0 and 1 on A.

Also for any two elements $x, y \in A, x \leqslant y$ if and only if x and y satisfy condition (3) in the above lemma.

Definition 1.3. [4] An ideal of an $M V$-algebra A is a nonempty subset I of A satisfying the following conditions:
(I1) If $x \in I, y \in A$ and $y \leqslant x$, then $y \in I$,
(I2) If $x, y \in I$, then $x \oplus y \in I$.
We denote by $\operatorname{Id}(A)$ the set of all ideals of an $M V$-algebra A.
Definition 1.4. 4] Let I be an ideal of an $M V$-algebra A. Then I is a proper ideal of A, if $I \neq A$.

- 4 A proper ideal I of an $M V$-algebra A is called prime ideal if for all $x, y \in A, x \wedge y \in I$, then $x \in I$ or $y \in I$. We denote by $\operatorname{Spec}(A)$ the set of all prime ideals of an $M V$-algebra A.
- 4] An ideal I of an $M V$-algebra A is called a minimal prime ideal of A :

1) $I \in \operatorname{Spec}(A)$;
2) If there exists $Q \in \operatorname{Spec}(A)$ such that $Q \subseteq I$, then $I=Q$.

We denote by $\operatorname{Min}(A)$ the set of all prime minimal ideals of an $M V$-algebra A.
Definition 1.5. 4] Let X and Y be two $M V$-algebras. A function $f: X \rightarrow Y$ is called homomorphism of $M V$-algebras if and only if

$$
\text { (1) } f(0)=0, \quad \text { (2) } f(x \oplus y)=f(x) \oplus f(y), \quad \text { (3) } f\left(x^{*}\right)=(f(x))^{*} \text {. }
$$

Theorem 1.1. 4] Let A and B be $M V$-algebras, $f: A \rightarrow B$ be a homomorphism of $M V$-algebras and $P \in \operatorname{Spec}(B)$. Then $f^{-1}(P) \in \operatorname{Spec}(A)$. Also, the intersection of prime ideals of an $M V$-algebra is a prime ideal.

Definition 1.6. 10 A nonempty subset S of an $M V$-algebra is called \wedge closed system in A, if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

We denote by $S(A)$ the set of all \wedge-closed systems of A (clearly $1, A \in S(A)$). For $S \in S(A)$ in the $M V$-algebra A, we consider the relation θ_{S} defined by $(x, y) \in$ θ_{S} if and only if there exists $e \in S \cap B(A)$ such that $x \wedge e=y \wedge e$.

Lemma 1.2. 10$] \theta_{S}$ is a congruence on A.
For $x \in A$, we denote by $\frac{x}{S}$ the equivalence class of x relative to θ_{S} and by

$$
A[S]=\frac{A}{\theta_{S}}
$$

By $P_{S}: A \rightarrow A[S]$, we denote the canonical map defined by $P_{S}(x)=\frac{x}{S}$, for every $x \in A$. Clearly, $0=\frac{0}{S}$ and $1=\frac{1}{S}$ are in $A[S]$ and for every $x, y \in A$, we have

$$
\frac{x}{S} \oplus \frac{y}{S}=\frac{(x \oplus y)}{S}, \quad\left(\frac{x}{S}\right)^{*}=\frac{x^{*}}{S}
$$

So, P_{S} is an onto morphism of $M V$-algebras 10 .
Remark 1.1. 10 Since for every $s \in S \cap B(A), s \wedge s=s \wedge 1$, we conclude that $\frac{s}{S}=\frac{1}{S}$. Hence $P_{S}(S \cap B(A))=1$.

Theorem 1.2. 10 Let S be a \wedge-closed system of an $M V$-algebra A and $I \in \operatorname{Id}(A)$ such that $I \cap S=\emptyset$. Then there exists a prime ideal P of A such that $I \subseteq P$ and $P \cap S=\emptyset$.

Definition 1.7. 10 Let X be a nonempty subset of $M V$-algebra A. Then $\operatorname{Ann}_{A}(X)=\{a \in A: a \wedge x=0, \forall x \in X\}$ is called the annihilator of X.

Definition 1.8. [10] An $M V$-algebra A is called chain if for all $a, b \in A, a$ and b are comparable elements of A.

Remark 1.2. 10 Let A be an $M V$-algebra. Then $a \wedge a^{*}=0$, for all $a \in A$ if and only if A is Boolean algebra. It is proved $a \odot a=a$, for all $a \in A$ in an $M V$-algebra.

Note: Let A be an $M V$-algebra and I be an ideal of A. We define

$$
\begin{aligned}
& v_{A}(I)=\{P \in \operatorname{Spec}(A): I \subseteq P\} \quad u_{A}(I)=\{P \in \operatorname{Spec}(A): I \nsubseteq P\} \\
& V_{A}(I)=\operatorname{Min}(A) \cap v_{A}(I) \quad U_{A}(I)=\operatorname{Min}(A) \cap u_{A}(I) \\
& V_{A}(a)=\{P \in \operatorname{Min}(A): a \in P\} \quad U_{A}(a)=\{P \in \operatorname{Min}(A): a \notin P\}
\end{aligned}
$$

Lemma 1.3. [5] Let $\tau(A)=\{v(I): I \in \operatorname{Id}(A)\}$ and $X=\operatorname{Spec}(A)$. Then $\tau(A)$ satisfies the axioms for closed set in a topological space. Hence $\tau_{A}=\left\{u_{A}(I): I \in\right.$ $\operatorname{Id}(A)\}$ is a topology on $\operatorname{Spec}(A)$, which is called spectral topology of A.

Lemma 1.4. 1 Let A be a nonempty $M V$-algebra. Then $\beta=\left\{u_{A}(a): a \in A\right\}$ is a base for a topology on $\operatorname{Spec}(A)$.

Lemma 1.5. [8 Let A be a nonempty $M V$-algebra. The collection $\beta=\left\{V_{A}(I)\right.$: $I \in \operatorname{Id}(A)\}$ is a base for a topology on $\operatorname{Min}(A)$.

Remark 1.3. 8] The induced topology of base

$$
\beta=\left\{V_{A}(I): I \text { is finitely generated ideal of } A\right\}
$$

is called the inverse topology. When equipped with the inverse topology on $\operatorname{Min}(A)$, we shall write $\operatorname{Min}^{-1}(A)$.

Notation. $U_{A}(a)$ is called a basic open set with respect to spectral topology on $\operatorname{Min}(A)$ and $V_{A}(I)$ is a basic open set with respect to the inverse topology on $\operatorname{Min}(A)$. Obviously, $\left\{V_{A}(a): a \in A\right\}$ is a subbasis for inverse topology.

Theorem 1.3. $\mathbb{8}$ Let A be an $M V$-algebra and $P \in \operatorname{Spec}(A)$. Then $P \in$ $\operatorname{Min}(A)$ if and only if for each $x \in P$, there exists $r \in A-P$ such that $x \wedge r=0$.

Theorem 1.4. $\mathbf{8}$ Let A be an $M V$-algebra, $P \in \operatorname{Min}(A)$ and I is finitely generated ideal. Then $I \subseteq P$ if and only if $\operatorname{Ann}_{A}(I) \nsubseteq P$.

Lemma 1.6. [8] Let A be an $M V$-algebra. If we have $0 \neq x \in A$, then there exists $P \in \operatorname{Min}(A)$ such that $x \notin P$.

Definition 1.9. [7] Let A be an $M V$-algebra and $I \in \operatorname{Id}(A)$ be a proper ideal of A. Radical of an ideal I is intersection of all maximal ideals of A contain I, it is denoted by \sqrt{I}. We proved that radical of I is as follows:

$$
\sqrt{I}=\{a \in A: a \odot n a \in I, \text { for all } n \in \mathbb{N}\}
$$

Definition 1.10. $\mathbf{1 0}$ Let $X \subseteq A$. The ideal of A generated by X will be denoted by $(X]$. We have

$$
(X]=\left\{a \in A \mid a \leqslant x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}, \text { for some } n \in \mathbb{N} \text { and } x_{i} \in X, 1 \leqslant i \leqslant n\right\}
$$

In particular, $(a]=\{x \in A \mid x \leqslant n a$, for some $n \in \mathbb{N}\}$.
We denote by $\left(a_{1}, a_{2}, \ldots, a_{n}\right]$, the ideal of A generated by $X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Remark 1.4. [2] If P is a prime ideal of an $M V$-algebra A, then $S=A-P$ is an \wedge-closed system. We denote $A[S]$ by A_{P}. The set $P A_{P}=\left\{\frac{x}{S}: x \in P\right\}$ is a unique maximal ideal of A_{P}. In other words, A_{P} is a local $M V$-algebra. The process of passing from A to A_{P} is called localization at P.

Remark 1.5. Let I and J be finitely generated ideals of an $M V$-algebra A. Obviously $I \vee J=(I \cup J]$ is a finitely generated ideal.

2. Zero divisors of a subset of an $M V$-algebra

Definition 2.1. Let X be a nonempty subset of A. The set of all zero-divisors of X is denoted by $Z_{X}(A)$ and is defined as follows:

$$
Z_{X}(A)=\{a \in A: \exists 0 \neq x \in X \text { such that } x \wedge a=0\} .
$$

Zero element of an $M V$-algebra is a zero-divisor, which is called trivial zero-divisor. We denote by Z_{A} the set of all zero-divisors of an $M V$-algebra A.

Notation. It can be easily shown that $\operatorname{Ann}_{A}(X) \subseteq Z_{X}(A)$.
Example 2.1. Let $A=\{0, a, b, c, d, 1\}$, where $0<a, c<d<1$ and $0<a<$ $b<1$. Define \odot, \oplus and $*$ as follows:

\odot	0	a	b	c	d	1	\oplus	0	a	b	c	d	1
0	0	0	0	0	0	0	0	0	a	b	c	d	1
a	0	0	a	0	0	a	a	a	b	b	d	1	1
b	0	a	b	0	a	b	b	b	b	b	1	1	1
c	0	0	0	c	c	c	c	c	d	1	c	d	1
d	0	0	a	c	c	d	d	d	1	1	d	1	1
1	0	a	b	c	d	1	1	1	1	1	1	1	1

$$
\begin{array}{l|llllll}
* & 0 & a & b & c & d & 1 \\
\hline & 1 & d & c & b & a & 0
\end{array}
$$

Then $(A, \oplus, \odot, *, 0,1)$ is an $M V$-algebra 10. Obviously, $Z_{A}=\{0, a, b, c\}$ and $\mathrm{Ann}_{A}(A)=\{0\}$.

Notation. Let A be an $M V$-algebra. A is without non-trivial zero divisor if and only if A is a chain. We can easily show that an $M V$-algebra A is chain if and only if for all $x, y \in A, x \wedge y=0$, implies $x=0$ or $y=0$. Hence we have:

Theorem 2.1. Let A be an $M V$-algebra. Then $I_{0}=\{0\}$ is prime ideal if and only if A is a chain.

We recall that an element a of A is called idempotent if $a^{2}=a \odot a$, then we can prove that if a and b are idempotent elements, then $a \odot b=a \wedge b$ [10].

Theorem 2.2. Let A be a chain. Then only idempotent elements of A are 0 and 1.

Proof. Obviously 0 and 1 are idempotent elements of A. Let $0 \neq e \in A$ be idempotent. We know that $e \wedge e^{*}=e \odot e^{*}=0$, since A is a chain, so $e^{*}=0$. It follows that $e^{* *}=0^{*}=1$. Hence $e=1$.

Remark 2.1. Let A be an $M V$-algebra. If $a, b \in Z_{A}$, then $a \oplus b$ and a^{*} may not be zero-divisors. In Example 2.1 we have $a \oplus c=d$ and $a^{*}=d$ such that a and c are zero-divisors but d is not zero-divisor of A and $a^{*}=d$.

Theorem 2.3. Let L and K be nonempty subsets of A. Then the following statements hold:
(1) $0 \in Z_{L}(A)$;
(2) If $L \subseteq K$, then $Z_{L}(A) \subseteq Z_{K}(A)$;
(3) $Z_{L \cap K}(A) \subseteq Z_{L}(A) \cap Z_{K}(A)$.
(4) If $\{0\}$ is a prime ideal and $L, K \in \operatorname{Id}(A)$, then $Z_{L \cap K}(A)=Z_{L}(A) \cap$ $Z_{K}(A)$.
(5) If $L=\{1\}$, then $Z_{L}(A)=\{0\}$,
(6) $Z_{L \cup K}(A)=Z_{L}(A) \cup Z_{K}(A)$.

Proof. (1) Since for all $x \in L, 0 \wedge x=0$, we get $0 \in Z_{L}(A)$
(2) Let $x \in Z_{L}(A)$. Then there exists $0 \neq l \in L$ such that $x \wedge l=0$, since $L \subseteq K$, we get $l \in K$. Thus $Z_{L}(A) \subseteq Z_{K}(A)$.
(3) We have

$$
\begin{aligned}
a \in Z_{L \cap K}(A) & \Rightarrow \exists 0 \neq x \in L \cap K \text { such that } a \wedge x=0 \\
& \Rightarrow 0 \neq x \in L \text { such that } a \wedge x=0 \text { and } x \in K \text { such that } a \wedge x=0 \\
& \Rightarrow a \in Z_{L}(A) \cap Z_{K}(A)
\end{aligned}
$$

(4) $\operatorname{By}(3), Z_{L \cap K}(A) \subseteq Z_{L}(A) \cap Z_{K}(A)$. Since $K, L \in \operatorname{Id}(A)$, we get $L \cap K \in$ $\operatorname{Id}(A)$ 4]. Now we have

$$
\begin{aligned}
a \in Z_{L}(A) \cap Z_{K}(A) & \Rightarrow a \in Z_{L}(A) \text { and } a \in Z_{K}(A) \\
& \Rightarrow \exists 0 \neq x \in L, a \wedge x=0 \text { and } \exists 0 \neq y \in L, a \wedge y=0 \\
& \Rightarrow(a \wedge x) \wedge(a \wedge y)=a \wedge(x \wedge y)=0
\end{aligned}
$$

Since $x \wedge y \leqslant x \in L$, and $x \wedge y \leqslant y \in K$, we obtain $x \wedge y \in L \cap K$ and since $\{0\}$ is a prime ideal, so $0 \neq x \wedge y$. We get $a \in Z_{L \cap K}(A)$. Thus $Z_{L}(A) \cap Z_{K}(A) \subseteq Z_{L \cap K}(A)$. Therefore $Z_{L}(A) \cap Z_{K}(A)=Z_{L \cap K}(A)$.
(5) It is clear.
(6) We have

$$
\begin{aligned}
a \in Z_{L \cup K}(A) & \Rightarrow \exists 0 \neq x \in L \cup K \text { such that } a \wedge x=0 \\
& \Rightarrow 0 \neq x \in L \text { or } 0 \neq x \in K \text { such that } a \wedge x=0 \\
& \Rightarrow a \in Z_{L}(A) \cup Z_{K}(A)
\end{aligned}
$$

So $Z_{L \cup K}(A) \subseteq Z_{L}(A) \cup Z_{K}(A)$.

$$
\begin{aligned}
a \in Z_{L}(A) \cup Z_{K}(A) & \Rightarrow a \in Z_{L}(A) \text { or } a \in Z_{K}(A) \\
\Rightarrow & \exists 0 \neq x \in L, a \wedge x=0 \text { or } \exists 0 \neq y \in K, a \wedge y=0 \\
& \Rightarrow \exists 0 \neq x \in L \subseteq L \cup K, a \wedge x=0 \text { or } \\
& \exists 0 \neq y \in K \subseteq L \cup K, a \wedge y=0 \\
& \Rightarrow a \in Z_{L \cup K}(A)
\end{aligned}
$$

Thus $Z_{L}(A) \cup Z_{K}(A) \subseteq Z_{L \cup K}(A)$. Therefore $Z_{L}(A) \cup Z_{K}(A)=Z_{L \cup K}(A)$.
In the following example, we show that equality in (4) is not true in general.
Example 2.2. In Example 2.1, let $L=\{b, d\}, K=\{1, a, d\}$. Then $L \cap K=\{d\}$. Now we have $Z_{L}=Z_{K}=\{0, c\}$, but $Z_{L \cap K}=\{0\}$.

3. Extension and contraction ideals of $M V$-algebras

The following example shows that the $M V$-homomorphic image of an ideal is not necessarily an ideal.

Example 3.1. Let $A=\{0, a, b, 1\}$, where $0<a, b<1$. Define \odot, \oplus and $*$ as follows:

\odot	0	a	b	1
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
1	0	a	b	1

\oplus	0	a	b	1
0	0	a	b	1
a	a	a	1	1
b	b	1	b	1
1	1	1	1	1

$*$	0	a	b	1
	1	b	a	0

Then $(A, \oplus, \odot, *, 0,1)$ is an $M V$-algebra 10. Consider $M V$-homomorphism $f: A \rightarrow A$ such that $f(0)=0, f(a)=1, f(b)=0$ and $f(1)=1$. It is clear $I=\{0, a\}$ is an ideal of A, while $f(I)=\{0,1\}$ is not an ideal of A.

Theorem 3.1. Let A, B be $M V$-algebras and $f: A \rightarrow B$ be a homomorphism of $M V$-algebras. If we have $I \in \operatorname{Id}(A)$, then

$$
(f(I)]=\left\{b \in B: b \leqslant f\left(a_{1}\right) \oplus f\left(a_{2}\right) \oplus \cdots \oplus f\left(a_{n}\right) \text { such that } a_{1}, a_{2}, \ldots, a_{n} \in I\right\}
$$

is an ideal of B.
Proof. Obviously, $0 \in(f(I)]$. Let $x, y \in(f(I)]$. Then there exist $a_{i}, b_{j} \in I$, $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$, such that $x \leqslant f\left(a_{1}\right) \oplus f\left(a_{2}\right) \oplus \cdots \oplus f\left(a_{n}\right)$ and $y \leqslant f\left(b_{1}\right) \oplus$ $f\left(b_{2}\right) \oplus \cdots \oplus f\left(b_{m}\right)$, we get $x \oplus y \leqslant f\left(a_{1}\right) \oplus f\left(a_{2}\right) \oplus \cdots \oplus f\left(a_{n}\right) \oplus f\left(b_{1}\right) \oplus f\left(b_{2}\right) \oplus \cdots \oplus$ $f\left(b_{m}\right)$, so $x \oplus y \in(f(I)]$. Let $x \in(f(I)]$ and $y \leqslant x$. So there exists $a_{i} \in I, 1 \leqslant i \leqslant n$ such that $x \leqslant f\left(a_{1}\right) \oplus f\left(a_{2}\right) \oplus \cdots \oplus f\left(a_{n}\right)$, thus $y \leqslant x \leqslant f\left(a_{1}\right) \oplus f\left(a_{2}\right) \oplus \cdots \oplus f\left(a_{n}\right)$, we obtain $y \in(f(I)]$. Therefore $(f(I)] \in \operatorname{Id}(B)$.

Remark 3.1. Let $f: A \rightarrow B$ be a homomorphism of $M V$-algebras.
(1) Let $I \in \operatorname{Id}(A)$ and $J \in \operatorname{Id}(B)$. We denoted by I^{e} ideal generated by $f(I)$ and J^{c} ideal $f^{-1}(J)$, which I^{e} is called, extension ideal of I and I^{c} is called contraction ideal of I.
(2) Let $I_{1}, I_{2} \in \operatorname{Id}(A)$ and $J_{1}, J_{2} \in \operatorname{Id}(B)$. Obviuosly, if we have $I_{1} \subseteq I_{2}$ and $J_{1} \subseteq J_{2}$, then $I_{1}^{e} \subseteq I_{2}^{e}$ and $J_{1}^{c} \subseteq J_{2}^{c}$.

Theorem 3.2. Let $f: A \rightarrow B$ be a homomorphism of $M V$-algebras, $I_{1}, I_{2} \in$ $\operatorname{Id}(A)$ and $J_{1}, J_{2} \in \operatorname{Id}(B)$. Then
(1) $I_{1} \subseteq I_{1}^{e c}$;
(5) $\left(I_{1} \vee I_{2}\right)^{e}=I_{1}^{e} \vee I_{2}^{e}$;
(2) $J_{1}^{c e} \subseteq J_{1}$;
(6) $\left(J_{1} \cap J_{2}\right)^{c}=J_{1}^{c} \cap J_{2}^{c}$;
(3) $I_{1}^{e}=I_{1}^{e c e}$;
(7) $\sqrt{J_{1}^{c}}=\left(\sqrt{J_{1}}\right)^{c}$.
(4) $J_{1}^{c e c}=J_{1}^{c}$

Proof. (1) We have $x \in I_{1} \Rightarrow f(x) \in f\left(I_{1}\right) \subseteq I_{1}^{e} \Rightarrow f(x) \in I_{1}^{e} \Rightarrow x \in I_{1}^{e c}$.
(2) We have $f\left(f^{-1}\left(J_{1}\right)\right) \subseteq J_{1} \Rightarrow\left(f\left(f^{-1}\left(J_{1}\right)\right)\right] \subseteq\left(J_{1}\right] \Rightarrow J_{1}^{c e} \subseteq J_{1}$.
(3) By (1), we have $I_{1} \subseteq I_{1}^{e c}$, now by Remark 3.1(2), we get $I_{1}^{e} \subseteq I_{1}^{e c e}$. By (2), we have $I_{1}^{\text {ece }} \subseteq I_{1}^{e}$. Therefore $I_{1}^{e}=I_{1}^{\text {ece }}$.
(4) By (2), we have $J_{1}^{c e} \subseteq J_{1}$, so by Remark $3.1(2), J_{1}^{c e c} \subseteq J_{1}^{c}$. By (1) on J_{1}^{c}, we have $J_{1}^{c} \subseteq J_{1}^{c e c}$. Therefore $J_{1}^{c e c}=J_{1}^{c}$.
(5) First we show that $f\left(I_{1} \vee I_{2}\right)=f\left(I_{1}\right) \vee f\left(I_{2}\right)$. Obviously, $f\left(I_{1}\right) \vee f\left(I_{2}\right) \subseteq$ $f\left(I_{1} \vee I_{2}\right)$. We have

$$
\begin{aligned}
b \in f\left(I_{1} \vee I_{2}\right) & \Rightarrow b=f(a) \text { such that } a \in I_{1} \vee I_{2} \\
& \Rightarrow a \leqslant x \oplus y \text { such that } x \in I_{1}, y \in I_{2} \text { and } b=f(a) \leqslant f(x) \oplus f(y) \\
& \Rightarrow b \in f\left(I_{1}\right) \vee f\left(I_{2}\right) \Rightarrow f\left(I_{1} \vee I_{2}\right) \subseteq f\left(I_{1}\right) \vee f\left(I_{2}\right) .
\end{aligned}
$$

Therefore $f\left(I_{1} \vee I_{2}\right)=f\left(I_{1}\right) \vee f\left(I_{2}\right)$. Now we have

$$
\begin{aligned}
f\left(I_{1} \vee I_{2}\right)=f\left(I_{1}\right) \vee f\left(I_{2}\right) \subseteq I_{1}^{e} \vee I_{2}^{e} & \Rightarrow\left(f\left(I_{1} \vee I_{2}\right)\right] \subseteq I_{1}^{e} \vee I_{2}^{e} \\
& \Rightarrow\left(I_{1} \vee I_{2}\right)^{e} \subseteq I_{1}^{e} \vee I_{2}^{e} .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
I_{1} \subseteq I_{1} \vee I_{2}, I_{2} \subseteq I_{1} \vee I_{2} & \Rightarrow f\left(I_{1}\right) \subseteq f\left(I_{1} \vee I_{2}\right), f\left(I_{2}\right) \subseteq f\left(I_{1} \vee I_{2}\right) \\
& \Rightarrow I_{1}^{e} \subseteq\left(I_{1} \vee I_{2}\right)^{e}, I_{2}^{e} \subseteq\left(I_{1} \vee I_{2}\right)^{e} \\
& \Rightarrow I_{1}^{e} \vee I_{2}^{e} \subseteq\left(I_{1} \vee I_{2}\right)^{e} .
\end{aligned}
$$

Therefore $I_{1}^{e} \vee I_{2}^{e}=\left(I_{1} \vee I_{2}\right)^{e}$.
(6) We know that $J_{1} \cap J_{2} \subseteq J_{1}$ and $J_{1} \cap J_{2} \subseteq J_{2}$. Also, by Remark 3.1(2), $\left(J_{1} \cap J_{2}\right)^{c} \subseteq J_{1}^{c}$ and $\left(J_{1} \cap J_{2}\right)^{c} \subseteq J_{2}^{c}$, hence $\left(J_{1} \cap J_{2}\right)^{c} \subseteq J_{1}^{c} \cap J_{2}^{c}$. Let

$$
\begin{aligned}
x \in J_{1}^{c} \cap J_{2}^{c} & \Rightarrow x \in J_{1}^{c} \text { and } x \in J_{2}^{c} \Rightarrow f(x) \in J_{1} \text { and } f(x) \in J_{2} \\
& \Rightarrow f(x) \in J_{1} \cap J_{2} \Rightarrow x \in\left(J_{1} \cap J_{2}\right)^{c} \Rightarrow J_{1}^{c} \cap J_{2}^{c} \subseteq\left(J_{1} \cap J_{2}\right)^{c} .
\end{aligned}
$$

Therefore $J_{1}^{c} \cap J_{2}^{c}=\left(J_{1} \cap J_{2}\right)^{c}$.
(7) By Definitions 1.5 and 1.9, we have

$$
\begin{aligned}
x \in\left(\sqrt{J_{1}}\right)^{c} & \Leftrightarrow f(x) \in\left(\sqrt{J_{1}}\right) \Leftrightarrow f(x) \odot n f(x) \in J_{1}, \quad \forall n \in \mathbb{N} \\
& \Leftrightarrow f(x \odot n x) \in J_{1} \Leftrightarrow x \odot n x \in f^{-1}\left(J_{1}\right)=J_{1}^{c}, \quad \forall n \in \mathbb{N} \\
& \Leftrightarrow x \in \sqrt{J_{1}^{c}}
\end{aligned}
$$

Theorem 3.3. Let A be an $M V$-algebra, $P_{S}: A \rightarrow A[S]$ be homomorphism $M V$-algebra, $I \in \operatorname{Id}(A)$ and $\{0\} \in \operatorname{Spec}(A)$. Then $I^{e}=\left\{\lambda \in A[S]: \lambda=\frac{x}{S}, x \in I\right\}$.

Proof. Let $\lambda \in I^{e}$. Then we have $\lambda=\frac{x}{S}$ such that $\lambda \leqslant P_{S}\left(a_{1}\right) \oplus P_{S}\left(a_{2}\right) \oplus$ $\cdots \oplus P_{S}\left(a_{n}\right)$ such that $a_{i} \in I, 1 \leqslant i \leqslant n, x \in A$. We define $b:=a_{1} \oplus a_{2} \oplus \ldots a_{n}$ and show that $x \in I$.

$$
\begin{aligned}
\frac{x}{S} \leqslant & P_{S}\left(a_{1}\right) \oplus P_{S}\left(a_{2}\right) \oplus \cdots \oplus P_{S}\left(a_{n}\right) \\
& \Rightarrow \frac{x}{S} \leqslant \frac{a_{1}}{S} \oplus \frac{a_{2}}{S} \oplus \ldots \frac{a_{n}}{S} \Rightarrow \frac{x}{S} \leqslant \frac{a_{1} \oplus a_{2} \oplus \ldots a_{n}}{S} \Rightarrow \frac{x}{S} \leqslant \frac{b}{S} \\
& \Rightarrow \frac{x}{S} \odot\left(\frac{b}{S}\right)^{*}=\frac{0}{S} \Rightarrow \exists e \in B(A) \cap S \text { such that }\left(x \odot b^{*}\right) \wedge e=0 \wedge e=0 \\
& \Rightarrow x \odot b^{*}=0 \text { (Since }\{0\} \text { is a prime ideal of } A \text {) } \\
& \Rightarrow x \leqslant b \Rightarrow x \in I
\end{aligned}
$$

Lemma 3.1. Let A be an $M V$-algebra and $P_{S}: A \rightarrow A[S]$ be homomorphism $M V$-algebra and $Q \in \operatorname{Id}(A),\{0\} \in \operatorname{Spec}(A)$ such that $B(A) \cap S \cap Q \neq \emptyset$. Then $Q^{e}=A[S]$.

Proof. Suppose that $x \in B(A) \cap S \cap Q$. By Theorem 3.3 we obtain $\frac{x}{S} \in Q^{e}$. Since $x \wedge x=1 \wedge x$, we get $\frac{1}{S}=\frac{x}{S}$. Hence $\frac{1}{S} \in Q^{e}$. Thus $Q^{e}=A[S]$.

THEOREM 3.4. Let A be an $M V$-algebra and $P_{S}: A \rightarrow A[S]$ be homomorphism $M V$-algebra, $\rho \in \operatorname{Spec}(A[S])$, and $0 \in \operatorname{Spec}(A)$. Then

$$
\text { (1) } \rho=\rho^{c e} . \quad \text { (2) } B(A) \cap S \cap \rho^{c}=\emptyset
$$

Proof. (1) Let $x \in \rho$. Then $x=\frac{a}{S}$ such that $a \in A$. We get $P_{S}(a)=\frac{a}{S}=x \in$ ρ, then $a \in \rho^{c}$. It follows from Theorem 3.3 that $x \in \rho^{c e}$. Then we obtain $\rho \subseteq \rho^{c e}$. By Theorem 3.2(2), we have $\rho^{c e} \subseteq \rho$. Therefore $\rho=\rho^{c e}$
(2) Let $B(A) \cap S \cap \rho^{c} \neq \emptyset$. Since $\rho \in \operatorname{Spec}(A[S])$, by Theorem 1.1, we imply $\rho^{c} \in \operatorname{Spec}(A)$. Now by (1) and Lemma 3.1, we have $\rho^{c e}=\rho=A[S]$, which is a contradiction.

Theorem 3.5. Let A be an MV-algebra. $P_{S}: A \rightarrow A[S]$ is homomorphism $M V$-algebra such that $Q \in \operatorname{Id}(A),\{0\} \in \operatorname{Spec}(A)$ and $B(A) \cap S \cap Q=\emptyset$. Then

$$
\text { (1) } Q^{e c}=Q, \quad \text { (2) } Q^{e} \in \operatorname{Spec}(A[S])
$$

Proof. (1) By Theorem 3.2(1), we get $Q \subseteq Q^{e c}$. Let $a \in Q^{e c}$. Then $P_{S}(a)=$ $\frac{a}{S} \in Q^{e}$, by Theorem 3.3, we get $a \in Q$. So $Q^{e c} \subseteq Q$. Therefore $Q^{e c}=Q$.
(2) We must show that $Q^{e} \varsubsetneqq A[S]$. Let $Q^{e}=A[S]$. Then $Q^{e c}=(A[S])^{c}$ by (1), we have $Q=Q^{e c}=(A[S])^{c}=A$, which is a contradiction. Let $\frac{a}{S}, \frac{b}{S} \in A[S]$ such that $\frac{a}{S} \wedge \frac{b}{S} \in Q^{e}$. It follows from Theorem 3.3 that

$$
\frac{a}{S} \wedge \frac{b}{S}=\frac{a \wedge b}{S} \in Q^{e} \Rightarrow a \wedge b \in Q \Rightarrow a \in Q \text { or } b \in Q \Rightarrow \frac{a}{S} \in Q^{e} \text { or } \frac{b}{S} \in Q^{e}
$$

4. Extensions of $\boldsymbol{M V}$-algebras

Definition 4.1. Let B be subalgebra of $M V$-algebra A. Then A is an extension of B, and $B \hookrightarrow A$, is called an inclusion.

Theorem 4.1. Let $B \hookrightarrow A$ be an inclusion of $M V$-algebras. Then for each $P \in \operatorname{Spec}(B)$, there exists $Q \in \operatorname{Min}(A)$ such that $Q \cap B \subseteq P$. Furthermore, if $P \in \operatorname{Min}(B)$, then there exists $Q \in \operatorname{Min}(A)$ such that $P=Q \cap B$.

Proof. Seting $D=\{Q \in \operatorname{Spec}(A): Q \cap B \subseteq P\}$. By Zorn's lemma, it is sufficient to show that $D \neq \emptyset$. Let

$$
\psi: B \rightarrow B_{P}, b \mapsto \frac{b}{S} ; \quad \varphi: A \rightarrow A_{P}, a \mapsto \frac{a}{S} ; \quad \phi: B_{P} \rightarrow A_{P}, b \mapsto \frac{b}{S}
$$

Let T be a maximal ideal of A_{P}. Put $Q=\varphi^{-1}(T)$, which by Theorem 1.1, Q is a prime ideal of A. But $\phi^{-1}(T)$ is a prime ideal of B_{P}, so $\phi^{-1}(T) \subseteq P B_{P}$. Now let $a \in Q \cap B$. We get

$$
\begin{aligned}
a \in Q & \Rightarrow \varphi(b)=\frac{b}{S} \Rightarrow \frac{b}{S} \in \phi^{-1}(T) \subseteq P B_{P} \Rightarrow \exists t \in P \text { such that } \frac{b}{S}=\frac{t}{S} \\
& \Rightarrow \exists e \in B(A) \cap S \text { such that } b \wedge e=t \wedge e \leqslant t \in P \\
& \Rightarrow b \wedge e \in P(\text { Since } P \text { is a prime ideal of } A \text { and } e \notin P) \\
& \Rightarrow b \in P .
\end{aligned}
$$

So $Q \cap B \subseteq P$, it follows that $D \neq \emptyset$. We define \leqslant on D by

$$
\forall Q_{1}, Q_{2} \in D ; \quad Q_{1} \leqslant Q_{2} \Leftrightarrow Q_{2} \subseteq Q_{1}
$$

Obviously, \leqslant is a partial order relation on D. Let $\left\{Q_{i}\right\}_{i \in I}$ be a chain of elements of D. It follows from Theorem 1.1 that

$$
\bigcap_{i \in I} Q_{i} \in \operatorname{Spec}(A) \text { and }\left(\bigcap_{i \in I} Q_{i}\right) \cap B \subseteq Q_{i} \cap B \subseteq P
$$

$\bigcap_{i \in I} Q_{i}$ is an upper bounded of chain in D, so by Zorn's lemma, D has a maximal element F. Now, we show that $F \in \operatorname{Min}(A)$. Let $E \in \operatorname{Spec}(A)$ such that $E \subseteq F$. It follows that $F \leqslant E$, so $E \cap A \subseteq F \cap B \subseteq P$, hence $F=E$. Thus $F \in \operatorname{Min}(A)$.

Definition 4.2. An inclusion $B \hookrightarrow A$ of $M V$-algebras is called min-extension, if for all $P \in \operatorname{Min}(A), P \cap B \in \operatorname{Min}(B)$. When $B \hookrightarrow A$ is min-extension, we let $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ be the map defined by $\psi(P)=P \cap B$.

Definition 4.3. Let $S=\left\{a \in A: a \notin Z_{A}\right\}$. Obviously S is a \wedge-closed system of $A . A[S]$ is called classic $M V$-algebra and we denote it by $q(A)$.

Example 4.1. If $\{0\}$ is a prime ideal of an $M V$-algebra A, then extension $A \hookrightarrow q(A)$ is a min-extension. Let $\rho \in \operatorname{Min}(q(A))$. By Theorem 1.1 $\rho \cap A \in \operatorname{Spec}(A)$ and by Theorem 3.4(1), we have $\rho^{c e}=\rho$. If $\rho \cap A \notin \operatorname{Min}(A)$, then there exists $Q \in \operatorname{Spec}(A)$ such that $Q \varsubsetneqq \rho \cap A$, so $Q^{e} \varsubsetneqq \rho^{c e}=\rho$. $\operatorname{But} Q \in \operatorname{Spec}(A)$, we consider two cases.

Case 1. If $Q \cap S \cap B(A)=\emptyset$, then by Theorem 3.5(2), $Q^{e} \in \operatorname{Spec}(q(A))$. On the other hand $Q^{e} \varsubsetneqq \rho$, which is a contradiction, (since $\rho \in \operatorname{Min}(q(A))$).

Case 2. If $Q \cap S \cap B(A) \neq \emptyset$, then by Lemma 3.1, we get $Q^{e}=q(A)$. So $q(A) \varsubsetneqq \rho$, which is a contradiction. Therefore $\rho \cap A \in \operatorname{Min}(A)$.

Theorem 4.2. The inclusion of $M V$-algebras $B \hookrightarrow A$ is a min-extension if and only if whenever $P \in \operatorname{Min}(A)$ and $b \in P \cap B$, then there exists $a \in B-P$ such that $a \wedge b=0$.

Proof. Let $B \hookrightarrow A$ be a min-extension, $P \in \operatorname{Min}(A)$ and $b \in P \cap B$. Then $P \cap B \in \operatorname{Min}(B)$. By Theorem 1.4, $\operatorname{Ann}_{B}(b) \nsubseteq P \cap B$, we get that there exists $a \in \operatorname{Ann}_{A}(b)$ such that $a \notin P \cap B$. Hence there exists $a \in B-P$ such that $a \wedge b=0$.

Conversely, let $P \in \operatorname{Min}(A)$ and $P \cap B \notin \operatorname{Min}(B)$. By Theorem 1.3, there exists $b \in P \cap B$ such that for all $a \in B-P, a \wedge b \neq 0$, which is a contradiction.

Theorem 4.3. Let $B \hookrightarrow A$ be a min-extension of $M V$-algebra. Then $\psi: \operatorname{Min}(A)$ $\rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$ is continuous with respect to both the spectral topology and the inverse topology.

Proof. Let I be an ideal of B and $b \in B$. Then

$$
\begin{aligned}
\psi^{-1}\left(V_{B}(I)\right) & =\{P \in \operatorname{Min}(A): I \subseteq P\}=V_{A}(I) \\
\psi^{-1}\left(U_{B}(a)\right) & =\{P \in \operatorname{Min}(A): b \notin P\}=U_{A}(b)
\end{aligned}
$$

We get that map ψ is continuous with respect to both the spectral and the inverse topologies.

Definition 4.4. (1) An inclusion $B \hookrightarrow A$ is a good extension, if for each $a \in A$, then there exists $b \in B$ such that $\operatorname{Ann}_{A}(a)=\operatorname{Ann}_{A}(b)$.
(2) An inclusion $B \hookrightarrow A$ is an f-extension, if for each $P \in \operatorname{Min}(A)$ and each $a \in A-P$, there exists $b \in B-P$ such that $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(b)$.
(3) An inclusion $B \hookrightarrow A$ is f^{*}-extension, if for each $P \in \operatorname{Min}(A)$ and each $a \in P$ then there exists $b \in B \cap P$ such that $\operatorname{Ann}_{A}(b) \subseteq \operatorname{Ann}_{A}(a)$.

In the above definitions, if one replaces the term b with a finitely generated ideal of A, then one gets the notions of quasi good extension, quasi f-extension, and quasi f^{*}-extension.

Example 4.2. Consider extension of an $M V$-algebra in Example 3.1. Since for all $x \in A$, there exists $y \in B_{2}$ such that $\operatorname{Ann}_{A}(x)=\operatorname{Ann}_{A}(y)$, we get $B_{2} \hookrightarrow A$ is a good extension. But $\operatorname{Ann}_{A}(b) \neq \operatorname{Ann}_{A}(0)$ and $\operatorname{Ann}_{A}(b) \neq \operatorname{Ann}_{A}(1)$, we obtain $B_{1} \hookrightarrow A$ is not a good extension. We have

$$
\begin{gathered}
A-I_{1}=\{a, b, d, 1\}, \quad A-I_{2}=\{c, d, 1\}, \\
B_{2}-I_{1}=\{b, 1\}, \quad B_{2}-I_{2}=\{c, 1\}, \quad B_{1}-I_{2}=\{1\} \\
I_{1} \cap B_{1}=I_{2} \cap B_{1}=\{0\}, \quad I_{1} \cap B_{2}=\{0, c\}, \quad I_{2} \cap B_{2}=\{0, b\} .
\end{gathered}
$$

Obviously, $B_{2} \hookrightarrow A$ is an f-extension and since $\operatorname{Ann}_{A}(c) \nsubseteq \operatorname{Ann}_{A}(1)$, and $\operatorname{Ann}_{A}(0)$ $=A \nsubseteq \operatorname{Ann}_{A}(a)$, we get $B_{1} \hookrightarrow A$ is not f-extension and f^{*}-extension.

Theorem 4.4. Let $B \hookrightarrow A$ and $A \hookrightarrow C$ be two inclusions of $M V$-algebras. Then $B \hookrightarrow C$ is a good extension if and only if $B \hookrightarrow A$ and $A \hookrightarrow C$ are good extensions.

Proof. Let $B \hookrightarrow C$ be a good extension and $a \in A$. Since A is a subalgebra of C, so there exists $b \in B$ such that $\operatorname{Ann}_{C}(a)=\operatorname{Ann}_{C}(b)$. Since A is a subalgebra of C, we conclude $\operatorname{Ann}_{A}(a)=\operatorname{Ann}_{A}(b)$. Hence $B \hookrightarrow A$ is a good extension.

Now, let $x \in C$. Since $B \hookrightarrow C$ is a good extension, there exists $y \in B$ such that $\operatorname{Ann}_{C}(x)=A n_{C}(y)$. Since B is a subalgebra of A, we obtain $y \in A$, it follows that $A \hookrightarrow C$ is a good extension.

Conversely, let $B \hookrightarrow A$ and $A \hookrightarrow C$ be good extensions. Suppose that $x \in C$. Since $A \hookrightarrow C$ is a good extension, there exists $y \in A$ such that $\operatorname{Ann}_{C}(x)=\operatorname{Ann}_{C}(y)$. On the other hand $B \hookrightarrow A$ is a good extension, so there exists $z \in B$ such that $\operatorname{Ann}_{A}(y)=\operatorname{Ann}_{A}(z)$. Now we show that $\operatorname{Ann}_{C}(x)=\operatorname{Ann}_{C}(z)$. Let $\alpha \in \operatorname{Ann}_{C}(x)$ and $\alpha \notin \operatorname{Ann}_{C}(z)$. We have

$$
\alpha \notin \operatorname{Ann}_{C}(z) \Rightarrow \alpha \notin \operatorname{Ann}_{A}(z) \Rightarrow \alpha \notin \operatorname{Ann}_{A}(y)
$$

which is a contradiction. Thus $\operatorname{Ann}_{C}(x) \subseteq \operatorname{Ann}_{C}(z)$.
Let $\beta \in \operatorname{Ann}_{C}(z)$ and $\beta \notin \operatorname{Ann}_{C}(x)$. We have
$\beta \notin \operatorname{Ann}_{C}(x) \Rightarrow \beta \notin \operatorname{Ann}_{C}(y) \Rightarrow \beta \notin \operatorname{Ann}_{A}(y) \Rightarrow \beta \notin \operatorname{Ann}_{A}(z) \Rightarrow \beta \notin \operatorname{Ann}_{C}(z)$, which is a contradition. Then $\operatorname{Ann}_{C}(z) \subseteq \operatorname{Ann}_{C}(x)$. Therefore $\operatorname{Ann}_{C}(x)=$ $\mathrm{Ann}_{C}(z)$ and so $B \hookrightarrow C$ is a good extension.

Theorem 4.5. A (quasi) good extension is both (quasi) f-extension and f^{*} extension.

Proof. Let $B \hookrightarrow A$ be a good extension. So for every $a \in A$, there exists $b \in B$ such that $\operatorname{Ann}_{A}(a)=\operatorname{Ann}_{A}(b)$. Let $P \in \operatorname{Min}(A)$. We consider two cases:

Case 1. Let $a \in A-P$. It follows from Theorem 1.4 that $\operatorname{Ann}_{A}(b)=$ $\operatorname{Ann}_{A}(a) \subseteq P$, by Theorem 1.4, we have $b \in B-P$, so $B \hookrightarrow A$ is an f-extension.

Case 2. Let $a \in P$. By Theorem 1.4 $\mathrm{Ann}_{A}(b)=\operatorname{Ann}_{A}(a) \nsubseteq P$, by Theorem 1.4, $b \in P$, we get $B \hookrightarrow A$ is a f^{*}-extension.

Lemma 4.1. Let A be an $M V$-algebra. For every $P \in \operatorname{Spec}(A)$, there exists $F \in \operatorname{Min}(A)$ such that $F \subseteq P$.

Proof. Let $D=\{Q \in \operatorname{Spec}(A): Q \subseteq P\}$. First we show that $D \neq \emptyset$. Since $P \in \operatorname{Spec}(A)$ and $P \subseteq P$, it follows that $D \neq \emptyset$. We define \leqslant on D by

$$
\forall Q_{1}, Q_{2} \in D ; \quad Q_{1} \leqslant Q_{2} \Leftrightarrow Q_{2} \subseteq Q_{1}
$$

Obviously, \leqslant is a partial order relation on D. Let $\left\{Q_{i}\right\}_{i \in I}$ be a chain of elements of D and $\bigcap_{i \in I} Q_{i} \in \operatorname{Spec}(A)$. We get $\bigcap_{i \in I} Q_{i}$ is an upper bounded of chain in D, so by Zorn's lemma, D has a maximal element F. We show that $F \in \operatorname{Min}(A)$. Let there exist $E \in \operatorname{Spec}(A)$ such that $E \subseteq F$. It follows that $F \leqslant E$. Since F is maximal of D, so $F=E$. Thus $F \in \operatorname{Min}(A)$.

Theorem 4.6. Let $B \hookrightarrow A$ be an f-extension of $M V$-algebras. Then map $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$ is a bijection map.

Proof. We first show that map ψ is a well defined map. Let $P \in \operatorname{Min}(A)$ but $P \cap B \notin \operatorname{Min}(B)$. By Lemma4.1, there exists $Q \in \operatorname{Min}(B)$ such that $Q \varsubsetneqq P \cap B$. By Theorem4.1, there exists $U \in \operatorname{Min}(A)$ such that $Q=U \cap B$. Since $U, P \in \operatorname{Min}(A)$,
without loss of generality, we can let $U \nsubseteq P$, this means there exists $x \in U-P$ and by hypothesis, there exists $y \in B-P$ such that $\operatorname{Ann}_{A}(x) \subseteq \operatorname{Ann}_{A}(y)$. By Theorem 1.4. $\operatorname{Ann}_{A}(x) \nsubseteq U$, hence $\operatorname{Ann}_{A}(y) \nsubseteq U$. So there exists $e \in \operatorname{Ann}_{A}(y)$ such that $e \notin U$, but $0=y \wedge e \in U$. Thus $y \in U$. Hence $y \in U \cap B=Q$, and so $y \in P$, which is a contradiction.

Now, we show that map ψ is an injection map. Let $P, Q \in \operatorname{Min}(A)$ such that $P \neq Q$. Without loss of generality choose $x \in P-Q$ and by hypothesis there exists $y \in B-Q$ such that $\operatorname{Ann}_{A}(x) \subseteq \operatorname{Ann}_{A}(y)$. But $x \in P$, by Theorem [1.4 we have $\operatorname{Ann}_{A}(x) \nsubseteq P$, hence $\operatorname{Ann}_{A}(y) \nsubseteq P$. So there exists $e \in \operatorname{Ann}_{A}(y)$ such that $e \notin P$ and since $0=y \wedge e \in P$, thus $y \in P$, we get $y \in B \cap P$ but $y \notin B \cap Q$. Thus $P \cap B \neq Q \cap B$. Therefore map ψ is one to one. It follows from Theorem 4.1 that map ψ is surjective.

Corollary 4.1. An f-extension of $M V$-algebras is a min-extension.
Remark 4.1. Let A be an $M V$-algebra and $a \in A$. Obviously, $\operatorname{Ann}_{A}((a])=$ $\mathrm{Ann}_{A}(a)$.

Theorem 4.7. An extension $B \hookrightarrow A$ is an f-extension if and only if is a quasi f-extension.

Proof. Let $B \hookrightarrow A$ be an f-extension and $P \in \operatorname{Min}(A)$ and $a \in A-P$. So there exists $b \in B-P$. Such that $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(b)$. Let $I=(b]$. By Remark 4.1, we get $\operatorname{Ann}_{A}(I)=\operatorname{Ann}_{A}(b)$, hence $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(I)$. Thus $B \hookrightarrow A$ is a quasi f-extension.

Conversely, let $B \hookrightarrow A$ be a quasi f-extension, $P \in \operatorname{Min}(A)$ and $a \in A-P$. Hence there exists finitely generated ideal I of B such that $I \nsubseteq P$ and $\operatorname{Ann}_{A}(a) \subseteq$ $\operatorname{Ann}_{A}(I)$. Since $I \nsubseteq P$, so there exists $x \in I$ such that $x \notin P$, clearly $\operatorname{Ann}_{A}(I) \subseteq$ $\operatorname{Ann}_{A}(x)$. Hence there exists $x \in B-P$. Such that $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(x)$. Therefore $B \hookrightarrow A$ is an f-extension.

Remark 4.2. 9 A homeomorphism is a continuous and bijection function between topological space that has a continuous inverse function.

Theorem 4.8. An extension $B \hookrightarrow A$ is an f-extension of $M V$-algebras if and only if $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$ with respect to the spectral topology is a homeomorphism.

Proof. Let $B \hookrightarrow A$ be an f-extension of $M V$-algebras. By Corollary 4.1 and Therorem4.3, we get map ψ with respect to the spectral topology is continuous and by Theorem4.6, map ψ is bijection. Let $a \in A$. We have $\psi\left(U_{A}(a)\right)=\{P \cap B: P \in$ $\operatorname{Min}(A), a \notin P\}$. Let $P \cap B \in \psi\left(U_{A}(a)\right)$. Then $a \notin P$. By hypothesis there exists $b \in B-P$. Such that $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(b)$. Hence $P \cap B \in U_{B}(b)$ so $\psi\left(U_{A}(a)\right) \subseteq$ $U_{B}(b)$. Now, let $M \in U_{B}(b)$. Then by Theorem 4.1, there exists $Q \in \operatorname{Min}(A)$ such that $M=Q \cap B$. Since $b \notin M$, we get $b \notin Q$. Hence $\operatorname{Ann}_{A}(b) \subseteq Q$. But $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(b) \subseteq Q$, by Theorem 1.4, we obtain $a \notin Q$. Hence $Q \in U_{A}(a)$, so $M=Q \cap B \in \psi\left(U_{A}(a)\right)$. We get $U_{B}(b) \subseteq \psi\left(U_{A}(a)\right)$. Therefore $U_{B}(b)=\psi\left(U_{A}(a)\right)$. Hence ψ is an open map.

Conversely, let $P \in \operatorname{Min}(A), a \in A-P$. Then $P \in U_{A}(a)$. Since map ψ is a homeomorphism, $\psi\left(U_{A}(a)\right)$ is a subset open of $\operatorname{Min}(B)$. Hence there exists $I \in \operatorname{Id}(B)$ such that $U_{B}(I)=\psi\left(U_{A}(a)\right)$. But $P \in U_{A}(a)$, so $\psi(P)=P \cap B \in U_{B}(I)$, thus $I \nsubseteq P$, so there exists $b \in I$ such that $b \notin P$. We show that $\operatorname{Ann}_{A}(a) \subseteq$ $\operatorname{Ann}_{A}(b)$. Let $x \in \operatorname{Ann}_{A}(a)$. Then $x \in A$ and $x \wedge a=0$. Suppose $Q \in \operatorname{Min}(A)$. We consider two cases:

Case 1. Let $Q \in V_{A}(b)$. Then $b \in Q$, Since $b \wedge x \leqslant b$, we obtain $b \wedge x \in Q$.
CASE 2. Let $Q \in U_{A}(b)$. Then $b \notin Q$, hence $I \nsubseteq Q$. Since $I \subseteq B$ and $I \nsubseteq Q$, we have $I \nsubseteq Q \cap B$. Thus $\psi(Q)=Q \cap B \in U_{B}(I)=\psi\left(U_{A}(a)\right)$. But map ψ is bijection, then $a \notin Q$. Since $a \wedge x=0$, we get $x \in Q$. Since $x \in Q$ and $b \wedge x \leqslant x$, we obtain $b \wedge x \in Q$. Hence for every $Q \in \operatorname{Min}(A), b \wedge x \in Q$. By Lemma 1.6, we obtain $b \wedge x=0$. Therefore $x \in \operatorname{Ann}_{A}(b)$. Hence $B \hookrightarrow A$ is an f-extension of $M V$-algebras.

Corollary 4.2. $B \hookrightarrow A$ is a quasi f-extension of $M V$-algebras if and only if $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$ with respect to the spectral topology is a homeomorphism.

Theorem 4.9. Suppose that $B \hookrightarrow A$ is an f-extension of $M V$-algebras. $B \hookrightarrow$ A is a good extension if and only if $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$, maps basis open sets to basis open sets, with respect to the spectral topology.

Proof. Let $B \hookrightarrow A$ be an f-extension of $M V$-algebras. Hence for every $a \in A$, there exists $b \in B$ such that $\operatorname{Ann}_{A}(a)=\operatorname{Ann}_{A}(b)$. We show that $\psi\left(U_{A}(a)\right)=U_{A}(b)$. Let $P \in \operatorname{Min}(A)$ and $a \in A-P$. Then $P \in U_{A}(a)$ and $\psi(P)=P \cap B \in \operatorname{Min}(B)$. By Theorem[1.4] we get $\operatorname{Ann}_{A}(a)=\operatorname{Ann}_{A}(b) \subseteq P$, and so by Theorem[1.4] we conclude $b \notin P$. Then $b \notin P \cap B$, that is, $P \cap B \in U_{B}(b)$. Hence $\psi\left(U_{A}(a)\right) \subseteq U_{B}(b)$. Let $M \in U_{B}(b)$. We get $M \in \operatorname{Min}(B)$ and $b \notin M$, so by Theorem 4.1, there exists $Q \in \operatorname{Min}(A)$ such that $\psi(Q)=Q \cap B=M$. If $a \in Q$, then by Theorem 1.4 , $\operatorname{Ann}_{A}(a) \nsubseteq Q$ and Since $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(b)$, we have $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(b) \nsubseteq Q$ and by Theorem [1.4] we have $b \in Q$. Hence $b \in M$, which is a contradiction. So $a \notin Q$, that is, $Q \in U_{A}(a)$. But $\psi(Q)=M$, we get $M \in \psi\left(U_{A}(a)\right)$, hence $U_{B}(b) \subseteq \psi\left(U_{A}(a)\right)$. Therefore $\psi\left(U_{A}(a)\right)=U_{B}(b)$.

Conversely, let $a \in A$. By hypothesis, there exists $b \in B$ such that $\psi\left(U_{A}(a)\right)=$ $U_{B}(b)$. We show that $\operatorname{Ann}_{A}(a)=\operatorname{Ann}_{A}(b)$. Let $P \in \operatorname{Min}(A)$. We consider two cases:

Case 1. Let $P \in U_{A}(a)$. By hypothesis, we get $\psi(P)=P \cap B \in U_{B}(b)$, so $b \notin P \cap B$, by Theorem [1.4, we get $\operatorname{Ann}_{A}(b) \subseteq P$ and $\operatorname{Ann}_{A}(a) \subseteq P$. Since for all $x \in \operatorname{Ann}_{A}(a)$ and $y \in \operatorname{Ann}_{A}(b)$, we have $x \wedge b \leqslant x$ and $y \wedge a \leqslant y$, we obtain $a \wedge \operatorname{Ann}_{A}(b) \subseteq P$ and $b \wedge \operatorname{Ann}_{A}(a) \subseteq P$.

Case 2. Let $P \in V_{A}(a)$. By hypothesis, we conclude $\psi(P)=P \cap B \in V_{B}(b)$, hence $b \in P \cap B$. By Theorem 1.4 we get $\operatorname{Ann}_{A}(b) \nsubseteq P$ and $\operatorname{Ann}_{A}(a) \nsubseteq P$. Since for all $x \in \operatorname{Ann}_{A}(a)$ and $y \in \operatorname{Ann}_{A}(b)$, we have $x \wedge b \leqslant b$ and $y \wedge a \leqslant a$, hence $a \wedge \operatorname{Ann}_{A}(b) \subseteq P$ and $b \wedge \operatorname{Ann}_{A}(a) \subseteq P$.

We imply that for all $P \in \operatorname{Min}(A), a \wedge \operatorname{Ann}_{A}(b) \subseteq P$ and $b \wedge \operatorname{Ann}_{A}(a) \subseteq P$. By Lemma 1.6] we obtain $a \wedge \operatorname{Ann}_{A}(y)=b \wedge \operatorname{Ann}_{A}(a)=0$. Let $x \in \operatorname{Ann}_{A}(a)$. Then
$b \wedge x=0$, and so $x \in \operatorname{Ann}_{A}(b)$, thus $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(b)$. By similar way, we can obtain $\operatorname{Ann}_{A}(b) \subseteq \operatorname{Ann}_{A}(a)$. We get $\operatorname{Ann}_{A}(a)=A n_{A}(b)$. Therefore $B \hookrightarrow A$ is a good extension of $M V$-algebras.

Lemma 4.2. Let $B \hookrightarrow A$ be a extension of $M V$-algebras. For every $P \in \operatorname{Min}(A)$ and finitely generated ideal I of $B, I \subseteq P \cap B$ if and only if $\operatorname{Ann}_{A}(I) \nsubseteq P$.

Proof. Let $I \subseteq P \cap B$ and $J=I^{e}$. Hence $J \subseteq P$, It follows from Theorem 1.4 that $\operatorname{Ann}_{A}(J) \nsubseteq P$. By Remark 4.1, we get $\operatorname{Ann}_{A}(J)=\operatorname{Ann}_{A}(I)$, and so $\mathrm{Ann}_{A}(I) \nsubseteq P$.

Conversely, let $\operatorname{Ann}_{A}(I) \nsubseteq P$. Then there exists $\alpha \in \operatorname{Ann}_{A}(I)$ such that $\alpha \notin P$. We get $\alpha \wedge I=0$. Thus $I \subseteq P$. Therefore $I \subseteq P \cap B$.

Theorem 4.10. Let $B \hookrightarrow A$ be a quasi f^{*}-extension of $M V$-algebras. Then map $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$ is a bijection.

Proof. First, we show that map ψ is well defined. Let $P \in \operatorname{Min}(A)$. Then $\psi(P)=P \cap B \in \operatorname{Spec}(B)$. Suppose that there exists $Q \in \operatorname{Min}(B)$ such that $Q \varsubsetneqq P \cap B$. By Theorem 4.1, there exists $M \in \operatorname{Min}(A)$ such that $Q=M \cap B$. If $M \neq P$, then by hypothesis for every $a \in M-P$, there exists finitely generated ideal I of B such that $I \subseteq M \cap B$ and $\operatorname{Ann}_{A}(I) \subseteq \operatorname{Ann}_{A}(a)$, since $I \subseteq Q \subseteq P$, by Lemma 4.2, we obtain $\operatorname{Ann}_{A}(I) \nsubseteq P$. Hence $\operatorname{Ann}_{A}(a) \nsubseteq P$, so there exists $x \in \operatorname{Ann}_{A}(a)$ such that $x \notin P$. Since $x \wedge a=0$ and $x \notin P$, we conclude that $a \in P$, which is a contradiction. Thus $M=P$ and $\psi(P)=P \cap B \in \operatorname{Min}(B)$. Now, we show that map ψ is injection. Let $P, Q \in \operatorname{Min}(A)$ such that $P \neq Q$. Without loss of generality, let $a \in P-Q$. By hypothesis, there exists finitely generated ideal I of B such that $I \subseteq P \cap B$ and $\operatorname{Ann}_{A}(I) \subseteq \operatorname{Ann}_{A}(a)$. Since $a \notin Q$, by Theorem 1.4, $\operatorname{Ann}_{A}(a) \subseteq Q$. Hence $\operatorname{Ann}_{A}(I) \subseteq Q$ and by Lemma 4.2, we deduce that $I \nsubseteq Q \cap B$. Hence there exists $r \in I-Q$ such that $r \in P \cap B-Q \cap B$. So $P \cap B \neq Q \cap B$. It is follows $\psi(P) \neq \psi(Q)$. By Theorem 4.1, we imply that ψ is surjective. Therefore $\operatorname{map} \psi$ is bijective.

Corollary 4.3. Every quasi f^{*}-extension $B \hookrightarrow A$ of $M V$-algebras, is a minextension.

Theorem 4.11. Suppose $B \hookrightarrow A$ is a extension of $M V$-algebras. A is a quasi f^{*}-extension of B if and only if map $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=P \cap B$ with respect to the inverse topology is a homeomorphism.

Proof. Let $B \hookrightarrow A$ be a quasi f^{*}-extension of $M V$-algebras. By Theorem 4.10, map ψ is bijection and by Theorem 4.3 map ψ is continuous respect to inverse topology. Now we prove that ψ^{-1} is continuous. Let $a \in A$ and $Q \in \psi\left(V_{A}(a)\right)$. Then there exists $P \in V_{A}(a)$ such that $\psi(P)=P \cap B=Q$. By hypothesis there exists finitely generated ideal I of B such that $I \subseteq P \cap B=Q$ and $\operatorname{Ann}_{A}(I) \subseteq$ $\operatorname{Ann}_{A}(a)$. Hence $Q \in V_{B}(I)$, that is, $\psi\left(V_{A}(a)\right) \subseteq V_{B}(I)$. Let $M \in V_{B}(I)$. We get $M \in \operatorname{Min}(B)$ and $I \subseteq M$. By Theorem 4.1, there exists $T \in \operatorname{Min}(A)$ such that $T \cap B=M$, so $I \subseteq T$. It follows from Theorem 1.4 that $\operatorname{Ann}_{B}(b) \subseteq T$. So $\operatorname{Ann}_{A}(a) \nsubseteq T$, by Theorem 1.4, we get $a \in T$. Hence $M=T \cap B \in \psi\left(V_{A}(a)\right)$, and so $V_{B}(I) \subseteq \psi\left(V_{A}(a)\right)$. Therefore $\psi\left(V_{A}(a)\right)=V_{B}(I)$.

Conversely, let map ψ respect to the inverse topology be a homeomorphism. Suppose $P \in \operatorname{Min}(A)$ and $a \in P$. Since $V_{A}(a)$ is an open subset of $\operatorname{Min}^{-1}(A)$, so $\psi\left(V_{A}(a)\right)$ is a open subset of $\operatorname{Min}^{-1}(B)$ such that $P \cap B \in \psi\left(V_{A}(a)\right)$. Since map ψ is open, there exists finitely generated ideal I of B such that $P \cap B \in V_{B}(I)=$ $\psi\left(V_{A}(a)\right)$. We show that $\operatorname{Ann}_{A}(I) \subseteq \operatorname{Ann}_{A}(a)$. Let $t \in \operatorname{Ann}_{A}(I)$ and $Q \in \operatorname{Min}(A)$. We consider two cases:

Case 1. Let $a \in Q$, since $a \wedge t \leqslant a$, we get $a \wedge t \leqslant Q$.
CASE 2. Let $a \notin Q$, hence $Q \notin V_{A}(a)$. Since map ψ is bijection, we obtain $Q \cap B \notin \psi\left(V_{A}(a)\right)$. Hence we get $Q \cap B \notin V_{B}(I)$. Thus $I \nsubseteq Q \cap B$. Then $I \nsubseteq Q$. If $x \in \operatorname{Ann}_{A}(I)$ then $0=x \wedge I \subseteq Q$, that is, $x \in Q$. Hence $\operatorname{Ann}_{A}(I) \subseteq Q$, so $t \in Q$. Since $a \wedge t \leqslant t$, we have $a \wedge t \in Q$.

Therefore for all $Q \in \operatorname{Min}(A), a \wedge t \in Q$. By Lemma 4.2, we have $a \wedge t=0$. So $t \in \operatorname{Ann}_{A}(a)$. Hence $\operatorname{Ann}_{A}(I) \subseteq \operatorname{Ann}_{A}(a)$.

Theorem 4.12. Let $B \hookrightarrow A$ be a quasi f^{*}-extension of $M V$-algebras. Then $B \hookrightarrow A$ is a quasi good extension if and only if $\psi: \operatorname{Min}(A) \rightarrow \operatorname{Min}(B)$ by $\psi(P)=$ $P \cap B$, maps basis open sets to inverse topology basis open sets, with respect to the inverse topology.

Proof. Let $B \hookrightarrow A$ be a quasi f^{*}-extension. By Corollary 4.3, map ψ is well defined. Let $J=\left(a_{1}, a_{2}, \ldots, a_{n}\right]$ be a finitely generated ideal of A. So for every $1 \leqslant i \leqslant n$, there exists a finitely generated ideal I_{i} of B such that $\operatorname{Ann}_{A}\left(I_{i}\right)=$ $\operatorname{Ann}_{A}\left(a_{i}\right)$. Let $I=I_{1} \vee I_{2} \vee \cdots \vee I_{n}$. By Remark [1.5, I is a finitely generated ideal. We show that $\psi\left(V_{A}(J)\right)=V_{B}(I)$. Let $P \in V_{A}(J)$, hence $\psi(P)=P \cap B \in \psi\left(V_{A}(J)\right)$
 we obtain there exists $x \in \operatorname{Ann}_{A}\left(I_{i}\right)$ such that $x \notin P$. Since $x \wedge I_{i}=0$ and $x \notin P$, we have $I_{i} \subseteq P$. Hence $I \subseteq P \cap B$. We get $P \cap B \in V_{B}(I)$, it follows that $\psi\left(V_{A}(J)\right) \subseteq V_{B}(I)$. Let $Q \in V_{B}(I)$. Then $Q \in \operatorname{Min}(B)$ and $I \subseteq Q$. By Theorem 4.1. there exists $P \in \operatorname{Min}(A)$ such that $Q=P \cap B$, hence $I \subseteq P$. By Theorem 1.4. $\operatorname{Ann}_{A}(I) \nsubseteq P$, so for every $1 \leqslant i \leqslant n, \operatorname{Ann}_{A}\left(I_{i}\right) \nsubseteq P$, thus $\operatorname{Ann}_{A}\left(a_{i}\right) \nsubseteq P$. We get that there exists $x \in \operatorname{Ann}_{A}\left(a_{i}\right)$ such that $x \notin P$. Obviously $a_{i} \in P$, hence $J \subseteq P$. So we have $P \in V_{A}(J)$ and $\psi(P)=P \cap B=Q$. Hence $V_{B}(I) \subseteq \psi\left(V_{A}(J)\right)$. Therefore $V_{B}(I)=\psi\left(V_{A}(J)\right)$.

Conversely, let $a \in A$. Put $J=(a]$. By hypothesis, there exists finitely generated ideal I of B such that $\psi\left(V_{A}(J)\right)=V_{B}(I)$. We show that $\operatorname{Ann}_{A}(a)=$ $\operatorname{Ann}_{A}(I)$. Let $P \in \operatorname{Min}(A)$. We consider two cases:

Case 1. Let $P \in U_{A}(I)$. Then $\psi(P)=P \cap B \in U_{B}(I)$, we get $a \notin P$ and $I \nsubseteq P \cap B$. By Theorem 1.4, we obtain $\operatorname{Ann}_{A}(a) \subseteq P$ and $\operatorname{Ann}_{A}(I) \subseteq P$. We know that for every $x \in \operatorname{Ann}_{A}(I), \alpha \in I$ and $y \in \operatorname{Ann}_{A}(a)$, we have $a \wedge x \leqslant x$ and $\alpha \wedge y \leqslant y$. Hence $a \wedge x \in P$ and $\alpha \wedge y \in P$.

Case 2. Let $P \in V_{A}(I)$. Then $\psi(P)=P \cap B \in V_{B}(I)$, we deduce that $a \in P$ and $I \subseteq P \cap B$. By Theorem [1.4, we get $\operatorname{Ann}_{A}(a) \nsubseteq P$ and $\operatorname{Ann}_{A}(I) \nsubseteq P$. We know that for every $x \in \operatorname{Ann}_{A}(I)$, we have $\alpha \in I$ and $y \in \operatorname{Ann}_{A}(a), a \wedge x \leqslant a$ and $\alpha \wedge y \leqslant \alpha$. Hence $a \wedge x \in P$ and $\alpha \wedge y \in P$.

Therefore for every $P \in \operatorname{Min}(A)$, we get $a \wedge \operatorname{Ann}_{A}(I) \subseteq P$ and $I \wedge \operatorname{Ann}_{A}(a) \subseteq$ P. By Lemma 1.6, we have $a \wedge \operatorname{Ann}_{A}(I)=0$ and $I \wedge \operatorname{Ann}_{A}(a)=0$. Now, we
show that $\operatorname{Ann}_{A}(a)=\operatorname{Ann}_{A}(I)$. Let $x \in \operatorname{Ann}_{A}(a)$. Then $x \wedge I=0$, we get $x \in \operatorname{Ann}_{A}(I)$. Hence $\operatorname{Ann}_{A}(a) \subseteq \operatorname{Ann}_{A}(I)$. Similarly, $\operatorname{Ann}_{A}(I) \subseteq \operatorname{Ann}_{A}(a)$, we conclude $\operatorname{Ann}_{A}(a)=\operatorname{Ann}_{A}(I)$.

References

1. L. P. Belluce, A. Di Nola, S. Sessa, The prime spectrum of an MV-algebra, Math. Log. Q. 40 (1994), 331-346.
2. D. Busneag, D. Piciu, MV-algebra of fractions relative to an \wedge-closed system, An. Univ. Craiova, Math. Comput. Sci. 30(2) (2003), 48-53.
3. C. C. Chang, Algebraic analysis of many valued logic, Trans. Am. Math. Soc. 88 (1958), 467-490.
4. R. Cignoli, I. M. L. D'Ottaviano, D. Mundici, Algebraic foundations of many-valued reasoning, Kluwer, Dordrecht, 2000.
5. E. Eslami, The prime spectrum on BL-algebras, Tarbiat Moallem University, siminar Algebra, 2009, 58-61.
6. F. Forouzesh, E. Eslami, A. Borumand Saeid, Spectral topology on MV-modules, New Math. Nat. Comput. 11 (2015), 13-33.
7. \qquad , Radical of A-ideals in MV-modules, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62(1) (2016), 33-56.
8. F. Forouzesh, F. Sajadian, M. Bedrood, Inverse topology in MV-algebras, Math. Bohemica (2018), doi: 10.21136/MB.2018.0117-17.
9. J. R. Munkres, Topology, Dorling Kindersely, India, 2000.
10. D. Piciu, Algebras of fuzzy Logic, Ed. Universitaria Craiova, 2007.

Faculty of Mathematics and computing
Higher Education Complex of Bam
(Revised 3011 2017)
Kerman
Iran
frouzesh@bam.ac.ir
fsajadian@bam.ac.ir
bedrood.m@gmail.com

[^0]: 2010 Mathematics Subject Classification: 03B50; 03G25; 06D35.
 Key words and phrases: zero-divisor, extension, contraction, inverse topology.
 Communicated by Žarko Mijajlović.

