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ON I-STATISTICALLY ROUGH CONVERGENCE

Ekrem Savas, Shyamal Debnath, and Debjani Rakshit

Abstract. We introduce rough I-statistical convergence as an extension of
rough convergence. We define the set of rough I-statistical limit points of a
sequence and analyze the results with proofs.

1. Introduction

The idea of statistical convergence was introduced by Steinhaus [24] and Fast
[7] independently for real and complex sequences and some applications of statisti-
cal convergence in number theory and mathematical analysis have been shown by
various researchers [2,3,8,9,12,22]. The concept of I-convergence was introduced
by Kostyrko et al. [11] which generalizes and unifies different notion of convergence
of sequences including usual convergence and statistical convergence. They used
the notion of an ideal I of subsets of the set N to define such a concept [5,10,23].

The idea of I-statistical convergence was introduced by Savas and Das [20] as
an extension of ideal convergence. Later on it was further investigated by Savas
and Das [21], Savas [18, 19], Debnath and Debnath [4], Et et al. [6] and many
others.

The idea of rough convergence was first introduced by Phu [17] in finite di-
mensional normed linear spaces and studied the basic properties of this interesting
concept [15,16]. It should be mentioned that the idea of rough convergence occurs
very naturally in numerical analysis and has interesting application there. Recently
Aytar [1] and Pal et al. [14] generalize the idea of rough convergence into rough
statistical convergence and rough ideal convergence.

In this paper, we introduce the notion of rough I-statistical convergence with
an aim to study some elementary properties of the set of rough I-statistical limit
points.

It is to be noted that though our method of proofs is similar to those in [1,14,
17], in comparison to previous studies we present our results in the most generalized
form. This also enhances the applicability of these concepts.
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2. Definitions and Preliminaries

Definition 2.1. [17] Let {xn}n∈N be a sequence in some normed linear
space (X, ‖.‖) and r be a non-negative real number. Then {xn}n∈N is said to be

r-convergent to x∗, denoted by xn
r

→ x∗ if for all ε > 0 there exists n0 ∈ N such
that n > n0 ⇒ ‖xn − x∗‖ < r + ε. Or equivalently if lim sup ‖xn − x∗‖ 6 r. This
is the rough convergence with r as roughness degree.

Definition 2.2. [1] A sequence x = {xn}n∈N is said to be r-statistically

convergent to x∗, denoted by xn
r−st
−→ x∗, provided that the set {n ∈ N : ‖xn−x∗‖ >

r + ε} has natural density zero for every ε > 0.

Definition 2.3. [14] A sequence x = {xn}n∈N is said to be r-I convergent to

x∗, denoted by xn
r−I
−→ x∗, provided that the set {n ∈ N : ‖xn − x∗‖ > r + ε} ∈ I

for any ε > 0.

Definition 2.4. [20] A real number sequence x = {xn}n∈N is said to be
I-statistically convergent to x0 if for every ε > 0 and every δ > 0,

{

n ∈ N : 1
n

|{k 6 n : ‖xk − x0‖ > ε}| > δ
}

∈ I.

The number x0 is called I-statistical limit of the sequence x and we write,
I-st lim xn = x0.

Through out the paper we consider I as an admissible ideal.

Definition 2.5. [13] The real number sequence x = {xn} is said to be I-st
bounded if there is a number G such that {n ∈ N : 1

n
|{k 6 n : |xk| > G}| > δ} ∈ I.

Definition 2.6. [13] An element γ ∈ X is called I-statistical cluster point of
a sequence x = {xn}n∈N if for each ε > 0 and δ > 0 the set

{

n ∈ N : 1
n

|{k 6 n : ‖xk − γ‖ > ε}| < δ
}

/∈ I

The set of all I-statistical cluster points of x will be denoted by I-S(Γx).

Definition 2.7. [13] For a real sequence x = {xn}n∈N , let Bx denote the set

Bx =
{

b ∈ R : {n ∈ N : 1
n

|{k 6 n : xk > b}| > δ} /∈ I
}

.

Similarly, Ax = {a ∈ R : {n ∈ N : 1
n

|{k 6 n : xk < a}| > δ} /∈ I}.
Let x be a real number sequence. Then I-statistical limit superior of x is

given by,

I-st lim sup x =

{

sup Bx, if Bx 6= ∅

−∞ if Bx = ∅
.

Also, I-statistical limit inferior of x is given by,

I-st lim inf x =

{

inf Ax, if Ax 6= ∅

∞ if Ax = ∅
.

Theorem 2.1. [13] If a I-statistically bounded sequence has one cluster point

then it is I-statistically convergent.
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3. Main Results

Definition 3.1. A sequence x = {xn}n∈N in X is said to be rough-I-statisti-

cally convergent to x∗, denoted by xn
r−I−st
−→ x∗, provided that the set

{

n ∈ N : 1
n

|{k 6 n : ‖xk − x∗‖ > r + ε}| > δ
}

∈ I

for any ε > 0, δ > 0. Or equivalently we can say I-st lim sup ‖xn − x∗‖ 6 r. Here r
is called the roughness degree. If we take r = 0 we obtain the notion of I-statistical
convergence.

For instance assume that the sequence y = {yn}n∈N is I-statistically convergent
which can not be calculated exactly, one has to do with an approximated sequence
x = {xn}n∈N satisfying ‖xn − yn‖ 6 r for all n. Then I-statistical convergence of
the sequence x is not assured, but as the inclusion,

{

n ∈ N : 1
n

|{k 6 n : ‖xk − x∗‖ > r + ε}| > δ
}

⊆
{

n ∈ N : 1
n

|{k 6 n : ‖yk − x∗‖ > ε}| > δ
}

holds, so the sequence {xn}n∈N is r-I-statistically convergent.
In general the rough I-st limit of a sequence may not be unique for the rough-

ness degree r > 0. We define I-st LIM rx = set of all rough I-st limit of x = {x∗ ∈

X : xn
r−I-st
−→ x∗}.

The sequence x is said to be r-I-statistically convergent provided I-st LIM rx 6=
∅. It is clear that if I-st LIM rx 6= ∅ for a sequence x = {xn}n∈N of real number,
then we have I-st LIM rx = [I-st lim sup x − r, I-st lim inf x + r].

Theorem 3.1. For a sequence x = {xn}n∈N , diam(I-st LIM rx) 6 2r. In

general diam(I-st LIM rx) has no smaller bound.

Proof. Assume that, diam(I-st LIM rx) > 2r. Then there exists y, z ∈

I-st LIM rx such that ‖y − z‖ > 2r. Choose 0 < ε < ‖y−z‖
2 − r and δ > 0.

Put, A1 = {n ∈ N : 1
n

|{k 6 n : ‖xk − y‖ > r + ε}| > δ} ∈ I and A2 = {n ∈ N :
1
n

|{k 6 n : ‖xk − z‖ > r + ε}| > δ} ∈ I.
Hence, M = N r (A1 ∪ A2) ∈ F (I). So M 6= ∅, let m ∈ M then for infinitely

many k 6 m, ‖y − z‖ 6 ‖xk − y‖ + ‖xk − z‖ < 2(r + ε), which is a contradiction.
Thus diam(I-st LIM rx) 6 2r.

To prove the second part, consider a sequence x = {xn}n∈N such that I-st lim x
= x∗. Let ε > 0 and δ > 0 then by definition of I-statistical convergence A = {n ∈
N : 1

n
|{k 6 n : ‖xk − x∗‖ > ε}| < δ} ∈ F (I). Let m ∈ A then 1

m
|{k 6 m :

‖xk − x∗‖ > ε}| < δ i.e., for maximum k 6 m, ‖xk − x∗‖ < ε.
Now for each y ∈ B̄r(x∗) = {y ∈ X : ‖y − x∗‖ 6 r} we have, ‖xk − y‖ 6

‖xk − x∗‖ + ‖x∗ − y‖ < r + ε for maximum k 6 m ∈ A i.e., {n ∈ N : 1
n

|{k 6

n : ‖xk − y‖ > r + ε}| < δ} ⊇ A ∈ F (I) which shows that y ∈ I-st LIM rx and
consequently, I-st LIM rx = B̄r(x∗). This shows that in general upper bound 2r of
the diameter of the set I-st LIM rx can not be decreased any more. �

Theorem 3.2. A sequence x = {xn}n∈N is I-st bounded if and only if there

exists a non-negative real number r such that I-st LIM rx 6= ∅.
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Proof. Let x = {xn}n∈N be an I-st bounded sequence. Then there exists a
positive real number G such that A = {n ∈ N : 1

n
|{k 6 n : ‖xk‖ > G}| > δ} ∈ I.

Let r̄ = sup{‖xk‖ for almost all k 6 m ∈ M = N r A}. The set I-st LIM r̄x
contains the origin of X and so I-st LIM r̄x 6= ∅.

Conversely, suppose that I-st LIM rx 6= ∅ for some r > 0, then there exists
x∗ ∈ I-st LIM rx i.e., {n ∈ N : 1

n
|{k 6 n : ‖xk − x∗‖ > r + ε}| > δ} ∈ I for each

ε > 0 and δ > 0. This implies that x = {xn}n∈N is I-st bounded. �

Theorem 3.3. The set I-st LIM rx of a sequence x = {xn}n∈N is a closed set.

Proof. If I-st LIM rx = ∅, Then we have nothing to prove.
Assume that I-st LIM rx 6= ∅. Suppose {yn}n∈N ⊆ I-st LIM rx and yn → y∗

as n → ∞. Let ε > 0 given then there exist n ε

2
∈ N such that ‖yn − y∗‖ <

ε
2 for all n > n ε

2
. Let n0 ∈ N such that yn0

∈ {yn}n∈N ⊆ I-st LIM rx. So,

A = {n ∈ N : 1
n

|{k 6 n : ‖xk − yn0
‖ > r + ε

2 }| < δ} ∈ F (I). Let m ∈ A then
1
m

|{k 6 m : ‖xk −yn0
‖ > r+ ε

2 }| < δ. i.e., for maximum k 6 m, ‖xk −yn0
‖ < r+ ε

2 .
Choose an n0 > n ε

2
we have, ‖xk−y∗‖ 6 ‖xk−yn0

‖+‖yn0
−y∗‖ < r+ε for maximum

k 6 m ∈ A. i.e., {n ∈ N : 1
n

|{k 6 n : ‖xk − y∗‖ > r + ε}| < δ} ⊇ A ∈ F (I). So,
y∗ ∈ I-st LIM rx. i.e., I-st LIM rx is a closed set. �

Theorem 3.4. The set I-st LIM rx of a sequence x = {xn}n∈N is convex.

Proof. Let y0, y1 ∈ I-st LIM rx. Let ε > 0 and δ > 0. So,

A1 = {n ∈ N : 1
n

|{k 6 n : ‖xk − y0‖ > r + ε}| > δ} ∈ I

A2 = {n ∈ N : 1
n

|{k 6 n : ‖xk − y1‖ > r + ε}| > δ} ∈ I.

M = N r (A1 ∪ A2) ∈ F (I) and so M must be a infinite set. Let m ∈ M then
d(B1) = 0, where B1 = {k 6 m : ‖xk − y0‖ > r + ε} and d(B2) = 0, where
B2 = {k 6 m : ‖xk − y1‖ > r + ε}. Now for each k ∈ Bc

1 ∩ Bc
2 and each λ ∈ [0, 1],

‖xk − ((1 − λ)y0 + λy1)‖ = ‖(1 − λ)(xk − y0) + λ(xk − y1)‖ < r + ε.

Since, d(Bc
1 ∩ Bc

2) = 1, we get 1
m

|{k 6 m : ‖xk − ((1 − λ)y0 + λy1)‖ > r + ε}| < δ.

So,
{

n ∈ N : 1
n

|
{

k 6 n : ‖xk − ((1 − λ)y0 + λy1)‖ > r + ε
}

| < δ
}

⊇ M ∈ F (I),
which shows that (1 − λ)y0 + λy1 ∈ I − st LIM rx, for any λ ∈ [0, 1]. Hence the set
I-st LIM rx is convex. �

Theorem 3.5. Let x = {xn}n∈N then for an arbitrary c ∈ I-S(Γx), ‖x∗ −c‖ 6

r for all x∗ ∈ I-st LIM rx.

Proof. If possible suppose that there exists c ∈ I-S(Γx) and x∗ ∈ I-st LIM rx

such that ‖x∗ − c‖ > r. Let ε = ‖x∗−c‖−r

2 , we have A =
{

n ∈ N : 1
n

|{k 6 n :

‖xk − c‖ > ε}| < δ
}

/∈ I.

Let B =
{

n ∈ N : 1
n

|{k 6 n : ‖xk − x∗‖ > r + ε}| > δ
}

. Let m ∈ A, i.e.,
1
m

|{k 6 m : ‖xk − c‖ > ε}| < δ. So for maximum k 6 m, ‖xk − c‖ < ε. Now
‖xk −x∗‖ > ‖x∗ −c‖−‖xk −c‖ > r+ε, for all k 6 m ∈ A Therefore, B ⊇ A implies
that B /∈ I, which contradicts the fact that x∗ ∈ I-st LIM rx. Thus ‖x∗ − c‖ 6 r
for all x∗ ∈ I-st LIM rx and c ∈ I-S(Γx). �
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Theorem 3.6. A sequence x = {xn}n∈N is I-statistically convergent to x∗ if

and only if I-st LIM rx = B̄r(x∗).

Proof. The necessary part of the theorem is already proved in the 2nd part
of Theorem 3.1.

For the sufficiency, let I-st LIM rx = B̄r(x∗) 6= ∅. Thus the sequence x =
{xn}n∈N is I-statistically bounded. Suppose that x has another I-statistical cluster
point x′

∗ different from x∗. The point x̄∗ = x∗ + r
‖x∗−x′

∗
‖ (x∗ − x′

∗) satisfies, ‖x̄∗ −

x′
∗‖ > r. Since, x′

∗ ∈ I-S(Γx), by Theorem 3.5, x̄∗ /∈ I-st LIM rx. But this is
impossible as ‖x̄∗ − x∗‖ = r and I-st LIM rx = B̄r(x∗). Therefore x∗ is the unique
I-statistical cluster point of x. Also x is I-statistically bounded. So by Theorem
2.1, x is I-statistically convergent to x∗. �

Theorem 3.7. Let r > 0. Then a sequence x = {xn}n∈N is r-I-statistically

convergent to x∗ if and only if there exists a sequence y = {yn}n∈N such that

I-st lim y = x∗ and ‖xn − yn‖ 6 r for all n ∈ N .

Proof. Necessity, let xn
r−Ist−→ x∗. Then we have,

(3.1) I-st lim sup ‖xn − x∗‖ 6 r

Now we define, yn =

{

x∗, if ‖xn − x∗‖ 6 r

xn + r x∗−xn

‖xn−x∗‖ , otherwise

Then,

(3.2) ‖yn − x∗‖ =

{

0, if ‖xn − x∗‖ 6 r

‖xn − x∗‖ − r, otherwise

by the definition of yn we have ‖xn − yn‖ 6 r, for all n ∈ N . Now by (3.1) and
(3.2) we get,

{

n ∈ N : 1
n

|{k 6 n : ‖yk − x∗‖ > ε}| > δ
}

∈ I which implies that
I-st lim yn = x∗.

Sufficiency, suppose that the given condition holds. For any ε > 0, δ > 0 the
set

A =
{

n ∈ N : 1
n

|{k 6 n : ‖yk − x∗‖ > ε}| < δ
}

∈ I

and ‖xn −yn‖ 6 r for n ∈ N . Therefore, ‖xk −x∗‖ 6 ‖xk −yk‖+‖yk −x∗‖ < r +ε
for maximum k 6 m ∈ Ac

This shows that
{

n ∈ N : 1
n

|{k 6 n : ‖xk − x∗‖ > r + ε}| < δ
}

⊇ Ac ∈ F (I)

and so, xn
r−Ist−→ x∗. �
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