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APPROXIMATION WITH CERTAIN

POST–WIDDER OPERATORS

Vijay Gupta and Prerna Maheshwari

Dedicated to Professor G. V. Milovanović on his 70-th birthday

Abstract. We consider a modification of well known Post–Widder operators,
which preserve the exponential function. We estimate a direct estimate and a
quantitative asymptotic formula for the modified operators.

1. Post–Widder Operators

In the last few decades many linear positive operators have been constructed
or appropriately modified in order to achieve better approximation. In [1, 4, 5,
9–11] and very recently in [6] several problems concerning approximation have
been discussed for different operators. Post–Widder operators [12] are defined for
f ∈ C[0, ∞) as:

Pn(f, x) :=
1

n!

(n

x

)n+1
∫ ∞

0
tne− nt

x f(t)dt.

Let us consider f(t) = eθt, θ ∈ R, then we have

Pn(eθt, x) =
1

n!

(n

x

)n+1
∫ ∞

0
tne− nt

x eθtdt =
1

n!

(n

x

)n+1
∫ ∞

0
tne−( n

x −θ)tdt.

Substituting
(

n
x − θ

)

t = u, we can write

Pn(eθt, x) =
1

n!

(n

x

)n+1 1
(

n
x − θ

)n+1

∫ ∞

0
une−udu(1.1)

=
1

n!

(n

x

)n+1 1
(

n
x − θ

)n+1 Γ(n + 1)

=
(n

x

)n+1(n

x
− θ

)−(n+1)
=

(

1 − xθ

n

)−(n+1)
.
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Recently Gupta and Tachev [7] considered the Phillips operators (see [3] and ref-
erences therein) and established some direct results which preserve exponential
functions.

Let us consider that the Post–Widder operators preserve the test function e−x,
then we start with the following form

P̃n(f, x) :=
1

n!

( n

an(x)

)n+1
∫ ∞

0
tne

− nt
an(x) f(t) dt.

Then using (1.1), we have

P̃n(e−t, x) = e−x =
(

1 +
an(x)

n

)−(n+1)
,

implying

an(x) = n(ex/(n+1) − 1).

Thus our modified operators P̃n take the following form

(1.2) P̃n(f, x) :=
1

n!
(ex/(n+1) − 1)−(n+1)

∫ ∞

0
tne

− t

(ex/(n+1)
−1) f(t) dt,

x ∈ (0, ∞) and P̃n(f, 0) = f(0), which preserve constant and the test function e−x.
In [2] a Korovkin-type theorem for the function e−kt, k = 0, 1, 2 was considered for
the class C∗[0, ∞), which denote the linear space of real-valued continuous functions
on [0, ∞) with the property that limx→∞ f(x) exists and is finite, equipped with
uniform norm ‖.‖∞.

Theorem 1.1. [2, Theorem 2] If {Lnf} be the sequence of positive and linear

operators defined on the space C∗[0, ∞) and satisfies

lim
n→∞

Ln(e−mt, x) = e−mx, m = 0, 1, 2, uniformly in [0, ∞),

then Lnf converges uniformly to f for n sufficiently large.

Theorem 1.1 was extended to quantitative estimate in [8] as follows:

Theorem 1.2. [8] Let f ∈ C∗[0, ∞) and Ln : C∗[0, ∞) → C∗[0, ∞) be a

sequence of linear positive operators and satisfies the following three conditions:

‖Ln1 − 1‖∞ = an, ‖Ln(e−t, x) − e−x‖∞ = bn, ‖Ln(e−2t, x) − e−2x‖∞ = cn,

where an, bn and cn tend to zero for n sufficiently large. Then, we have

‖Lnf − f‖∞ 6 ‖f‖∞an + (2 + an) · ω∗(f, (an + 2bn + cn)1/2),

where the modulus of continuity ω∗(f, δ) = sup x,t>0
|e−x−e−t|6δ

|f(x) − f(t)| for every

δ > 0.
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2. Lemmas

Lemma 2.1. We have for θ > 0 that

P̃n(eθt, x) = (1 − (ex/(n+1) − 1)θ)−(n+1).

It may be observed that P̃n(eθt, x) may be treated as moment generating func-
tion of the operators P̃n, which may be utilized to obtain the moments of (1.2).

Let µP̃n
r (x) = P̃n(er, x), where er(t) = tr, r ∈ N ∪ {0}. The moments are given by

µP̃n
r (x) =

[ ∂r

∂θr
P̃n(eθt, x)

]

θ=0
=

[ ∂r

∂θr

{

(1 − (ex/(n+1) − 1)θ)−(n+1)}
]

θ=0
.

Lemma 2.2. The moments of arbitrary order, satisfy the following

µP̃n

k (x) = (ex/(n+1) − 1)k(n + 1)k, k = 0, 1, . . . ,

where the Pochhammer symbol is defined by

(c)0 = 1, (c)k = c(c + 1) . . . (c + k − 1).

Further, by linearity property and using Lemma 2.2, we have the following
lemma:

Lemma 2.3. The central moments U P̃n
r (x) = P̃n((t − x)r , x) are given below:

U P̃n

k (x) =
k

∑

j=0

(−1)k−j

(

k

j

)

xk−j(ex/(n+1) − 1)j(n + 1)j, k = 0, 1, . . . .

Also, for each k ∈ N we have

lim
n→∞

nkU P̃n

2k (x) = (2k − 1)!!x2k,

lim
n→∞

nkU P̃n

2k−1(x) =
(2k − 1)!!

6
x2k−1[4(k − 1) + 3x].

3. Main Results

We first show the application of Theorem 1.1 to our operator (1.2)

Theorem 3.1. The sequence of modified Post–Widder operators P̃n : C∗[0, ∞)
→ C∗[0, ∞) satisfy

‖P̃nf − f‖∞ 6 2ω∗(f,
√

cn), f ∈ C∗[0, ∞).

Here the convergence takes place if n is sufficiently large.

Proof. The operators P̃n preserve constant functions as well as e−x so by
Theorem 1.1, an = bn = 0. We only have to evaluate cn. In view of Lemma 2.1,
we have

P̃n(e−2t; x) = (1 + 2(ex/(n+1) − 1))−(n+1).

Let
fn(x) = (2ex/(n+1) − 1)−(n+1) − e−2x

Since fn(0) = fn(∞) = 0, there exists a point ξn ∈ (0, ∞) such that

‖fn‖∞ = fn(ξn).
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It follows that f ′
n(ξn) = 0, i.e.,

e−2ξn = e
ξn

1+n

(

− 1 + 2e
ξn

1+n

)−n−2

and

fn(ξn) =
(

2e
ξn

1+n − 1
)−n−1 − e−2ξn =

(

e
ξn

1+n − 1
)(

2e
ξn

1+n − 1
)−2−n

.

Let xn := e
ξn

1+n − 1 > 0. It follows that

fn(ξn) =
xn

(2xn + 1)n+2 6 min
{

xn,
1

(2xn + 1)n+1

}

→ 0 as n → ∞. �

Next, we prove the quantitative asymptotic formula.

Theorem 3.2. Let f, f ′′ ∈ C∗[0, ∞), then, for x ∈ [0, ∞), the following in-

equality holds:

∣

∣

∣
n[P̃n(f, x) − f(x)] − x2

2
[f ′(x) + f ′′(x)]

∣

∣

∣
6 |pn(x)||f ′| + |qn(x)||f ′′|

+ 1
2 (2qn(x) + x2 + rn(x))ω∗(f ′′, n−1/2),

where

pn(x) = n[(n + 1)(ex/(n+1) − 1) − x] − x2

2
,

qn(x) = 1
2

(

n[(ex/(n+1) − 1)2(n + 1)(n + 2) + x2 − 2x(n + 1)(ex/(n+1) − 1)] − x2)

,

rn(x) = n2[

P̃n((e−x − e−t)4, x)U P̃n
4 (x)

]1/2
.

Proof. By the Taylor’s formula, there exist ξ lying between x and t such that

f(t) = f(x) + (t − x)f ′(x) + (t − x)2 f ′′(x)

2
+ h(ξ, x)(t − x)2,

where h(t, x) := f ′′(t)−f ′′(x)
2 is a continuous function and ξ is between x and t.

Applying the operator P̃n to above equality and using Lemma 2.3, we can write
that

∣

∣

∣
P̃n(f, x) − f(x) − U P̃n

1 (x)f ′(x) − f ′′(x)

2
U P̃n

2 (x)
∣

∣

∣
6 P̃n(|h(ξ, x)|(t − x)2, x).

Again using Lemma 2.3, we get
∣

∣

∣
n[P̃n(f, x) − f(x)] − x2

2
[f ′(x) + f ′′(x)]

∣

∣

∣

6

∣

∣

∣
nU P̃n

1 (x) − x2

2

∣

∣

∣
|f ′(x)| +

1

2

∣

∣

∣
nU P̃n

2 (x) − x2
∣

∣

∣
|f ′′(x)| +

∣

∣nP̃n(h(ξ, x)(t − x)2, x)
∣

∣.

Let pn(x) := nU P̃n
1 (x) − x2

2 and qn(x) := 1
2 (nU P̃n

2 (x) − x2). Then,

∣

∣

∣
n [P̃n(f, x) − f(x)] − x2

2
[f ′(x) + f ′′(x)]

∣

∣

∣

6 |pn(x)||f ′(x)| + |qn(x)||f ′′(x)| +
∣

∣n P̃n(h(ξ, x) (t − x)2, x)
∣

∣.
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Also, from Lemma 2.3, we have pn(x) → 0 and qn(x) → 0 for n sufficiently large.
Now, we just have to compute the last estimate: nP̃n(h(ξ, x)(t − x)2, x). Using the

property of ω∗(·, δ): |f(t) − f(x)| 6
(

1 + (e−x−e−t)2

δ2

)

ω∗(f, δ), δ > 0, we get that

|h(ξ, x)| 6 1

2

(

1 +
(e−x − e−t)2

δ2

)

ω∗(f ′′, δ).

Hence, we get

nP̃n(|h(ξ, x)|(t − x)2, x) 6
1

2
nω∗(f ′′, δ)U P̃n

2 (x)

+
n

2δ2 ω∗(f ′′, δ)P̃n((e−x − e−t)2(t − x)2, x).

Applying the Cauchy–Schwarz inequality, we obtain

nP̃n(|h(ξ, x)|(t − x)2, x) 6
1

2
nω∗(f ′′, δ)U P̃n

2 (x)

+
n

2δ2 ω∗(f ′′, δ)
[

P̃n((e−x − e−t)4, x) · U P̃n
4 (x)

]1/2
.

Considering

rn(x) := [n2P̃n((e−x − e−t)4, x)]1/2 · [n2U P̃n

4 (x)]1/2.

and choosing δ = n−1/2, we finally get the desired result. �

Remark 3.1. The convergence of modified Post–Widder operators P̃n in the
above theorem takes place for n sufficiently large. Using the software Mathematica,
we find that

lim
n→∞

n2P̃n((e−x − e−t)4, x)

= lim
n→∞

n2(P̃n(e−4t, x) − 4e−xP̃n(e−3t, x)

+ 6e−2xP̃n(e−2t, x) − 4e−3xP̃n(e−t, x) + e−4x)

= lim
n→∞

n2(

(1 + 4(ex/(n+1) − 1))−(n+1) − 4e−x(1 + 3(ex/(n+1) − 1))−(n+1)

+ 6e−2x(1+2(ex/(n+1)−1))−(n+1) − 4e−3x(1+(ex/(n+1)−1))−(n+1)+e−4x
)

= 3x4e−4x.

and by Lemma 2.3 limn→∞ n2U P̃n
4 (x) = 3x4.
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