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A NEW STUDY ON GENERALIZED

QUASI POWER INCREASING SEQUENCES

Hikmet Seyhan Özarslan

Abstract. We prove a general theorem dealing with an application of quasi
β-power increasing sequences. This theorem also includes several new and
known results.

1. Introduction

A positive sequence (bn) is said to be almost increasing if there exists a positive
increasing sequence (cn) and two positive constants A and B such that
Acn 6 bn 6 Bcn (see [1]). Obviously, every increasing sequence is almost in-
creasing. However, the converse need not be true as can be seen by taking an
example, say, bn = ne(−1)n

. Let
∑

an be a given infinite series with the partial
sums (sn). By (un) and (tn) we denote the n-th (C, 1) means of the sequences (sn)
and (nan), respectively. The series

∑

an is said to be summable |C, 1|k, k > 1, if
(see [11,13])

∞
∑

n=1

nk−1|un − un−1|k =

∞
∑

n=1

1

n
|tn|k < ∞.

Let (pn) be a sequence of positive numbers such that

Pn =
n

∑

v=0

pv → ∞; as n → ∞, (P−i = p−i = 0, i > 1).

The sequence-to-sequence transformation σn = 1
Pn

∑n

v=0 pvsv defines the sequence

(σn) of the Riesz mean or simply the (N̄ , pn) mean of the sequence (sn), generated
by the sequence of coefficients (pn) (see [12]).

The series
∑

an is said to be summable |N̄ , pn|k, k > 1, if (see [2])
∞

∑

n=1

(Pn

pn

)k−1
|∆σn−1|k < ∞,
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where

∆σn−1 = −
pn

PnPn−1

n
∑

v=1

Pv−1av, n > 1.

In the special case, when pn = 1 for all values of n (resp. k = 1), |N̄ , pn|k summa-

bility reduces to |C, 1|k (resp. |N̄ , pn|) summability. Let A = (anv) be a normal
matrix, i.e., a lower triangular matrix of nonzero diagonal entries. We associate
two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =
n

∑

i=v

ani, n, v = 0, 1, . . .

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . .

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

(1.1) An(s) =

n
∑

v=0

anvsv =

n
∑

v=0

ānvav, ∆̄An(s) =

n
∑

v=0

ânvav.

Let A = (anv) be a normal matrix. Then A defines the sequence-to-sequence
transformation, mapping the sequence s = (sn) to As = (An(s)), where

An(s) =

n
∑

v=0

anvsv, n = 0, 1, . . .

Let (ϕn) be any sequence of positive real numbers. The series
∑

an is said to be
summable ϕ − |A; δ|k, k > 1 and δ > 0, if (see [20])

∞
∑

n=1

ϕδk+k−1
n |∆̄An(s)|k < ∞, where ∆̄An(s) = An(s) − An−1(s).

If we take δ = 0 and ϕn = Pn

pn

, then ϕ − |A; δ|k summability reduces to |A, pn|k

summability (see [22]). Also, if we take δ = 0, ϕn = Pn

pn

and anv = pv

Pn

, then we get

|N̄ , pn|k summability. If we take δ = 0, ϕn = n, anv = pv

Pn

and pn = 1 for all values

of n, ϕ − |A; δ|k summability reduces to |C, 1|k summability. If we take δ = 0 and
ϕn = n, then we get |A|k summability (see [23]). Finally, if we take δ = 0, ϕn = n
and anv = pv

Pn

, then we get |R, pn|k summability (see [4]).

2. Known Result

Many works dealing with absolute summability and absolute matrix
summability factors of infinite series have been done (see [3–10, 15–21]). Among
them, in [6], Bor has proved the following theorem for |N̄ , pn|k summability factors
of infinite series by using almost increasing sequences.

Theorem 2.1. Let (Xn) be an almost increasing sequence and let there be

sequences (βn) and (λn) such that

|∆λn| 6 βn, βn → 0 as n → ∞,(2.1)
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∞
∑

n=1

n|∆βn|Xn < ∞, |λn|Xn = O(1).(2.2)

If

m
∑

n=1

|λn|

n
= O(1) as m → ∞,(2.3)

m
∑

n=1

1

n
|tn|k = O(Xm) as m → ∞,

and (pn) is a sequence such that
∑m

n=1
pn

Pn

|tn|k = O(Xm) as m → ∞, then the

series
∑

anλn is summable |N̄ , pn|k, k > 1.

3. Main Result

A positive sequence (γn) is said to be quasi β-power increasing sequence if
there exists a constant K = K(β, γ) > 1 such that Knβγn > mβγm holds for all
n > m > 1 (see [14]). It should be noted that every almost increasing sequence
is quasi β-power increasing sequence for any nonnegative β, but the converse need
not be true as can be seen by taking the example, say γn = n−β for β > 0.

A sequence (λn) is said to be of bounded variation, denoted by (λn) ∈ BV, if
∑

∞

n=1 |∆λn| =
∑

∞

n=1 |λn − λn+1| < ∞.
We generalize Theorem 2.1 to ϕ − |A; δ|k summability by using quasi β-power

increasing sequences instead of almost increasing sequences, and prove the following
theorem.

Theorem 3.1. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, . . . , an−1,v > anv, for n > v + 1, ann = O
( pn

Pn

)

.

Let (Xn) be a quasi β-power increasing sequence for some 0 < β < 1 and ϕnpn =
O(Pn). If (λn) ∈ BV, the conditions (2.1)–(2.3) of Theorem 2.1 and

m+1
∑

n=v+1

ϕδk
n |∆vânv| = O(ϕδk−1

v ) as m → ∞,

m+1
∑

n=v+1

ϕδk
n |ân,v+1| = O(ϕδk

v ) as m → ∞,

m
∑

n=1

ϕδk
n

1

n
|tn|k = O(Xm) as m → ∞,

m
∑

n=1

ϕδk−1
n |tn|k = O(Xm) as m → ∞

are satisfied, then the series
∑

anλn is summable ϕ−|A; δ|k, k > 1 and 0 6 δ < 1/k.
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If we take δ = 0, ϕn = Pn

pn

, anv = pv

Pn

and (Xn) as an almost increasing

sequence, then we get Theorem 2.1. In this case the condition (λn) ∈ BV is not
needed.

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.1. [14] Under the conditions on (Xn), (βn) and (λn) as taken in

the statement of Theorem 3.1, the following conditions hold

nβnXn = O(1) as n → ∞,

∞
∑

n=1

βnXn < ∞.

4. Proof of Theorem 3.1

Let (In) denotes A-transform of the series
∑

anλn. Then, by (1.1), we have

∆̄In =

n
∑

v=0

ânvavλv =

n
∑

v=1

ânvλv

v
vav.

Applying Abel’s transformation to this sum, we get that

∆̄In =

n−1
∑

v=1

∆v

( ânvλv

v

)

v
∑

r=1

rar +
ânnλn

n

n
∑

r=1

rar

=
n + 1

n
annλntn +

n−1
∑

v=1

v + 1

v
∆v(ânv)λvtv

+

n−1
∑

v=1

v + 1

v
ân,v+1∆λvtv +

n−1
∑

v=1

ân,v+1λv+1
tv

v

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is enough
to show that

∑

∞

n=1 ϕδk+k−1
n |In,r|k < ∞, for r = 1, 2, 3, 4. First, by using Abel’s

transformation, we have that

m
∑

n=1

ϕδk+k−1
n |In,1|k = O(1)

m
∑

n=1

ϕδk+k−1
n ak

nn|λn|k|tn|k

= O(1)
m

∑

n=1

ϕδk−1
n

(ϕnpn

Pn

)k

|λn|k−1|λn||tn|k

= O(1)

m
∑

n=1

ϕδk−1
n |λn||tn|k

= O(1)

m−1
∑

n=1

∆|λn|

n
∑

r=1

ϕδk−1
r |tr|k + O(1)|λm|

m
∑

n=1

ϕδk−1
n |tn|k

= O(1)

m−1
∑

n=1

|∆λn|Xn + O(1)|λm|Xm
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= O(1)

m−1
∑

n=1

βnXn + O(1)|λm|Xm

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1.
Now, applying Hölder’s inequality with indices k and k′, where k > 1 and

1
k

+ 1
k′

= 1, as in In,1, we have that

m+1
∑

n=2

ϕδk+k−1
n |In,2|k = O(1)

m+1
∑

n=2

ϕδk+k−1
n

( n−1
∑

v=1

|∆v(ânv)||λv||tv|

)k

= O(1)

m+1
∑

n=2

ϕδk+k−1
n

n−1
∑

v=1

|∆v(ânv)||λv |k|t
v
|k ×

( n−1
∑

v=1

|∆v(ânv)|

)k−1

= O(1)

m+1
∑

n=2

ϕδk+k−1
n ak−1

nn

( n−1
∑

v=1

|∆v(ânv)||λv|k|t
v
|k

)

= O(1)
m+1
∑

n=2

ϕδk
n

(ϕnpn

Pn

)k−1
( n−1

∑

v=1

|∆v(ânv)||λv|k|t
v
|k

)

= O(1)
m

∑

v=1

|λv|k|tv|k
m+1
∑

n=v+1

ϕδk
n |∆v(ânv)|

= O(1)

m
∑

v=1

ϕδk−1
v |λv||tv|k

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1.
Now, using Hölder’s inequality we have that

m+1
∑

n=2

ϕδk+k−1
n |In,3|k = O(1)

m+1
∑

n=2

ϕδk+k−1
n

( n−1
∑

v=1

|ân,v+1||∆λv||tv|

)k

= O(1)

m+1
∑

n=2

ϕδk+k−1
n

n−1
∑

v=1

|ân,v+1||∆λv||tv|k ×

( n−1
∑

v=1

|ân,v+1||∆λv|

)k−1

= O(1)

m+1
∑

n=2

ϕδk+k−1
n ak−1

nn

n−1
∑

v=1

|ân,v+1|βv|tv|k ×

( n−1
∑

v=1

|∆λv|

)k−1

= O(1)

m+1
∑

n=2

ϕδk
n

(ϕnpn

Pn

)k−1
( n−1

∑

v=1

|ân,v+1|βv|tv|k
)

= O(1)

m
∑

v=1

βv|tv|k
m+1
∑

n=v+1

ϕδk
n |ân,v+1|
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= O(1)

m
∑

v=1

ϕδk
v vβv

|tv|k

v

= O(1)

m−1
∑

v=1

∆(vβv)

v
∑

r=1

ϕδk
r

1

r
|tr|k + O(1)mβm

m
∑

v=1

ϕδk
v

1

v
|tv|k

= O(1)

m−1
∑

v=1

|∆(vβv)|Xv + O(1)mβmXm

= O(1)

m−1
∑

v=1

v|∆βv|Xv + O(1)

m−1
∑

v=1

βvXv + O(1)mβmXm

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1.
Again, using Hölder’s inequality, we have that

m+1
∑

n=2

ϕδk+k−1
n |In,4|k 6

m+1
∑

n=2

ϕδk+k−1
n

( n−1
∑

v=1

|ân,v+1||λv+1|
|tv|

v

)k

6

m+1
∑

n=2

ϕδk+k−1
n

( n−1
∑

v=1

|ân,v+1||λv+1|
|tv|k

v

)

×

( n−1
∑

v=1

|ân,v+1|
|λv+1|

v

)k−1

6

m+1
∑

n=2

ϕδk+k−1
n ak−1

nn

( n−1
∑

v=1

|ân,v+1||λv+1|
|tv|k

v

)

×

( n−1
∑

v=1

|λv+1|

v

)k−1

= O(1)

m+1
∑

n=2

ϕδk+k−1
n ak−1

nn

( n−1
∑

v=1

|ân,v+1||λv+1|
|tv|k

v

)

= O(1)

m+1
∑

n=2

ϕδk
n

(ϕnpn

Pn

)k−1
( n−1

∑

v=1

|ân,v+1||λv+1|
|tv|k

v

)

= O(1)

m
∑

v=1

|λv+1|
|tv|

v

k m+1
∑

n=v+1

ϕδk
n |ân,v+1|

= O(1)

m
∑

v=1

ϕδk
v

1

v
|λv+1||tv|k

= O(1)

m−1
∑

v=1

|∆λv+1|

v
∑

r=1

ϕδk
r

1

r
|tr|k + O(1)|λm+1|

m
∑

v=1

ϕδk
v

1

v
|tv|k

= O(1)

m−1
∑

v=1

βv+1Xv+1 + O(1)|λm+1|Xm+1

= O(1) as m → ∞,

by virtue of hypotheses of Theorem 3.1 and Lemma 3.1.
This completes the proof of Theorem 3.1.
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5. Conclusions

We note that, if we take δ = 0 and ϕn = Pn

pn

, then we get a theorem dealing

with |A, pn|k summability. If we take (Xn) as an almost increasing sequence, δ = 0
and ϕn = Pn

pn

, then we get another theorem dealing with |A, pn|k summability

(see [16]). If we take δ = 0, ϕn = n, anv = pv

Pn

and pn = 1 for all values of n, then

we get a result for |C, 1|k summability.
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