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IRREDUCIBILITY CRITERION AND 2-PISOT

SERIES IN POSITIVE CHARACTER

Mabrouk Ben Ammar and Hassen Kthiri

Abstract. Let Fq((X−1)) be the field of formal power series over a finite
field Fq. We characterize a pair of roots that lies outside the unit disc while
all remaining conjugates have a modulus strictly less than 1. In particular, we
provide a sufficient condition for a pair of formal power series to be a 2-Pisot
series. We also give an irreducibility criterion over Fq[X].

1. Introduction

A Pisot number is an algebraic integer θ > 1 having all its conjugates 6= θ of
modulus < 1. It is known that the positive root θ0 ≃ 1.3247 of z3 − z − 1 is the
smallest Pisot number [12]. According to Dufresnoy and Pisot [5], the smallest

limit point of the set S1 of Pisot numbers is 1+
√

5
2 . The algorithm that they

developed [4] was powerful and served to classify all Pisot numbers less than 1+
√

5
2 .

In 1944, Salem proved that S1 is closed [10].
A complex Pisot number is a non-real algebraic integer α, with |α| > 1, whose

remaining conjugates other than α lie in the open unit disk. Without loss of
generality, we may require the real part of a complex Pisot number to be non-
negative. The smallest complex Pisot number was provided by Chamfy [3] with
modulus

√
α0

∼= 1.1509, for which either z3 − z2 + 1 or z6 − z2 + 1 is a minimal
polynomial.

A 2-Pisot number is a pair (α1, α2) of conjugate algebraic integers of modulus
> 1 whose remaining conjugates have modulus < 1. The set S2 of all 2-Pisot
numbers can be partitioned as S2 = S′

2 ∪ S′′
2 , with S′

2 being the set of those 2-Pisot
numbers with α1, α2 ∈ R and S′′

2 being the set of 2-Pisot numbers with α1, α2 = α1

non-real (so they are complex conjugates of each other).
In 1950, Kelley proved that the set S1∪S′′

2 is closed [9]. However, it is impossible
that S′

2 be closed, because it includes a dense, enumerable subset of real quadratic
integers. He also proved that the set S′

2 cannot be closed even if we omit the
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quadratic integers. According to Samet [11], the set S′
2 of degree n > 2 is dense in

|x| > 1. The study of limit points of the set S1 has attracted numerous researches
and to a lesser extent the set S2. In this regard, it is legitimate to figure out if
the smallest limit point of S2, the set of complex Pisot numbers, is the one with

minimal polynomial z4 + z2 − 1, having modulus

√
1+

√
5

2
∼= 1.2720. Also, Garth [6]

discussed how to use Chamfy’s algorithm to determine all complex Pisot numbers
of modulus less than ζ = 1.17.

In [2], Cantor studied certain k-tuples of algebraic integers which generalize
these ideas. Distinctly, let (α1, . . . , αk) be a k-tuple of distinct algebraic integers
with an absolute value strictly greater than 1, and let P (z) be the monic polynomial
of the lowest degree with integer coefficients which α1, . . . , αk all satisfy. If the
remaining roots of P (z) lie in the open unit disk, then (α1, . . . , αk) is called a Pisot
k-tuple, and P (z) is its defining polynomial. Moreover, if P (z) is irreducible, then
(α1, . . . , αk) is said to be an irreducible Pisot k-tuple. Cantor [2] focused on Pisot
k-tuples whose defining polynomials are reciprocal. Recall that a polynomial P (z)
of degree d is reciprocal if P (z) = zdP (1/z). He ultimately claimed that a Pisot
k-tuple is reciprocal if its defining polynomial is reciprocal.

In [13], Pisot showed that every reciprocal quadratic unit is a limit point of
S1. Samet [11], corroborated on this theory by asserting that every reciprocal bi-
quadratic unit in S2, i.e., every reciprocal unit of degree 4 in S2 is a limit point of S2.

However, it is still not determined whether reciprocal Pisot k-tuples are limits
of pisot k-tuples. Although this question is generally challenging, Garth [7] gave
conditions for which the assertion turns out to be true.

This manuscript concerns an analogue of 2-Pisot numbers S′
2 defined over the

ring Fq[X ], where Fq is the finite field of q elements, with the field R being replaced
by Fq((X−1)). The analogues of the Pisot numbers have been previously studied
in this context by e.g., Bateman and Duquette [1]. An attempt is also made to
extend some of their results to these numbers.

The paper is organized as follows: In Section 2, some preliminary definitions are
given to present the field of formal power series over a finite field. We present some
important results of Bateman and Duquette [1] which characterize Pisot elements
in the field of formal power series. In Section 3, certain arithmetical proprieties of 2-
Pisot are discussed and an irreducibility criterion in the case of formal power series is
provided giving the series of 2-Pisot elements. We also formulate in Theorem 3.2, a
criterion to construct 2-Pisot elements in the field of formal series over a finite field.

2. Field of formal series

For p a prime and q a power of p, let Fq be a field with q elements of charac-
teristic p, Fq[X ] the set of polynomials with coefficients in Fq and Fq(X) its field
of fractions. The set Fq((X−1)) of Laurent series over Fq is defined as follows:

Fq((X−1)) =

{

f =
∑

i>n0

fiX
−i : n0 ∈ Z and fi ∈ Fq

}

.
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Let f =
∑

n>n0
fnX−n be any formal power series, its polynomial part is

denoted by [f ] ∈ Fq[X ] and {f} its fractional part. We remark that f = [f ] + {f}.
If f 6= 0, then the polynomial degree of f is γ(f) = sup{−i : fi 6= 0}, the degree of
the highest-degree nonzero monomial in f , and γ(0) = −∞. Note that if [f ] 6= 0
then γ(f) is the degree of the polynomial [f ]. Thus, we define |f | = qγ(f). Note
that | . | is a no Archimedean absolute value over Fq((X−1)). It is clear that, for

all P ∈ Fq[X ], |P | = qdeg P and, for all Q ∈ Fq[X ], such that Q 6= 0,
∣

∣

Q
P

∣

∣ =

qdeg P −deg Q. We know that Fq((X−1)) is complete and locally compact with respect

to the metric defined by this absolute value. We denote by Fq((X−1)) an algebraic
closure of Fq((X−1)). We note that the absolute value has a unique extension to

Fq((X−1)). Abusing the notation a little, we will use the same symbol | . | for the
two absolute values.

A Pisot series w ∈ Fq((X−1)) is an algebraic integer over Fq[X ] such that

|w| > 1 whose remaining conjugates in Fq((X−1)) have an absolute value strictly
smaller than 1. The set of all Pisot series is denoted S∗.

Since Fq[X ] ⊂ Fq((X−1)), every algebraic element over Fq[X ] can be evaluated.
However, Fq((X−1)) is not algebraically closed. Such an element is not necessarily
expressed as a power series. For a full characterization of the algebraic closure of
Fq[X ], we refer to Kedlaya [8].

Definition 2.1. [14]. Let

(2.1) f(X, Y ) = AmY m + Am−1Y m−1 + · · ·+ A1Y + A0 ∈ Fq[X, Y ], Ai ∈ Fq[X ]

be irreducible of Fq[X, Y ]. To each monomial AiY
i 6= 0, we assign the point

(i, deg(Ai)) ∈ Z
2. For Ai = 0, we ignore the corresponding point (i, −∞).

If we consider the upper convex hull of the set of points

{(0, deg(A0)), . . . , (m, deg(Am))},

we obtain the so-called upper Newton polygon of f(X, Y ) with respect to Y . The
polygon is a sequence of line segments E1, E2, . . . , Et, with monotonously decreasing
slopes.

Proposition 2.1. [14]. Let f(X, Y ) ∈ Fq[X, Y ] ⊂ Fq((Y −1))[X ] be of the
form (2.1). Since Fq((Y −1)) is complete with respect to | . |, there is a unique
extension of | . | to the splitting field L of f(X, Y ) over K = Fq((Y −1)).

Let 1 = r < r+s = m. We define E to be the line joining the points (r, deg(Ar))
and (r + s, deg(Ar+s)), which has a slope

k =
deg(Ar+s) − deg(Ar)

s
.

Then f(X, Y ), as a polynomial in Y , has s roots α1, . . . , αs ∈ L with |α1| = · · · =
|αs| = q−k.

Corollary 2.1. There are no roots in Fq((X−1)) with absolute value > 1 of
the polynomial H(Y ) = AnY n +An−1Y n−1 + · · ·+A0, where |An| = sup06i6n |Ai|.

Proof. Immediately proved by Proposition 2.1. �
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Corollary 2.2. Let P (Y ) = AnY n + An−1Y n−1 + · · · + A0, with Ai ∈ Fq[X ],
An = 1, A0 6= 0 and |An−1| > |Ai|, for all i 6= n − 1. Then, P has only one root

f ∈ Fq((X−1)) satisfying |f | > 1. Moreover, [f ] = −
[An−1

An

]

.

Proof. The first part follows easily from Proposition 2.1. For the second part,

we use the fact that
[ An−1

An

]

is the sum of the roots of the polynomial P . �

In 1962, Bateman and Duquette [1] introduced and characterized the Pisot
elements in the field of Laurent series.

Theorem 2.1. [1]. An element f in Fq((X−1)) is a Pisot element if and only
if its minimal polynomial can be written as P (Y ) = Y s + As−1Y s−1 + · · · + A0,
Ai ∈ Fq[X ] for i = 0, . . . , s − 1 with |As−1| > |Ai| for i = 0, . . . , s − 2.

Theorem 2.2. [1]. An element f ∈ Fq((X−1)) is a Pisot number if and only
if there exists λ ∈ Fq((X−1))r {0} such that limn→+∞{λfn} = 0; Moreover λ can
be chosen to belong to Fq(X)(f).

A 2-Pisot series is a pair (w1, w2) ∈ (Fq((X−1)))2 of conjugate algebraic integers

over Fq[X ] of absolute value > 1 whose remaining conjugates in Fq((X−1)) have
an absolute value < 1. The set of all 2-Pisot series is denoted by S∗

2 and (S∗
2 )′′ is

the subset of 2-Pisot series (w1, w2) which are not in (Fq((X−1)))2 but (w2
1 , w2

2) in
(Fq((X−1)))2.

Note that a 2-Pisot element is necessarily separable over Fq(x) and also has an
absolute value greater than 1. Another immediate consequence of the definition is
a positive integral power of a 2-Pisot element.

The following original examples illustrate the previous definition.

Example 2.1 (A 2-Pisot series of degree 3 on F2((X−1))). Let the polynomial
P be defined by

P (Y ) = Y 3 + (X2 + 1)Y 2 + (X3 + X)Y + 1 ∈ F2[X ][Y ].

Then it is irreducible over F2[X ] and has 3 roots defined by:

W1 =
∞

∑

i=−2

wiX
−i, W2 =

∞
∑

i=−1

wiX
−i and W3 =

∞
∑

i=1

wiX
−i.

Then Wi ∈ F2((X−1)) for i = 1, 2. Indeed

W1 = X2 + X +
1

X2 + · · · = X2 + X +
1

Z1
such that |Z1| > 2;

W2 = X + 1 +
1

X
+ · · · = X + 1 +

1

Z2
such that |Z2| > 1;

W3 =
1

X
+ · · · =

1

Z3
such that |Z3| > 1.

We have
W 3

1 + (X2 + 1)W 2
1 + (X3 + X)W1 + 1 = 0.

Then
Z3

1 + (X4 + X3 + X2 + X)Z2
1 + (X + 1)Z1 + 1 = 0.
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According to Corollary 2.2, Z1 ∈ F2((X−1)), so W1 ∈ F2((X−1)). In the same way,
we can prove that W2 ∈ F2((X−1)). Therefore (W1, W2) ∈ (S∗

2 ).

Example 2.2 (A pair of (S∗
2 )′′). Let the polynomial P be defined by

P (Y ) = Y 4 − 2X2Y 2 − 2 ∈ F3[X ][Y ].

P is irreducible over F3[X ] and has two roots of modulus strictly greater than 1
defined by

(w1, w2) =
(

a
(

X − 1

X3 + . . .
)

, −a
(

X − 1

X3 + . . .
))

by choosing a to be a square in F3, which (w1, w2) is not in (F3((X−1)))2 since
√

2
is in F9 but not in F3 and the others have a modulus strictly less then 1. Thus
(w1, w2) ∈ (S∗

2 )′′.

Let us remember that Fq((X−1)) contains 2-Pisot series of any degree over
Fq(X). Indeed, consider the polynomial Y n − aX2Y n−2 − b, where a, b ∈ F

∗
q . It

can be easily seen that the polynomial is irreducible over Fq[x]. Furthermore if a is
a square in Fq, then the polynomial has two roots (w1, w2) ∈ Fq((X−1)) such that

|w1| > 1, |w1| > 1 and all of its conjugates in Fq((X−1)) have an absolute value
strictly smaller than 1.

3. Results

3.1. 2-Pisot series arithmetical proprieties. In this section, we discuss
some analogous results to those known about 2-Pisot numbers in the real case.
Our main results are the following propositions.

Proposition 3.1. Let (w1, w2) ∈ S∗
2 , then (wn

1 , wn
2 ) ∈ S∗

2 , for all n ∈ N
∗.

Proof. Let (w1, w2) ∈ S∗
2 and M ∈ Fq[X ][Y ] the minimal polynomial of w

and w = w1, . . . , wd the conjugates of w. Then there exists exactly 2 conjugates
w = w1, w2 of w that lie outside the unit disc. Let w3, . . . , wd denote the other
roots of M .

We know that the product of any two algebraics is, itself, an algebraic. Since
w1 is an algebraic, then for all n ∈ N, wn

1 a is also an algebraic. Let P ∈ Fq[X ][Y ]
be the minimal polynomial of wn

1 . Now, we consider embedding σi of Fq(X)(w1)

into Fq((X−1)), which fixes Fq(X) and maps w1 to wi.

P (wn
i ) = P ((σi(w1)n)) = P (σi(w

n
1 )) = σi(P (wn

1 )) = σi(0) = 0.

So for all i 6 d, wn
i satisfies P (Y ) = 0. We have,

[Fq(X)(wn
1 ) : Fq(X)] 6 [Fq(X)(w1) : Fq(X)].

This shows that deg(P ) 6 deg(M). So wn
1 , wn

2 , . . . , wn
d are all the roots of P . If

3 6 i 6 d, then |wn
i | = |wi|n < 1 and |wn

1 | = |wi|n > 1 for i = 1, 2. Therefore
(wn

1 , wn
2 ) ∈ S∗

2 for all n ∈ N
∗. �

Proposition 3.2. Let (w1, w2) ∈ (S∗
2 ); then limn→+∞{wn

1 + wn
2 } = 0.
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Proof. Let (w1, w2) be a 2-Pisot series and w1, . . . , wd its conjugates. From
the preceding propositions results, for all n ∈ N; wn

1 , wn
2 are the roots of the same

degree d irreducible polynomial, Pn in Fq[X ]. Also, Tr(Pn) =
∑d

i=1 wn
i ∈ Fq[X ].

So {Tr(Pn)} = 0. The above can be rewritten as

{

Tr(Pn) =

d
∑

i=1

wn
i

}

=

{

wn
1 + wn

2 +

d
∑

i=3

wn
i

}

Since, for 3 6 i 6 d, by definition |wi| < 1, therefore wn
i → 0. Thus {∑d

i=3 wn
i } → 0.

Therefore limn→+∞{wn
1 + wn

2 } = 0. �

Proposition 3.3. Let (w1, w2) ∈ S∗
2 with a minimal polynomial P ∈ Fq[X ][Y ]

of degree 3 and w = w1, w2, w3 the conjugates of w. If w is unit and P (0) = c ∈ F
∗
q,

then (−1)
c

w1w2 ∈ S∗.

Proof. Let (w1, w2) ∈ S∗
2 with a minimal polynomial P of degree 3 and

P (0) = c ∈ F
∗
q . Let w3 be the third root of P . Since

P (Y ) = (Y − w1)(Y − w2)(Y − w3)

consider

Q(Y ) =
Y 3

c
P

( 1

Y

)

.

Clearly, Q is an irreducible unit over Fq[X ][Y ], and has roots

1

w1
;

1

w2
;

1

w3
=

(−1)

c
w1, w2.

We have
∣

∣

1
w3

∣

∣ =
∣

∣

−w1w2

c

∣

∣ = |w1w2| > 1 and
∣

∣

1
wi

∣

∣ < 1 for i = 1, 2. Therefore
(−1)

c
w1w2 is a Pisot series. �

3.2. Irreducibility criterion and 2-Pisot series. In this subsection, we
give an irreducibility criterion over Fq[X ] in the case of a formal power series. Let
us begin by:

Theorem 3.1. Let the polynomial P be defined by

P (Y ) = AnY n + An−1Y n−1 + An−2Y n−2 + · · · + A1Y + A0

where A0 6= 0, An ∈ F
∗
q, Ai ∈ Fq[X ]. P has exactly 2 roots that lie outside the unit

disc and all remaining roots have a modulus strictly less than 1 if and only if

|An−2| > sup
i6=n−2

|Ai|.

Proof. The first part is trivial.
For the second part, suppose first that P has no roots of absolute value greater

than 1, which is absurd because the absolute value of the leading coefficient of the
polynomial P is superior or equal to 1.

Suppose now that P has k exact roots (k 6= 2) that lie outside the unit disc and
all the remaining roots have a modulus strictly less than 1. Let w = w1, w2, . . . , wn
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be the roots of P (Y ) such that |w1| > · · · > |wk| > 1 > |wk+1| > · · · > |wn|. By
the symmetric relations of the roots of a polynomial, we obtain

∣

∣

∣

An−k

An

∣

∣

∣
=

∣

∣

∣

∣

∑

16i1<i2<...6n

wi1
wi2

. . . wik

∣

∣

∣

∣

= |w1w2 . . . wk| > sup(|w1w2|, . . . , |wk−1wk|) >
∣

∣

∣

An−2

An

∣

∣

∣
.

Then supk 6=2 |An−k| > |An−2|, which is also absurd. �

Theorem 3.2. Let (w1, w2) ∈ Fq((X−1))2 are the roots of the polynomial

Λ(Y ) = Y n + λn−1Y n−1 + λn−2Y n−2 + · · · + λ1Y + λ0

such that λi ∈ Fq[X ], λ0 6= 0 and |λn−2| > supi<n−2 |λi|. If deg λn−2 > 2 deg λn−1

and deg λn−2 is odd, then Λ is irreducible and has a pair of 2-Pisot series.

Proof. According to Theorem 3.1, Λ has exactly 2 roots that lie outside the
unit disc and all the remaining roots have a modulus that is strictly less than 1. Let
w1, w2, . . . , wn be the roots of Λ such that |w1| > |w2| > 1 > |wi|, for i = 3, 4, . . . , n.
Taking into account the Theorem condition, Λ(0) = λ0 6= 0; hence, all roots of
the polynomial Λ(Y ) are not equal to 0. Let Λ(Y ) = Λ1(Y ), Λ2(Y ), where the
coefficients of Λi(Y ), for i = 1, 2, are in Fq[X ].

Suppose first that w1 and w2 are the roots of Λ1 and the other roots are
of Λ2. Clearly, the absolute value of the leading coefficient of the polynomial Λ2 is
superior or equal to 1, which is absurd because the roots of Λ2 are exactly wi for
i = 3, 4, . . . , n such that 0 < |wi| < 1.

Suppose secondly that Λ1 is the polynomial of the series w1 and Λ2 the poly-
nomial of the series w2. Then we have

Λ(Y ) = Λ1(Y ).Λ2(Y )

= (Y s + As−1Y s−1+ · · · + A1Y + A0)(Y m + Bm−1Y m−1+ · · · + B1Y + B0).

Therefore

λn−1 = As−1 + Bm−1,

λn−2 = Bm−2 + As−1Bm−1 + As−2.

This gives us

deg λn−1 6 sup(deg As−1; deg Bm−1),

deg λn−2 = deg As−1 + deg Bm−1.

Considering its Newton polygon, it can be seen that the polynomial Λ has exactly

2 roots w1 and w2 such that |w1| = |w2| = q−k > 1 where k = − deg(As−1)
2 and all

the remaining roots have a modulus that is strictly less than 1. As deg(As−1) =
deg(Bm−1), then deg λn−2 = deg As−1 + deg Bm−1 = 2 deg As−1 is even, which is
the desired contradiction. Therefore, we conclude that Λ is irreducible and it is the
minimal polynomial of w1 and w2. So (w1, w2) ∈ S∗

2 . �
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Example 3.1. Let H(Y ) = Y d+AY d−1+BY d−2+C, A, B ∈ Fq[X ]r{0}, such
that deg B > 2 deg A > 1, C ∈ F\{0} and deg(B) is odd. Then H is irreducible
over Fq[X ].

Remark 3.1. The inverse case is not always true. Indeed, consider the poly-
nomial

P (Y ) = Y 3 + (X2 + X)Y 2 + X3Y + 1 ∈ F2[X ][Y ].

P (Y ) is irreducible in F2[X ][Y ] and has two roots of a modules strictly greater than
1 defined by

w1 = X2 +
1

Z1
such that |Z1| > 2;

w2 = X2 +
1

Z2
such that |Z2| > 1;

w3 =
1

Z3
such that |Z3| > 1.

It is easy to prove that Z1 and Z2 are a formal series according to Corollary 2.2;
then w1, w2 ∈ F2((X−1)). As P is unit, so (w1, w2) is a 2-Pisot but

deg(X3) < 2 deg(X2 + X).

Theorem 3.3. Let the polynomial Λ be defined by

Λ(Y ) = Y n + λn−1Y n−1 + λn−2Y n−2 + · · · + λ1Y + λ0

such that λi ∈ Fq[X ], λ0 6= 0, |λn−2| > supi<n−2 |λi| and deg λn−2 < 2 deg λn−1,
then

1) If Λ is irreducible, then there exists a pair of 2-Pisot series (w1, w2) and Λ
is the minimal polynomial of (w1, w2).

2) If Λ = Λ1Λ2 such that deg(Λ1) > 1 and deg(Λ2) > 1, then there exists two
Pisot series w1 and w2 such that Λk is the minimal polynomial of wk for k = 1, 2.

Proof. 1) Considering the Newton polygon of Λ, then Λ has exactly 2 roots
w1, w2 ∈ Fq((X−1)) that lie outside the unit disc of different absolute value such
that

|w1| = q−k1 > 1 where k1 = − deg(λn−1)

|w2| = q−k2 > 1 where k2 = deg(λn−1) − deg(λn−2)

and all the remaining roots have a modulus that is strictly less than 1.
2) Trivial. �

Before concluding, we would like to suggest the following example.

Example 3.2. Let the polynomial

P (Y ) = Y 3 + X3Y 2 + X4Y + 1 ∈ F2[X ][Y ].

It is easy to prove that P is irreducible over F2[X ][Y ]. Then using Theorem 3.3,
P has two roots w1, w2 ∈ F2((X−1)) such that |w1| > 1, |w2| > 1 and |w3| < 1. As
w1 is an algebraic integer, then (w1, w2) is a pair of 2-Pisot series.
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