DOI: https://doi.org/10.2298/PIM1919145S

ON I-STATISTICALLY ROUGH CONVERGENCE

Ekrem Savas, Shyamal Debnath, and Debjani Rakshit

ABSTRACT. We introduce rough I-statistical convergence as an extension of rough convergence. We define the set of rough I-statistical limit points of a sequence and analyze the results with proofs.

1. Introduction

The idea of statistical convergence was introduced by Steinhaus [24] and Fast [7] independently for real and complex sequences and some applications of statistical convergence in number theory and mathematical analysis have been shown by various researchers [2,3,8,9,12,22]. The concept of *I*-convergence was introduced by Kostyrko et al. [11] which generalizes and unifies different notion of convergence of sequences including usual convergence and statistical convergence. They used the notion of an ideal *I* of subsets of the set *N* to define such a concept [5,10,23].

The idea of *I*-statistical convergence was introduced by Savas and Das [20] as an extension of ideal convergence. Later on it was further investigated by Savas and Das [21], Savas [18, 19], Debnath and Debnath [4], Et et al. [6] and many others.

The idea of rough convergence was first introduced by Phu [17] in finite dimensional normed linear spaces and studied the basic properties of this interesting concept [15,16]. It should be mentioned that the idea of rough convergence occurs very naturally in numerical analysis and has interesting application there. Recently Aytar [1] and Pal et al. [14] generalize the idea of rough convergence into rough statistical convergence and rough ideal convergence.

In this paper, we introduce the notion of rough *I*-statistical convergence with an aim to study some elementary properties of the set of rough *I*-statistical limit points.

It is to be noted that though our method of proofs is similar to those in [1,14, 17], in comparison to previous studies we present our results in the most generalized form. This also enhances the applicability of these concepts.

145

²⁰¹⁰ Mathematics Subject Classification: Primary 40A35; Secondary 40A05.

Key words and phrases: I-statistical convergence, rough convergence, convex set.

Communicated by Stevan Pilipović.

2. Definitions and Preliminaries

DEFINITION 2.1. [17] Let $\{x_n\}_{n \in N}$ be a sequence in some normed linear space $(X, \|.\|)$ and r be a non-negative real number. Then $\{x_n\}_{n \in N}$ is said to be r-convergent to x_* , denoted by $x_n \xrightarrow{r} x_*$ if for all $\varepsilon > 0$ there exists $n_0 \in N$ such that $n \ge n_0 \Rightarrow \|x_n - x_*\| < r + \varepsilon$. Or equivalently if $\limsup \|x_n - x_*\| \le r$. This is the rough convergence with r as roughness degree.

DEFINITION 2.2. [1] A sequence $x = \{x_n\}_{n \in N}$ is said to be *r*-statistically convergent to x_* , denoted by $x_n \xrightarrow{r-st} x_*$, provided that the set $\{n \in N : ||x_n - x_*|| \ge r + \varepsilon\}$ has natural density zero for every $\varepsilon > 0$.

DEFINITION 2.3. [14] A sequence $x = \{x_n\}_{n \in N}$ is said to be *r*-*I* convergent to x_* , denoted by $x_n \xrightarrow{r-I} x_*$, provided that the set $\{n \in N : ||x_n - x_*|| \ge r + \varepsilon\} \in I$ for any $\varepsilon > 0$.

DEFINITION 2.4. [20] A real number sequence $x = \{x_n\}_{n \in N}$ is said to be *I*-statistically convergent to x_0 if for every $\varepsilon > 0$ and every $\delta > 0$,

 $\left\{n \in N : \frac{1}{n} |\{k \leq n : ||x_k - x_0|| \ge \varepsilon\}| \ge \delta\right\} \in I.$

The number x_0 is called *I*-statistical limit of the sequence x and we write, *I*-st $\lim x_n = x_0$.

Through out the paper we consider I as an admissible ideal.

DEFINITION 2.5. [13] The real number sequence $x = \{x_n\}$ is said to be *I*-st bounded if there is a number *G* such that $\{n \in N : \frac{1}{n} | \{k \leq n : |x_k| > G\} | > \delta\} \in I$.

DEFINITION 2.6. [13] An element $\gamma \in X$ is called *I*-statistical cluster point of a sequence $x = \{x_n\}_{n \in N}$ if for each $\varepsilon > 0$ and $\delta > 0$ the set

 $\left\{n \in N : \frac{1}{n} | \{k \leq n : ||x_k - \gamma|| \ge \varepsilon \} | < \delta \right\} \notin I$

The set of all *I*-statistical cluster points of x will be denoted by I- $S(\Gamma_x)$.

DEFINITION 2.7. [13] For a real sequence $x = \{x_n\}_{n \in \mathbb{N}}$, let B_x denote the set

$$B_x = \{ b \in R : \{ n \in N : \frac{1}{n} | \{ k \leq n : x_k > b \} | > \delta \} \notin I \}.$$

Similarly, $A_x = \{a \in R : \{n \in N : \frac{1}{n} | \{k \leq n : x_k < a\} | > \delta\} \notin I\}.$

Let x be a real number sequence. Then I-statistical limit superior of x is given by,

$$I\text{-st}\limsup x = \begin{cases} \sup B_x, & \text{if } B_x \neq \emptyset \\ -\infty & \text{if } B_x = \emptyset \end{cases}.$$

Also, I-statistical limit inferior of x is given by,

$$I\text{-st}\liminf x = \begin{cases} \inf A_x, & \text{if } A_x \neq \emptyset \\ \infty & \text{if } A_x = \emptyset \end{cases}.$$

THEOREM 2.1. [13] If a I-statistically bounded sequence has one cluster point then it is I-statistically convergent.

3. Main Results

DEFINITION 3.1. A sequence $x = \{x_n\}_{n \in N}$ in X is said to be *rough-I*-statistically convergent to x_* , denoted by $x_n \xrightarrow{r-I-\text{st}} x_*$, provided that the set

$$\left\{n \in N : \frac{1}{n} | \{k \leq n : ||x_k - x_*|| \ge r + \varepsilon\} | \ge \delta\right\} \in I$$

for any $\varepsilon > 0, \, \delta > 0$. Or equivalently we can say *I*-st $\limsup \|x_n - x_*\| \leq r$. Here r is called the roughness degree. If we take r = 0 we obtain the notion of *I*-statistical convergence.

For instance assume that the sequence $y = \{y_n\}_{n \in N}$ is *I*-statistically convergent which can not be calculated exactly, one has to do with an approximated sequence $x = \{x_n\}_{n \in \mathbb{N}}$ satisfying $||x_n - y_n|| \leq r$ for all n. Then I-statistical convergence of the sequence x is not assured, but as the inclusion,

$$\{ n \in N : \frac{1}{n} | \{ k \leq n : ||x_k - x_*|| \ge r + \varepsilon \} | \ge \delta \}$$

$$\subseteq \{ n \in N : \frac{1}{n} | \{ k \leq n : ||y_k - x_*|| \ge \varepsilon \} | \ge \delta \}$$

holds, so the sequence $\{x_n\}_{n \in N}$ is r-I-statistically convergent.

In general the rough I-st limit of a sequence may not be unique for the roughness degree r > 0. We define I-st $LIM^r x =$ set of all rough I-st limit of $x = \{x_* \in$ $X: x_n \stackrel{r-I-\mathrm{st}}{\longrightarrow} x_* \}.$

The sequence x is said to be r-I-statistically convergent provided I-st $LIM^r x \neq$ \emptyset . It is clear that if I-st $LIM^r x \neq \emptyset$ for a sequence $x = \{x_n\}_{n \in \mathbb{N}}$ of real number, then we have I-st $LIM^r x = [I$ -st $\limsup x - r$, I-st $\limsup x + r]$.

THEOREM 3.1. For a sequence $x = \{x_n\}_{n \in \mathbb{N}}$, $diam(I-stLIM^rx) \leq 2r$. In general $diam(I-stLIM^rx)$ has no smaller bound.

PROOF. Assume that, diam(I-st $LIM^rx) > 2r$. Then there exists $y, z \in$ $I \text{-st } LIM^r x \text{ such that } \|y - z\| > 2r. \text{ Choose } 0 < \varepsilon < \frac{\|y - z\|}{2} - r \text{ and } \delta > 0.$ Put, $A_1 = \{n \in N : \frac{1}{n} |\{k \le n : \|x_k - y\| \ge r + \varepsilon\}| \ge \delta\} \in I \text{ and } A_2 = \{n \in N : \frac{1}{n} |\{k \le n : \|x_k - y\| \ge r + \varepsilon\}| \ge \delta\}$

 $\frac{1}{n}|\{k \leqslant n : ||x_k - z|| \ge r + \varepsilon\}| \ge \delta\} \in I.$

Hence, $M = N \setminus (A_1 \cup A_2) \in F(I)$. So $M \neq \emptyset$, let $m \in M$ then for infinitely many $k \leq m$, $||y - z|| \leq ||x_k - y|| + ||x_k - z|| < 2(r + \varepsilon)$, which is a contradiction. Thus diam(I-st $LIM^r x) \leq 2r$.

To prove the second part, consider a sequence $x = \{x_n\}_{n \in \mathbb{N}}$ such that *I*-st lim x $= x_*$. Let $\varepsilon > 0$ and $\delta > 0$ then by definition of *I*-statistical convergence $A = \{n \in I \}$ $N: \frac{1}{n}|\{k \leq n: ||x_k - x_*|| \geq \varepsilon\}| < \delta\} \in F(I). \text{ Let } m \in A \text{ then } \frac{1}{m}|\{k \leq m: ||x_k - x_*|| \geq \varepsilon\}| < \delta\}$ $||x_k - x_*|| \ge \varepsilon\}| < \delta$ i.e., for maximum $k \le m$, $||x_k - x_*|| < \varepsilon$.

Now for each $y \in \overline{B}_r(x_*) = \{y \in X : ||y - x_*|| \leq r\}$ we have, $||x_k - y|| \leq r$ $||x_k - x_*|| + ||x_* - y|| < r + \varepsilon$ for maximum $k \leq m \in A$ i.e., $\{n \in N : \frac{1}{n} | \{k \leq n\}\}$ $n: ||x_k - y|| \ge r + \varepsilon || < \delta | \ge A \in F(I)$ which shows that $y \in I$ -st $LIM^n x$ and consequently, I-st $LIM^r x = \bar{B}_r(x_*)$. This shows that in general upper bound 2r of the diameter of the set I-st $LIM^r x$ can not be decreased any more.

THEOREM 3.2. A sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is I-st bounded if and only if there exists a non-negative real number r such that I-st $LIM^r x \neq \emptyset$.

PROOF. Let $x = \{x_n\}_{n \in N}$ be an *I*-st bounded sequence. Then there exists a positive real number *G* such that $A = \{n \in N : \frac{1}{n} | \{k \leq n : ||x_k|| > G\} | > \delta\} \in I$. Let $\bar{r} = \sup\{||x_k|| \text{ for almost all } k \leq m \in M = N \setminus A\}$. The set *I*-st $LIM^{\bar{r}}x$ contains the origin of *X* and so *I*-st $LIM^{\bar{r}}x \neq \emptyset$.

Conversely, suppose that I-st $LIM^r x \neq \emptyset$ for some $r \ge 0$, then there exists $x_* \in I$ -st $LIM^r x$ i.e., $\{n \in N : \frac{1}{n} | \{k \le n : ||x_k - x_*|| \ge r + \varepsilon\} | \ge \delta\} \in I$ for each $\varepsilon > 0$ and $\delta > 0$. This implies that $x = \{x_n\}_{n \in N}$ is I-st bounded. \Box

THEOREM 3.3. The set I-st LIM^rx of a sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is a closed set.

PROOF. If I-st $LIM^r x = \emptyset$, Then we have nothing to prove.

Assume that I-st $LIM^r x \neq \emptyset$. Suppose $\{y_n\}_{n \in N} \subseteq I$ -st $LIM^r x$ and $y_n \to y_*$ as $n \to \infty$. Let $\varepsilon > 0$ given then there exist $n_{\frac{\varepsilon}{2}} \in N$ such that $||y_n - y_*|| < \frac{\varepsilon}{2}$ for all $n > n_{\frac{\varepsilon}{2}}$. Let $n_0 \in N$ such that $y_{n_0} \in \{y_n\}_{n \in N} \subseteq I$ -st $LIM^r x$. So, $A = \{n \in N : \frac{1}{n} | \{k \leq n : ||x_k - y_{n_0}|| \ge r + \frac{\varepsilon}{2} \} | < \delta \} \in F(I)$. Let $m \in A$ then $\frac{1}{m} | \{k \leq m : ||x_k - y_{n_0}|| \ge r + \frac{\varepsilon}{2} \} | < \delta$. i.e., for maximum $k \leq m$, $||x_k - y_{n_0}|| < r + \frac{\varepsilon}{2}$. Choose an $n_0 > n_{\frac{\varepsilon}{2}}$ we have, $||x_k - y_*|| \le ||x_k - y_{n_0}|| + ||y_{n_0} - y_*|| < r + \varepsilon$ for maximum $k \leq m \in A$. i.e., $\{n \in N : \frac{1}{n} | \{k \leq n : ||x_k - y_*|| \ge r + \varepsilon\} | < \delta\} \supseteq A \in F(I)$. So, $y_* \in I$ -st $LIM^r x$. i.e., I-st $LIM^r x$ is a closed set. \Box

THEOREM 3.4. The set I-stLIM^rx of a sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is convex.

PROOF. Let $y_0, y_1 \in I$ -st $LIM^r x$. Let $\varepsilon > 0$ and $\delta > 0$. So,

 $A_1 = \{n \in N : \frac{1}{n} | \{k \leq n : ||x_k - y_0|| \ge r + \varepsilon\} | \ge \delta\} \in I$ $A_2 = \{n \in N : \frac{1}{n} | \{k \leq n : ||x_k - y_1|| \ge r + \varepsilon\} | \ge \delta\} \in I.$

 $M = N \setminus (A_1 \cup A_2) \in F(I)$ and so M must be a infinite set. Let $m \in M$ then $d(B_1) = 0$, where $B_1 = \{k \leq m : ||x_k - y_0|| \geq r + \varepsilon\}$ and $d(B_2) = 0$, where $B_2 = \{k \leq m : ||x_k - y_1|| \geq r + \varepsilon\}$. Now for each $k \in B_1^c \cap B_2^c$ and each $\lambda \in [0, 1]$,

 $||x_k - ((1 - \lambda)y_0 + \lambda y_1)|| = ||(1 - \lambda)(x_k - y_0) + \lambda(x_k - y_1)|| < r + \varepsilon.$

Since, $d(B_1^c \cap B_2^c) = 1$, we get $\frac{1}{m} |\{k \leq m : ||x_k - ((1 - \lambda)y_0 + \lambda y_1)|| \geq r + \varepsilon\}| < \delta$. So, $\{n \in N : \frac{1}{n} |\{k \leq n : ||x_k - ((1 - \lambda)y_0 + \lambda y_1)|| \geq r + \varepsilon\}| < \delta\} \supseteq M \in F(I)$, which shows that $(1 - \lambda)y_0 + \lambda y_1 \in I - st LIM^r x$, for any $\lambda \in [0, 1]$. Hence the set I-st $LIM^r x$ is convex.

THEOREM 3.5. Let $x = \{x_n\}_{n \in N}$ then for an arbitrary $c \in I - S(\Gamma_x)$, $||x_* - c|| \leq r$ for all $x_* \in I$ -stLIM^rx.

PROOF. If possible suppose that there exists $c \in I$ - $S(\Gamma_x)$ and $x_* \in I$ -st $LIM^r x$ such that $||x_* - c|| > r$. Let $\varepsilon = \frac{||x_* - c|| - r}{2}$, we have $A = \{n \in N : \frac{1}{n} | \{k \leq n : ||x_k - c|| \ge \varepsilon\} | < \delta\} \notin I$.

Let $B = \{n \in N : \frac{1}{n} | \{k \leq n : ||x_k - x_*|| \geq r + \varepsilon\} | \geq \delta\}$. Let $m \in A$, i.e., $\frac{1}{m} | \{k \leq m : ||x_k - c|| \geq \varepsilon\} | < \delta$. So for maximum $k \leq m$, $||x_k - c|| < \varepsilon$. Now $||x_k - x_*|| \geq ||x_* - c|| - ||x_k - c|| > r + \varepsilon$, for all $k \leq m \in A$ Therefore, $B \supseteq A$ implies that $B \notin I$, which contradicts the fact that $x_* \in I$ -st $LIM^r x$. Thus $||x_* - c|| \leq r$ for all $x_* \in I$ -st $LIM^r x$ and $c \in I$ - $S(\Gamma_x)$.

148

THEOREM 3.6. A sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is *I*-statistically convergent to x_* if and only if *I*-st $LIM^r x = \overline{B}_r(x_*)$.

PROOF. The necessary part of the theorem is already proved in the 2nd part of Theorem 3.1.

For the sufficiency, let I-st $LIM^r x = \bar{B}_r(x_*) \neq \emptyset$. Thus the sequence $x = \{x_n\}_{n \in N}$ is I-statistically bounded. Suppose that x has another I-statistical cluster point x'_* different from x_* . The point $\bar{x}_* = x_* + \frac{r}{\|x_* - x'_*\|}(x_* - x'_*)$ satisfies, $\|\bar{x}_* - x'_*\| > r$. Since, $x'_* \in I$ - $S(\Gamma_x)$, by Theorem 3.5, $\bar{x}_* \notin I$ -st $LIM^r x$. But this is impossible as $\|\bar{x}_* - x_*\| = r$ and I-st $LIM^r x = \bar{B}_r(x_*)$. Therefore x_* is the unique I-statistical cluster point of x. Also x is I-statistically bounded. So by Theorem 2.1, x is I-statistically convergent to x_* .

THEOREM 3.7. Let r > 0. Then a sequence $x = \{x_n\}_{n \in N}$ is r-I-statistically convergent to x_* if and only if there exists a sequence $y = \{y_n\}_{n \in N}$ such that I-stlim $y = x_*$ and $||x_n - y_n|| \leq r$ for all $n \in N$.

PROOF. Necessity, let $x_n \xrightarrow{r-I_{st}} x_*$. Then we have,

$$(3.1) I-\operatorname{st}\limsup \|x_n - x_*\| \leq r$$

Now we define, $y_n = \begin{cases} x_*, & \text{if } \|x_n - x_*\| \leq r \\ x_n + r \frac{x_* - x_n}{\|x_n - x_*\|}, & \text{otherwise} \end{cases}$ Then,

(3.2)
$$||y_n - x_*|| = \begin{cases} 0, & \text{if } ||x_n - x_*|| \leq r \\ ||x_n - x_*|| - r, & \text{otherwise} \end{cases}$$

by the definition of y_n we have $||x_n - y_n|| \leq r$, for all $n \in N$. Now by (3.1) and (3.2) we get, $\{n \in N : \frac{1}{n} | \{k \leq n : ||y_k - x_*|| \geq \varepsilon\} | \geq \delta\} \in I$ which implies that I-st $\lim y_n = x_*$.

Sufficiency, suppose that the given condition holds. For any $\varepsilon>0,\,\delta>0$ the set

$$A = \left\{ n \in N : \frac{1}{n} | \{k \leq n : ||y_k - x_*|| \ge \varepsilon \} | < \delta \right\} \in I$$

and $||x_n - y_n|| \leq r$ for $n \in N$. Therefore, $||x_k - x_*|| \leq ||x_k - y_k|| + ||y_k - x_*|| < r + \varepsilon$ for maximum $k \leq m \in A^c$

This shows that

$$\left\{n \in N : \frac{1}{n} | \{k \leq n : ||x_k - x_*|| \ge r + \varepsilon\} | < \delta\right\} \supseteq A^c \in F(I)$$

and so, $x_n \xrightarrow{r-I_{st}} x_*$.

Acknowledgements

The second author is grateful to Council of Scientific and Industrial Research, INDIA for financial support required to carry out this research work through the CSIR Project No. 25(0236)/14/EMR-II.

SAVAS, DEBNATH, AND RAKSHIT

References

- 1. S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optim. 29(3-4) (2008), 291-303.
- 2. R. C. Buck, The measure theoretic approach to density, Am. J. Math. 68 (1946), 560–580.
- 3. _____, Generalized asymptotic density, Am. J. Math. 75 (1953), 335–346.
- S. Debnath, J. Debnath On I-statistically convergent sequence spaces defined by sequences of Orlicz functions using matrix transformation, Proyecciones 33(3) (2014), 277–285.
- 5. K. Dems, On I-Cauchy sequences, Real Anal. Exch. **30**(1) (2004/2005) 123–128.
- M. Et, A. Alotaibi, S.A. Mohiuddine, On (Δ^m, I)-statistical convergence of order α, Sci. World J, Article ID 535419 (2014), 5 pages.
- 7. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- 8. J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
- 9. _____, Statistical limit points, Proc. Am. Math. Soc. 4 (1993), 1187–1192.
- P. Kostyrko, M. Macaj, T. Salatand, M. Sleziak, *I-convergence and extremal I-limit points*, Math. Slovaca 4 (2005), 443–464.
- P. Kostyrko, T. Salat, W. Wilczynski, *I-Convergence**, Real Anal. Exch. 26(2) (2000/2001), 669–686.
- D. S. Mitrinovic, J. Sandor, B. Crstici, *Handbook of Number Theory*, Kluwer Acad. Publ. Dordrecht-Boston-London, 1996.
- M. Mursaleen, S. Debnath, D. Rakshit, I-statistical limit superior and I-statistical limit inferior, Filomat 31(7) (2017), 2103–2108.
- S. K. Pal, D. Chandra, S. Dutta, Rough ideal convergence, Hacet. J. Math. Stat. 42(6) (2013), 633–640.
- H. X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optim. 23 (2002), 139–146.
- <u>—</u>, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optim. 24 (2003), 285–301.
- 17. _____, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim. 22 (2001), 201–224.
- E. Savas, On generalized I-statistical convergence of order α Iran. J. Sci. Technol. Trans. A Sci. 37(3) (2013), 397–402.
- 19. _____, On I-Lacunary statistical convergence of order α for sequences of sets, Filomat **29**(6) (2015), 1223–1229.
- E. Savas, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826–830.
- 21. ____, On I-statistically pre-Cauchy sequences, Taiwanese J. Math. 18(1) (2014), 115–126.
- T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
- T. Salat, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra. Mt. Math. Publ. 28 (2004), 279–286.
- H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.

Department of Mathematics Istanbul Commerce University Istanbul,Turkey ekremsavas@yahoo.com (Received 26 02 2016) (Received 25 05 2017)

Department of Mathematics Tripura University, Agartala, India shyamalnitamath@gmail.com

Department of FST, ICFAI University Tripura, West Tripura, India debjanirakshit88@gmail.com