IRREDUCIBILITY CRITERION AND 2-PISOT SERIES IN POSITIVE CHARACTER

Mabrouk Ben Ammar and Hassen Kthiri

Abstract

Let $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ be the field of formal power series over a finite field \mathbb{F}_{q}. We characterize a pair of roots that lies outside the unit disc while all remaining conjugates have a modulus strictly less than 1 . In particular, we provide a sufficient condition for a pair of formal power series to be a 2-Pisot series. We also give an irreducibility criterion over $\mathbb{F}_{q}[X]$.

1. Introduction

A Pisot number is an algebraic integer $\theta>1$ having all its conjugates $\neq \theta$ of modulus <1. It is known that the positive root $\theta_{0} \simeq 1.3247$ of $z^{3}-z-1$ is the smallest Pisot number [12]. According to Dufresnoy and Pisot [5], the smallest limit point of the set S_{1} of Pisot numbers is $\frac{1+\sqrt{5}}{2}$. The algorithm that they developed [4] was powerful and served to classify all Pisot numbers less than $\frac{1+\sqrt{5}}{2}$. In 1944, Salem proved that S_{1} is closed [10.

A complex Pisot number is a non-real algebraic integer α, with $|\alpha|>1$, whose remaining conjugates other than α lie in the open unit disk. Without loss of generality, we may require the real part of a complex Pisot number to be nonnegative. The smallest complex Pisot number was provided by Chamfy [3 with modulus $\sqrt{\alpha_{0}} \cong 1.1509$, for which either $z^{3}-z^{2}+1$ or $z^{6}-z^{2}+1$ is a minimal polynomial.

A 2-Pisot number is a pair $\left(\alpha_{1}, \alpha_{2}\right)$ of conjugate algebraic integers of modulus >1 whose remaining conjugates have modulus <1. The set S_{2} of all 2-Pisot numbers can be partitioned as $S_{2}=S_{2}^{\prime} \cup S_{2}^{\prime \prime}$, with S_{2}^{\prime} being the set of those 2-Pisot numbers with $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ and $S_{2}^{\prime \prime}$ being the set of 2-Pisot numbers with $\alpha_{1}, \alpha_{2}=\overline{\alpha_{1}}$ non-real (so they are complex conjugates of each other).

In 1950, Kelley proved that the set $S_{1} \cup S_{2}^{\prime \prime}$ is closed $\mathbf{9}$. However, it is impossible that S_{2}^{\prime} be closed, because it includes a dense, enumerable subset of real quadratic integers. He also proved that the set S_{2}^{\prime} cannot be closed even if we omit the

[^0]quadratic integers. According to Samet [11, the set S_{2}^{\prime} of degree $n>2$ is dense in $|x|>1$. The study of limit points of the set S_{1} has attracted numerous researches and to a lesser extent the set S_{2}. In this regard, it is legitimate to figure out if the smallest limit point of S_{2}, the set of complex Pisot numbers, is the one with minimal polynomial $z^{4}+z^{2}-1$, having modulus $\frac{\sqrt{1+\sqrt{5}}}{2} \cong 1.2720$. Also, Garth [$\mathbf{6}$] discussed how to use Chamfy's algorithm to determine all complex Pisot numbers of modulus less than $\zeta=1.17$.

In (2), Cantor studied certain k-tuples of algebraic integers which generalize these ideas. Distinctly, let $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be a k-tuple of distinct algebraic integers with an absolute value strictly greater than 1 , and let $P(z)$ be the monic polynomial of the lowest degree with integer coefficients which $\alpha_{1}, \ldots, \alpha_{k}$ all satisfy. If the remaining roots of $P(z)$ lie in the open unit disk, then $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is called a Pisot k-tuple, and $P(z)$ is its defining polynomial. Moreover, if $P(z)$ is irreducible, then $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is said to be an irreducible Pisot k-tuple. Cantor 2 focused on Pisot k-tuples whose defining polynomials are reciprocal. Recall that a polynomial $P(z)$ of degree d is reciprocal if $P(z)=z^{d} P(1 / z)$. He ultimately claimed that a Pisot k-tuple is reciprocal if its defining polynomial is reciprocal.

In [13, Pisot showed that every reciprocal quadratic unit is a limit point of S_{1}. Samet [11], corroborated on this theory by asserting that every reciprocal biquadratic unit in S_{2}, i.e., every reciprocal unit of degree 4 in S_{2} is a limit point of S_{2}.

However, it is still not determined whether reciprocal Pisot k-tuples are limits of pisot k-tuples. Although this question is generally challenging, Garth [7 gave conditions for which the assertion turns out to be true.

This manuscript concerns an analogue of 2-Pisot numbers S_{2}^{\prime} defined over the ring $\mathbb{F}_{q}[X]$, where \mathbb{F}_{q} is the finite field of q elements, with the field \mathbb{R} being replaced by $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$. The analogues of the Pisot numbers have been previously studied in this context by e.g., Bateman and Duquette [1]. An attempt is also made to extend some of their results to these numbers.

The paper is organized as follows: In Section2, some preliminary definitions are given to present the field of formal power series over a finite field. We present some important results of Bateman and Duquette [1] which characterize Pisot elements in the field of formal power series. In Section 3 certain arithmetical proprieties of 2Pisot are discussed and an irreducibility criterion in the case of formal power series is provided giving the series of 2-Pisot elements. We also formulate in Theorem 3.2, a criterion to construct 2-Pisot elements in the field of formal series over a finite field.

2. Field of formal series

For p a prime and q a power of p, let \mathbb{F}_{q} be a field with q elements of characteristic $p, \mathbb{F}_{q}[X]$ the set of polynomials with coefficients in \mathbb{F}_{q} and $\mathbb{F}_{q}(X)$ its field of fractions. The set $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ of Laurent series over \mathbb{F}_{q} is defined as follows:

$$
\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)=\left\{f=\sum_{i \geqslant n_{0}} f_{i} X^{-i}: n_{0} \in \mathbb{Z} \quad \text { and } \quad f_{i} \in \mathbb{F}_{q}\right\} .
$$

Let $f=\sum_{n \geqslant n_{0}} f_{n} X^{-n}$ be any formal power series, its polynomial part is denoted by $[f] \in \mathbb{F}_{q}[X]$ and $\{f\}$ its fractional part. We remark that $f=[f]+\{f\}$. If $f \neq 0$, then the polynomial degree of f is $\gamma(f)=\sup \left\{-i: f_{i} \neq 0\right\}$, the degree of the highest-degree nonzero monomial in f, and $\gamma(0)=-\infty$. Note that if $[f] \neq 0$ then $\gamma(f)$ is the degree of the polynomial $[f]$. Thus, we define $|f|=q^{\gamma(f)}$. Note that $|$.$| is a no Archimedean absolute value over \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$. It is clear that, for all $P \in \mathbb{F}_{q}[X],|P|=q^{\operatorname{deg} P}$ and, for all $Q \in \mathbb{F}_{q}[X]$, such that $Q \neq 0,\left|\frac{Q}{P}\right|=$ $q^{\operatorname{deg} P-\operatorname{deg} Q}$. We know that $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ is complete and locally compact with respect to the metric defined by this absolute value. We denote by $\overline{\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)}$ an algebraic closure of $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$. We note that the absolute value has a unique extension to $\overline{\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)}$. Abusing the notation a little, we will use the same symbol \mid. \mid for the two absolute values.

A Pisot series $w \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ is an algebraic integer over $\mathbb{F}_{q}[X]$ such that $|w|>1$ whose remaining conjugates in $\overline{\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)}$ have an absolute value strictly smaller than 1. The set of all Pisot series is denoted S^{*}.

Since $\mathbb{F}_{q}[X] \subset \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$, every algebraic element over $\mathbb{F}_{q}[X]$ can be evaluated. However, $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ is not algebraically closed. Such an element is not necessarily expressed as a power series. For a full characterization of the algebraic closure of $\mathbb{F}_{q}[X]$, we refer to Kedlaya [8].

Definition 2.1. [14. Let

$$
\begin{equation*}
f(X, Y)=A_{m} Y^{m}+A_{m-1} Y^{m-1}+\cdots+A_{1} Y+A_{0} \in \mathbb{F}_{q}[X, Y], \quad A_{i} \in \mathbb{F}_{q}[X] \tag{2.1}
\end{equation*}
$$

be irreducible of $F_{q}[X, Y]$. To each monomial $A_{i} Y^{i} \neq 0$, we assign the point $\left(i, \operatorname{deg}\left(A_{i}\right)\right) \in \mathbb{Z}^{2}$. For $A_{i}=0$, we ignore the corresponding point $(i,-\infty)$.

If we consider the upper convex hull of the set of points

$$
\left\{\left(0, \operatorname{deg}\left(A_{0}\right)\right), \ldots,\left(m, \operatorname{deg}\left(A_{m}\right)\right)\right\}
$$

we obtain the so-called upper Newton polygon of $f(X, Y)$ with respect to Y. The polygon is a sequence of line segments $E_{1}, E_{2}, \ldots, E_{t}$, with monotonously decreasing slopes.

Proposition 2.1. 14]. Let $f(X, Y) \in \mathbb{F}_{q}[X, Y] \subset \mathbb{F}_{q}\left(\left(Y^{-1}\right)\right)[X]$ be of the form (2.1). Since $\mathbb{F}_{q}\left(\left(Y^{-1}\right)\right)$ is complete with respect to $|$.$| , there is a unique$ extension of $|$.$| to the splitting field L$ of $f(X, Y)$ over $K=\mathbb{F}_{q}\left(\left(Y^{-1}\right)\right)$.

Let $1=r<r+s=m$. We define E to be the line joining the points $\left(r, \operatorname{deg}\left(A_{r}\right)\right)$ and $\left(r+s, \operatorname{deg}\left(A_{r+s}\right)\right)$, which has a slope

$$
k=\frac{\operatorname{deg}\left(A_{r+s}\right)-\operatorname{deg}\left(A_{r}\right)}{s} .
$$

Then $f(X, Y)$, as a polynomial in Y, has s roots $\alpha_{1}, \ldots, \alpha_{s} \in L$ with $\left|\alpha_{1}\right|=\cdots=$ $\left|\alpha_{s}\right|=q^{-k}$.

Corollary 2.1. There are no roots in $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ with absolute value >1 of the polynomial $H(Y)=A_{n} Y^{n}+A_{n-1} Y^{n-1}+\cdots+A_{0}$, where $\left|A_{n}\right|=\sup _{0 \leqslant i \leqslant n}\left|A_{i}\right|$.

Proof. Immediately proved by Proposition 2.1.

Corollary 2.2. Let $P(Y)=A_{n} Y^{n}+A_{n-1} Y^{n-1}+\cdots+A_{0}$, with $A_{i} \in \mathbb{F}_{q}[X]$, $A_{n}=1, A_{0} \neq 0$ and $\left|A_{n-1}\right|>\left|A_{i}\right|$, for all $i \neq n-1$. Then, P has only one root $f \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ satisfying $|f|>1$. Moreover, $[f]=-\left[\frac{A_{n-1}}{A_{n}}\right]$.

Proof. The first part follows easily from Proposition 2.1. For the second part, we use the fact that $\left[\frac{A_{n-1}}{A_{n}}\right]$ is the sum of the roots of the polynomial P.

In 1962, Bateman and Duquette 1 introduced and characterized the Pisot elements in the field of Laurent series.

Theorem 2.1. [1]. An element f in $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ is a Pisot element if and only if its minimal polynomial can be written as $P(Y)=Y^{s}+A_{s-1} Y^{s-1}+\cdots+A_{0}$, $A_{i} \in \mathbb{F}_{q}[X]$ for $i=0, \ldots, s-1$ with $\left|A_{s-1}\right|>\left|A_{i}\right|$ for $i=0, \ldots, s-2$.

Theorem 2.2. [1]. An element $f \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ is a Pisot number if and only if there exists $\lambda \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right) \backslash\{0\}$ such that $\lim _{n \rightarrow+\infty}\left\{\lambda f^{n}\right\}=0$; Moreover λ can be chosen to belong to $\mathbb{F}_{q}(X)(f)$.

A 2-Pisot series is a pair $\left(w_{1}, w_{2}\right) \in\left(\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)\right)^{2}$ of conjugate algebraic integers over $\mathbb{F}_{q}[X]$ of absolute value >1 whose remaining conjugates in $\overline{\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)}$ have an absolute value <1. The set of all 2-Pisot series is denoted by S_{2}^{*} and $\left(S_{2}^{*}\right)^{\prime \prime}$ is the subset of 2-Pisot series $\left(w_{1}, w_{2}\right)$ which are not in $\left(\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)\right)^{2}$ but $\left(w_{1}^{2}, w_{2}^{2}\right)$ in $\left(\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)\right)^{2}$.

Note that a 2-Pisot element is necessarily separable over $\mathbb{F}_{q}(x)$ and also has an absolute value greater than 1 . Another immediate consequence of the definition is a positive integral power of a 2 -Pisot element.

The following original examples illustrate the previous definition.
Example 2.1 (A 2-Pisot series of degree 3 on $\mathbb{F}_{2}\left(\left(X^{-1}\right)\right)$). Let the polynomial P be defined by

$$
P(Y)=Y^{3}+\left(X^{2}+1\right) Y^{2}+\left(X^{3}+X\right) Y+1 \in \mathbb{F}_{2}[X][Y] .
$$

Then it is irreducible over $\mathbb{F}_{2}[X]$ and has 3 roots defined by:

$$
W_{1}=\sum_{i=-2}^{\infty} w_{i} X^{-i}, \quad W_{2}=\sum_{i=-1}^{\infty} w_{i} X^{-i} \quad \text { and } \quad W_{3}=\sum_{i=1}^{\infty} w_{i} X^{-i}
$$

Then $W_{i} \in \mathbb{F}_{2}\left(\left(X^{-1}\right)\right)$ for $i=1,2$. Indeed

$$
\begin{array}{ll}
W_{1}=X^{2}+X+\frac{1}{X^{2}}+\cdots=X^{2}+X+\frac{1}{Z_{1}} \text { such that }\left|Z_{1}\right|>2 \\
W_{2}=X+1+\frac{1}{X}+\cdots=X+1+\frac{1}{Z_{2}} \quad \text { such that }\left|Z_{2}\right|>1 \\
W_{3}=\frac{1}{X}+\cdots=\frac{1}{Z_{3}} & \text { such that }\left|Z_{3}\right|>1
\end{array}
$$

We have

$$
W_{1}^{3}+\left(X^{2}+1\right) W_{1}^{2}+\left(X^{3}+X\right) W_{1}+1=0
$$

Then

$$
Z_{1}^{3}+\left(X^{4}+X^{3}+X^{2}+X\right) Z_{1}^{2}+(X+1) Z_{1}+1=0
$$

According to Corollary 2.2, $Z_{1} \in \mathbb{F}_{2}\left(\left(X^{-1}\right)\right)$, so $W_{1} \in \mathbb{F}_{2}\left(\left(X^{-1}\right)\right)$. In the same way, we can prove that $W_{2} \in \mathbb{F}_{2}\left(\left(X^{-1}\right)\right)$. Therefore $\left(W_{1}, W_{2}\right) \in\left(S_{2}^{*}\right)$.

Example 2.2 (A pair of $\left.\left(S_{2}^{*}\right)^{\prime \prime}\right)$. Let the polynomial P be defined by

$$
P(Y)=Y^{4}-2 X^{2} Y^{2}-2 \in \mathbb{F}_{3}[X][Y] .
$$

P is irreducible over $\mathbb{F}_{3}[X]$ and has two roots of modulus strictly greater than 1 defined by

$$
\left(w_{1}, w_{2}\right)=\left(a\left(X-\frac{1}{X^{3}}+\ldots\right),-a\left(X-\frac{1}{X^{3}}+\ldots\right)\right)
$$

by choosing a to be a square in \mathbb{F}_{3}, which $\left(w_{1}, w_{2}\right)$ is not in $\left(\mathbb{F}_{3}\left(\left(X^{-1}\right)\right)\right)^{2}$ since $\sqrt{2}$ is in \mathbb{F}_{9} but not in \mathbb{F}_{3} and the others have a modulus strictly less then 1. Thus $\left(w_{1}, w_{2}\right) \in\left(S_{2}^{*}\right)^{\prime \prime}$.

Let us remember that $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ contains 2-Pisot series of any degree over $\mathbb{F}_{q}(X)$. Indeed, consider the polynomial $Y^{n}-a X^{2} Y^{n-2}-b$, where $a, b \in \mathbb{F}_{q}^{*}$. It can be easily seen that the polynomial is irreducible over $\mathbb{F}_{q}[x]$. Furthermore if a is a square in \mathbb{F}_{q}, then the polynomial has two roots $\left(w_{1}, w_{2}\right) \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ such that $\left|w_{1}\right|>1,\left|w_{1}\right|>1$ and all of its conjugates in $\overline{\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)}$ have an absolute value strictly smaller than 1 .

3. Results

3.1. 2-Pisot series arithmetical proprieties. In this section, we discuss some analogous results to those known about 2-Pisot numbers in the real case. Our main results are the following propositions.

Proposition 3.1. Let $\left(w_{1}, w_{2}\right) \in S_{2}^{*}$, then $\left(w_{1}^{n}, w_{2}^{n}\right) \in S_{2}^{*}$, for all $n \in \mathbb{N}^{*}$.
Proof. Let $\left(w_{1}, w_{2}\right) \in S_{2}^{*}$ and $M \in \mathbb{F}_{q}[X][Y]$ the minimal polynomial of w and $w=w_{1}, \ldots, w_{d}$ the conjugates of w. Then there exists exactly 2 conjugates $w=w_{1}, w_{2}$ of w that lie outside the unit disc. Let w_{3}, \ldots, w_{d} denote the other roots of M.

We know that the product of any two algebraics is, itself, an algebraic. Since w_{1} is an algebraic, then for all $n \in \mathbb{N}, w_{1}^{n}$ a is also an algebraic. Let $P \in \mathbb{F}_{q}[X][Y]$ be the minimal polynomial of w_{1}^{n}. Now, we consider embedding σ_{i} of $\mathbb{F}_{q}(X)\left(w_{1}\right)$ into $\overline{\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)}$, which fixes $\mathbb{F}_{q}(X)$ and maps w_{1} to w_{i}.

$$
P\left(w_{i}^{n}\right)=P\left(\left(\sigma_{i}\left(w_{1}\right)^{n}\right)\right)=P\left(\sigma_{i}\left(w_{1}^{n}\right)\right)=\sigma_{i}\left(P\left(w_{1}^{n}\right)\right)=\sigma_{i}(0)=0 .
$$

So for all $i \leqslant d, w_{i}^{n}$ satisfies $P(Y)=0$. We have,

$$
\left[\mathbb{F}_{q}(X)\left(w_{1}^{n}\right): \mathbb{F}_{q}(X)\right] \leqslant\left[\mathbb{F}_{q}(X)\left(w_{1}\right): \mathbb{F}_{q}(X)\right]
$$

This shows that $\operatorname{deg}(P) \leqslant \operatorname{deg}(M)$. So $w_{1}^{n}, w_{2}^{n}, \ldots, w_{d}^{n}$ are all the roots of P. If $3 \leqslant i \leqslant d$, then $\left|w_{i}^{n}\right|=\left|w_{i}\right|^{n}<1$ and $\left|w_{1}^{n}\right|=\left|w_{i}\right|^{n}>1$ for $i=1,2$. Therefore $\left(w_{1}^{n}, w_{2}^{n}\right) \in S_{2}^{*}$ for all $n \in \mathbb{N}^{*}$.

Proposition 3.2. Let $\left(w_{1}, w_{2}\right) \in\left(S_{2}^{*}\right)$; then $\lim _{n \rightarrow+\infty}\left\{w_{1}^{n}+w_{2}^{n}\right\}=0$.

Proof. Let $\left(w_{1}, w_{2}\right)$ be a 2-Pisot series and w_{1}, \ldots, w_{d} its conjugates. From the preceding propositions results, for all $n \in \mathbb{N} ; w_{1}^{n}, w_{2}^{n}$ are the roots of the same degree d irreducible polynomial, P_{n} in $\mathbb{F}_{q}[X]$. Also, $\operatorname{Tr}\left(P_{n}\right)=\sum_{i=1}^{d} w_{i}^{n} \in \mathbb{F}_{q}[X]$. So $\left\{\operatorname{Tr}\left(P_{n}\right)\right\}=0$. The above can be rewritten as

$$
\left\{\operatorname{Tr}\left(P_{n}\right)=\sum_{i=1}^{d} w_{i}^{n}\right\}=\left\{w_{1}^{n}+w_{2}^{n}+\sum_{i=3}^{d} w_{i}^{n}\right\}
$$

Since, for $3 \leqslant i \leqslant d$, by definition $\left|w_{i}\right|<1$, therefore $w_{i}^{n} \rightarrow 0$. Thus $\left\{\sum_{i=3}^{d} w_{i}^{n}\right\} \rightarrow 0$. Therefore $\lim _{n \rightarrow+\infty}\left\{w_{1}^{n}+w_{2}^{n}\right\}=0$.

Proposition 3.3. Let $\left(w_{1}, w_{2}\right) \in S_{2}^{*}$ with a minimal polynomial $P \in \mathbb{F}_{q}[X][Y]$ of degree 3 and $w=w_{1}, w_{2}$, w_{3} the conjugates of w. If w is unit and $P(0)=c \in \mathbb{F}_{q}^{*}$, then $\frac{(-1)}{c} w_{1} w_{2} \in S^{*}$.

Proof. Let $\left(w_{1}, w_{2}\right) \in S_{2}^{*}$ with a minimal polynomial P of degree 3 and $P(0)=c \in \mathbb{F}_{q}^{*}$. Let w_{3} be the third root of P. Since

$$
P(Y)=\left(Y-w_{1}\right)\left(Y-w_{2}\right)\left(Y-w_{3}\right)
$$

consider

$$
Q(Y)=\frac{Y^{3}}{c} P\left(\frac{1}{Y}\right)
$$

Clearly, Q is an irreducible unit over $\mathbb{F}_{q}[X][Y]$, and has roots

$$
\frac{1}{w_{1}} ; \frac{1}{w_{2}} ; \frac{1}{w_{3}}=\frac{(-1)}{c} w_{1}, w_{2} .
$$

We have $\left|\frac{1}{w_{3}}\right|=\left|\frac{-w_{1} w_{2}}{c}\right|=\left|w_{1} w_{2}\right|>1$ and $\left|\frac{1}{w_{i}}\right|<1$ for $i=1,2$. Therefore $\frac{(-1)}{c} w_{1} w_{2}$ is a Pisot series.
3.2. Irreducibility criterion and 2-Pisot series. In this subsection, we give an irreducibility criterion over $\mathbb{F}_{q}[X]$ in the case of a formal power series. Let us begin by:

Theorem 3.1. Let the polynomial P be defined by

$$
P(Y)=A_{n} Y^{n}+A_{n-1} Y^{n-1}+A_{n-2} Y^{n-2}+\cdots+A_{1} Y+A_{0}
$$

where $A_{0} \neq 0, A_{n} \in \mathbb{F}_{q}^{*}, A_{i} \in \mathbb{F}_{q}[X]$. P has exactly 2 roots that lie outside the unit disc and all remaining roots have a modulus strictly less than 1 if and only if

$$
\left|A_{n-2}\right|>\sup _{i \neq n-2}\left|A_{i}\right| .
$$

Proof. The first part is trivial.
For the second part, suppose first that P has no roots of absolute value greater than 1 , which is absurd because the absolute value of the leading coefficient of the polynomial P is superior or equal to 1 .

Suppose now that P has k exact roots $(k \neq 2)$ that lie outside the unit disc and all the remaining roots have a modulus strictly less than 1 . Let $w=w_{1}, w_{2}, \ldots, w_{n}$
be the roots of $P(Y)$ such that $\left|w_{1}\right| \geqslant \cdots \geqslant\left|w_{k}\right|>1>\left|w_{k+1}\right| \geqslant \cdots \geqslant\left|w_{n}\right|$. By the symmetric relations of the roots of a polynomial, we obtain

$$
\begin{aligned}
\left|\frac{A_{n-k}}{A_{n}}\right| & =\left|\sum_{1 \leqslant i_{1}<i_{2}<\ldots \leqslant n} w_{i_{1}} w_{i_{2}} \ldots w_{i_{k}}\right| \\
& =\left|w_{1} w_{2} \ldots w_{k}\right|>\sup \left(\left|w_{1} w_{2}\right|, \ldots,\left|w_{k-1} w_{k}\right|\right) \geqslant\left|\frac{A_{n-2}}{A_{n}}\right| .
\end{aligned}
$$

Then $\sup _{k \neq 2}\left|A_{n-k}\right|>\left|A_{n-2}\right|$, which is also absurd.
Theorem 3.2. Let $\left(w_{1}, w_{2}\right) \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)^{2}$ are the roots of the polynomial

$$
\Lambda(Y)=Y^{n}+\lambda_{n-1} Y^{n-1}+\lambda_{n-2} Y^{n-2}+\cdots+\lambda_{1} Y+\lambda_{0}
$$

such that $\lambda_{i} \in \mathbb{F}_{q}[X], \lambda_{0} \neq 0$ and $\left|\lambda_{n-2}\right|>\sup _{i<n-2}\left|\lambda_{i}\right|$. If $\operatorname{deg} \lambda_{n-2} \geqslant 2 \operatorname{deg} \lambda_{n-1}$ and $\operatorname{deg} \lambda_{n-2}$ is odd, then Λ is irreducible and has a pair of 2-Pisot series.

Proof. According to Theorem 3.1, Λ has exactly 2 roots that lie outside the unit disc and all the remaining roots have a modulus that is strictly less than 1 . Let $w_{1}, w_{2}, \ldots, w_{n}$ be the roots of Λ such that $\left|w_{1}\right| \geqslant\left|w_{2}\right|>1>\left|w_{i}\right|$, for $i=3,4, \ldots, n$. Taking into account the Theorem condition, $\Lambda(0)=\lambda_{0} \neq 0$; hence, all roots of the polynomial $\Lambda(Y)$ are not equal to 0 . Let $\Lambda(Y)=\Lambda_{1}(Y), \Lambda_{2}(Y)$, where the coefficients of $\Lambda_{i}(Y)$, for $i=1,2$, are in $\mathbb{F}_{q}[X]$.

Suppose first that w_{1} and w_{2} are the roots of Λ_{1} and the other roots are of Λ_{2}. Clearly, the absolute value of the leading coefficient of the polynomial Λ_{2} is superior or equal to 1 , which is absurd because the roots of Λ_{2} are exactly w_{i} for $i=3,4, \ldots, n$ such that $0<\left|w_{i}\right|<1$.

Suppose secondly that Λ_{1} is the polynomial of the series w_{1} and Λ_{2} the polynomial of the series w_{2}. Then we have

$$
\begin{aligned}
\Lambda(Y) & =\Lambda_{1}(Y) \cdot \Lambda_{2}(Y) \\
& =\left(Y^{s}+A_{s-1} Y^{s-1}+\cdots+A_{1} Y+A_{0}\right)\left(Y^{m}+B_{m-1} Y^{m-1}+\cdots+B_{1} Y+B_{0}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \lambda_{n-1}=A_{s-1}+B_{m-1}, \\
& \lambda_{n-2}=B_{m-2}+A_{s-1} B_{m-1}+A_{s-2} .
\end{aligned}
$$

This gives us

$$
\begin{aligned}
& \operatorname{deg} \lambda_{n-1} \leqslant \sup \left(\operatorname{deg} A_{s-1} ; \operatorname{deg} B_{m-1}\right), \\
& \operatorname{deg} \lambda_{n-2}=\operatorname{deg} A_{s-1}+\operatorname{deg} B_{m-1} .
\end{aligned}
$$

Considering its Newton polygon, it can be seen that the polynomial Λ has exactly 2 roots w_{1} and w_{2} such that $\left|w_{1}\right|=\left|w_{2}\right|=q^{-k}>1$ where $k=-\frac{\operatorname{deg}\left(A_{s-1}\right)}{2}$ and all the remaining roots have a modulus that is strictly less than 1. As $\operatorname{deg}\left(A_{s-1}\right)=$ $\operatorname{deg}\left(B_{m-1}\right)$, then $\operatorname{deg} \lambda_{n-2}=\operatorname{deg} A_{s-1}+\operatorname{deg} B_{m-1}=2 \operatorname{deg} A_{s-1}$ is even, which is the desired contradiction. Therefore, we conclude that Λ is irreducible and it is the minimal polynomial of w_{1} and w_{2}. So $\left(w_{1}, w_{2}\right) \in S_{2}^{*}$.

Example 3.1. Let $H(Y)=Y^{d}+A Y^{d-1}+B Y^{d-2}+C, A, B \in \mathbb{F}_{q}[X] \backslash\{0\}$, such that $\operatorname{deg} B>2 \operatorname{deg} A>1, C \in \mathbb{F} \backslash\{0\}$ and $\operatorname{deg}(B)$ is odd. Then H is irreducible over $\mathbb{F}_{q}[X]$.

Remark 3.1. The inverse case is not always true. Indeed, consider the polynomial

$$
P(Y)=Y^{3}+\left(X^{2}+X\right) Y^{2}+X^{3} Y+1 \in \mathbb{F}_{2}[X][Y] .
$$

$P(Y)$ is irreducible in $\mathbb{F}_{2}[X][Y]$ and has two roots of a modules strictly greater than 1 defined by

$$
\begin{aligned}
& w_{1}=X^{2}+\frac{1}{Z_{1}} \text { such that }\left|Z_{1}\right|>2 ; \\
& w_{2}=X^{2}+\frac{1}{Z_{2}} \text { such that }\left|Z_{2}\right|>1 ; \\
& w_{3}=\frac{1}{Z_{3}} \quad \text { such that }\left|Z_{3}\right|>1 .
\end{aligned}
$$

It is easy to prove that Z_{1} and Z_{2} are a formal series according to Corollary 2.2 , then $w_{1}, w_{2} \in \mathbb{F}_{2}\left(\left(X^{-1}\right)\right)$. As P is unit, so $\left(w_{1}, w_{2}\right)$ is a 2-Pisot but

$$
\operatorname{deg}\left(X^{3}\right)<2 \operatorname{deg}\left(X^{2}+X\right)
$$

Theorem 3.3. Let the polynomial Λ be defined by

$$
\Lambda(Y)=Y^{n}+\lambda_{n-1} Y^{n-1}+\lambda_{n-2} Y^{n-2}+\cdots+\lambda_{1} Y+\lambda_{0}
$$

such that $\lambda_{i} \in \mathbb{F}_{q}[X], \lambda_{0} \neq 0,\left|\lambda_{n-2}\right|>\sup _{i<n-2}\left|\lambda_{i}\right|$ and $\operatorname{deg} \lambda_{n-2}<2 \operatorname{deg} \lambda_{n-1}$, then

1) If Λ is irreducible, then there exists a pair of 2 -Pisot series $\left(w_{1}, w_{2}\right)$ and Λ is the minimal polynomial of $\left(w_{1}, w_{2}\right)$.
2) If $\Lambda=\Lambda_{1} \Lambda_{2}$ such that $\operatorname{deg}\left(\Lambda_{1}\right) \geqslant 1$ and $\operatorname{deg}\left(\Lambda_{2}\right) \geqslant 1$, then there exists two Pisot series w_{1} and w_{2} such that Λ_{k} is the minimal polynomial of w_{k} for $k=1,2$.

Proof. 1) Considering the Newton polygon of Λ, then Λ has exactly 2 roots $w_{1}, w_{2} \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ that lie outside the unit disc of different absolute value such that

$$
\begin{aligned}
& \left|w_{1}\right|=q^{-k_{1}}>1 \text { where } k_{1}=-\operatorname{deg}\left(\lambda_{n-1}\right) \\
& \left|w_{2}\right|=q^{-k_{2}}>1 \text { where } k_{2}=\operatorname{deg}\left(\lambda_{n-1}\right)-\operatorname{deg}\left(\lambda_{n-2}\right)
\end{aligned}
$$

and all the remaining roots have a modulus that is strictly less than 1 .
2) Trivial.

Before concluding, we would like to suggest the following example.
Example 3.2. Let the polynomial

$$
P(Y)=Y^{3}+X^{3} Y^{2}+X^{4} Y+1 \in \mathbb{F}_{2}[X][Y] .
$$

It is easy to prove that P is irreducible over $\mathbb{F}_{2}[X][Y]$. Then using Theorem 3.3, P has two roots $w_{1}, w_{2} \in \mathbb{F}_{2}\left(\left(X^{-1}\right)\right)$ such that $\left|w_{1}\right|>1,\left|w_{2}\right|>1$ and $\left|w_{3}\right|<1$. As w_{1} is an algebraic integer, then $\left(w_{1}, w_{2}\right)$ is a pair of 2-Pisot series.

Acknowledgement. The authors thank the referee for his/her helpful remarks concerning the final form of this paper

References

1. P.T. Bateman, A. L. Duquette, The analogue of the Pisot Vijayaraghavan numbers in fields of formal power series, Ill. J. Math. 6 (1962), 594-606.
2. D. G. Cantor, On sets of algebraic integers whose remaining conjugates lie in the unit circle, Trans. Am. Math. Soc. 105 (1962), 391-406.
3. C. Chamfy, Fonctions méromorphes dans le cercle-unité et leurs séries de Taylor, Ann. Inst. Fourier 8 (1958), 211-261.
4. J. Dufresnoy, Ch. Pisot Etude de certaines fonctions méromorphes bornées sur le cercle unité, Ann. Sci. Éc. Norm. Supér. (3) 72 (1955), 69-92.
5. J. Dufresnoy, Ch. Pisot, Sur un ensemble fermé d'entiers algébriques, Ann. Sci. Éc. Norm. Supér. (3) 70 (1953), 105-133.
6. D. Garth, Complex Pisot numbers of small modulus, C. R., Math., Acad. Sci. Paris 336(12) (2003), 967-970.
7. D. Garth, On limits of PV k-tuples, Acta Arith. 90(3) (1999), 291-299.
8. K. S. Kedlaya, The algebraic closure of the power series field in positive characteristic, Proc. Am. Math. Soc. 129(12) (2001), 3461-3470.
9. J. B. Kelley, A closed set of algebraic integers, Am. J. Math. 72 (1950), 565-572.
10. R. Salem, A remarkable class of algebraic integers: Proof of a conjecture of Vijayaraghavan, Duke Math. J. 11 (1944), 103-108.
11. P. A. Samet, Algebraic integers with two conjugates outside the unit circle II, Proc. Camb. Philos. Soc. 50 (1954), 346.
12. A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385-399.
13. T. Vijayaraghavan, On the fractional parts of the powers of a number 2, Proc. Camb. Philos. Soc. 37 (1941), 349-357.
14. E. Weiss, Algebraic number theory, Reprint of the 1963 original, Dover Publications, Inc., Mineola, NY, 1998.

Faculty of Science of Sfax
(Received 2904 2017)
Department of Mathematics University of Sfax
Sfax
Tunisia
mabrouk.benammar@fss.rnu.tn
hassenkthiri@gmail.com

[^0]: 2010 Mathematics Subject Classification: 11R04; 11R06; 11R09.
 Key words and phrases: irreducible polynomials, finite field, Laurent series, 2-Pisot series.
 Communicated by Žarko Mijajlović.

