A NEW STUDY ON GENERALIZED QUASI POWER INCREASING SEQUENCES

Hikmet Seyhan Özarslan

Abstract

We prove a general theorem dealing with an application of quasi β-power increasing sequences. This theorem also includes several new and known results.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leqslant b_{n} \leqslant B c_{n}$ (see [1). Obviously, every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking an example, say, $b_{n}=n e^{(-1)^{n}}$. Let $\sum a_{n}$ be a given infinite series with the partial sums $\left(s_{n}\right)$. By $\left(u_{n}\right)$ and $\left(t_{n}\right)$ we denote the n-th $(C, 1)$ means of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geqslant 1$, if (see [11,13])

$$
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}-u_{n-1}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty ; \quad \text { as } n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geqslant 1\right)
$$

The sequence-to-sequence transformation $\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}$ defines the sequence $\left(\sigma_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [12).

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$, if (see [2])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty
$$

[^0]where
$$
\Delta \sigma_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geqslant 1
$$

In the special case, when $p_{n}=1$ for all values of n (resp. $k=1$), $\left|\bar{N}, p_{n}\right|_{k}$ summability reduces to $|C, 1|_{k}$ (resp. $\left.\left|\bar{N}, p_{n}\right|\right)$ summability. Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. We associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{gathered}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \\
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots
\end{gathered}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v}, \quad \bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} . \tag{1.1}
\end{equation*}
$$

Let $A=\left(a_{n v}\right)$ be a normal matrix. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where

$$
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots
$$

Let $\left(\varphi_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\varphi-|A ; \delta|_{k}, k \geqslant 1$ and $\delta \geqslant 0$, if (see [20])

$$
\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty, \text { where } \bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)
$$

If we take $\delta=0$ and $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then $\varphi-|A ; \delta|_{k}$ summability reduces to $\left|A, p_{n}\right|_{k}$ summability (see [22). Also, if we take $\delta=0, \varphi_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|\bar{N}, p_{n}\right|_{k}$ summability. If we take $\delta=0, \varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of $n, \varphi-|A ; \delta|_{k}$ summability reduces to $|C, 1|_{k}$ summability. If we take $\delta=0$ and $\varphi_{n}=n$, then we get $|A|_{k}$ summability (see [23). Finally, if we take $\delta=0, \varphi_{n}=n$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|R, p_{n}\right|_{k}$ summability (see [4]).

2. Known Result

Many works dealing with absolute summability and absolute matrix summability factors of infinite series have been done (see 3 10 $\mathbf{1 5}$ 21). Among them, in [6], Bor has proved the following theorem for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series by using almost increasing sequences.

Theorem 2.1. Let $\left(X_{n}\right)$ be an almost increasing sequence and let there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{equation*}
\left|\Delta \lambda_{n}\right| \leqslant \beta_{n}, \quad \beta_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty, \quad\left|\lambda_{n}\right| X_{n}=O(1) \tag{2.2}
\end{equation*}
$$

If

$$
\begin{align*}
\sum_{n=1}^{m} \frac{\left|\lambda_{n}\right|}{n} & =O(1) \quad \text { as } \quad m \rightarrow \infty \tag{2.3}\\
\sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k} & =O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
\end{align*}
$$

and $\left(p_{n}\right)$ is a sequence such that $\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right)$ as $m \rightarrow \infty$, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$.

3. Main Result

A positive sequence $\left(\gamma_{n}\right)$ is said to be quasi β-power increasing sequence if there exists a constant $K=K(\beta, \gamma) \geqslant 1$ such that $K n^{\beta} \gamma_{n} \geqslant m^{\beta} \gamma_{m}$ holds for all $n \geqslant m \geqslant 1$ (see [14). It should be noted that every almost increasing sequence is quasi β-power increasing sequence for any nonnegative β, but the converse need not be true as can be seen by taking the example, say $\gamma_{n}=n^{-\beta}$ for $\beta>0$.

A sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$, if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|=\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$.

We generalize Theorem [2.1] to $\varphi-|A ; \delta|_{k}$ summability by using quasi β-power increasing sequences instead of almost increasing sequences, and prove the following theorem.

Theorem 3.1. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\bar{a}_{n 0}=1, \quad n=0,1, \ldots, \quad a_{n-1, v} \geqslant a_{n v}, \text { for } n \geqslant v+1, \quad a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right)
$$

Let $\left(X_{n}\right)$ be a quasi β-power increasing sequence for some $0<\beta<1$ and $\varphi_{n} p_{n}=$ $O\left(P_{n}\right)$. If $\left(\lambda_{n}\right) \in \mathcal{B V}$, the conditions (2.1) -(2.3) of Theorem 2.1 and

$$
\begin{gathered}
\sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|=O\left(\varphi_{v}^{\delta k-1}\right) \quad \text { as } \quad m \rightarrow \infty \\
\sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k}\left|\hat{a}_{n, v+1}\right|=O\left(\varphi_{v}^{\delta k}\right) \quad \text { as } \quad m \rightarrow \infty \\
\sum_{n=1}^{m} \varphi_{n}^{\delta k} \frac{1}{n}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \\
\sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
\end{gathered}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|A ; \delta|_{k}, k \geqslant 1$ and $0 \leqslant \delta<1 / k$.

If we take $\delta=0, \varphi_{n}=\frac{P_{n}}{p_{n}}, a_{n v}=\frac{p_{v}}{P_{n}}$ and $\left(X_{n}\right)$ as an almost increasing sequence, then we get Theorem [2.1. In this case the condition $\left(\lambda_{n}\right) \in \mathcal{B V}$ is not needed.

We need the following lemma for the proof of Theorem 3.1
Lemma 3.1. $\mathbf{1 4}$ Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of Theorem 3.1, the following conditions hold

$$
n \beta_{n} X_{n}=O(1) \text { as } n \rightarrow \infty, \quad \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty
$$

4. Proof of Theorem 3.1

Let $\left(I_{n}\right)$ denotes A-transform of the series $\sum a_{n} \lambda_{n}$. Then, by (1.1), we have

$$
\bar{\Delta} I_{n}=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \lambda_{v}=\sum_{v=1}^{n} \frac{\hat{a}_{n v} \lambda_{v}}{v} v a_{v} .
$$

Applying Abel's transformation to this sum, we get that

$$
\begin{aligned}
\bar{\Delta} I_{n}= & \sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
= & \frac{n+1}{n} a_{n n} \lambda_{n} t_{n}+\sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v} \\
& +\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}}{v} \\
= & I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4} .
\end{aligned}
$$

To complete the proof of Theorem 3.1] by Minkowski's inequality, it is enough to show that $\sum_{n=1}^{\infty} \varphi_{n}^{\delta k+k-1}\left|I_{n, r}\right|^{k}<\infty$, for $r=1,2,3,4$. First, by using Abel's transformation, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k+k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{r=1}^{n} \varphi_{r}^{\delta k-1}\left|t_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \varphi_{n}^{\delta k-1}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1.
Now, applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, as in $I_{n, 1}$, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 2}\right|^{k}=O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
&=O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
&=O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
&=O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
&=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
&=O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k-1}\left|\lambda_{v}\right|\left|t_{v}\right|^{k} \\
&=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1.
Now, using Hölder's inequality we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \times\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \beta_{v}\left|t_{v}\right|^{k} \times\left(\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\right)^{k-1} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \beta_{v}\left|t_{v}\right|^{k}\right) \\
= & O(1) \sum_{v=1}^{m} \beta_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k}\left|\hat{a}_{n, v+1}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k} v \beta_{v} \frac{\left|t_{v}\right|^{k}}{v} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \varphi_{r}^{\delta k} \frac{1}{r}\left|t_{r}\right|^{k}+O(1) m \beta_{m} \sum_{v=1}^{m} \varphi_{v}^{\delta k} \frac{1}{v}\left|t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1.
Again, using Hölder's inequality, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left|I_{n, 4}\right|^{k} \leqslant \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|}{v}\right)^{k} \\
& \leqslant \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v}\right) \times\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k-1} \\
& \leqslant \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v}\right) \times\left(\sum_{v=1}^{n-1} \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k-1} \\
&=O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k+k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v}\right) \\
&=O(1) \sum_{n=2}^{m+1} \varphi_{n}^{\delta k}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v}\right) \\
&=O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{v} \sum_{n=v+1}^{m+1} \varphi_{n}^{\delta k}\left|\hat{a}_{n, v+1}\right| \\
&=O(1) \sum_{v=1}^{m} \varphi_{v}^{\delta k} \frac{1}{v}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \\
&=O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| \sum_{r=1}^{v} \varphi_{r}^{\delta k} \frac{1}{r}\left|t_{r}\right|^{k}+O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m} \varphi_{v}^{\delta k} \frac{1}{v}\left|t_{v}\right|^{k} \\
&=O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v+1}+O(1)\left|\lambda_{m+1}\right| X_{m+1} \\
&=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of hypotheses of Theorem 3.1 and Lemma 3.1.
This completes the proof of Theorem 3.1.

5. Conclusions

We note that, if we take $\delta=0$ and $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then we get a theorem dealing with $\left|A, p_{n}\right|_{k}$ summability. If we take $\left(X_{n}\right)$ as an almost increasing sequence, $\delta=0$ and $\varphi_{n}=\frac{P_{n}}{p_{n}}$, then we get another theorem dealing with $\left|A, p_{n}\right|_{k}$ summability (see [16]). If we take $\delta=0, \varphi_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then we get a result for $|C, 1|_{k}$ summability.

References

1. N. K. Bari, S. B. Stečkin, Best approximations and differential properties of two conjugate functions, Tr. Mosk. Mat. Obšč. 5 (1956), 483-522. [in Russian]
2. H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985), 147-149.
3. 18 (1987), 330-336.
4. \quad, On the relative strength of two absolute summability methods, Proc. Am. Math. Soc. 113 (1991), 1009-1012.
5. -, On absolute summability factors, Proc. Am. Math. Soc. 118 (1993), 71-75.
6. \qquad , On absolute Riesz summability factors, Adv. Stud. Contemp. Math., Pusan 3(2) (2001), 23-29.
7. \qquad 5 pp .
8. \qquad , A new result on the quasi power increasing sequences, Appl. Math. Comput. 248 (2014), 426-429.
9. H. Bor, H. S. Özarslan, On the quasi power increasing sequences, J. Math. Anal. Appl. 276 (2002), 924-929.
10.

, A study on quasi power increasing sequences, Rocky Mt. J. Math. 38 (2008), 801-807.
11. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957), 113-141.
12. G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949, 1-396.
13. E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math. 49 (1925), 234-256.
14. L. Leindler, A new application of quasi power increasing sequences, Publ. Math. 58 (2001), 791-796.
15. H. S. Özarslan, A new application of almost increasing sequences, Miskolc Math. Notes 14 (2013), 201-208
16. \qquad
17. \qquad 66-70.
18. \qquad , A new study on generalised absolute matrix summability methods, Maejo Int. J. Sci. Technol. 12(3) (2018), 199-205.
19.
20. H. S. Özarslan, T. Ari, Absolute matrix summability methods, Appl. Math. Lett. 24(12) (2011), 2102-2106.
21. H. S. Özarslan, E. Yavuz, A new note on absolute matrix summability, J. Inequal. Appl. 474 (2013), 7 pp.
22. W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. 34(11) (2003), 1547-1557.
23. N. Tanović-Miller, On strong summability, Glas. Mat., III. Ser. 14(34) (1979), 87-97.

[^0]: 2010 Mathematics Subject Classification: Primary 40F05; Secondary 26D15; 40D15; 40G99.
 Key words and phrases: Riesz mean, summability factor, absolute matrix summability, almost increasing sequences, quasi power increasing sequences, infinite series, Hölder inequality, Minkowski inequality.

 Communicated by Gradimir Milovanović.

