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ON THE STRUCTURE

OF RANDOM HYPERGRAPHS

Boriša Kuzeljević

Abstract. Let Hn be a countable random n-uniform hypergraph for n > 2,
and P(Hn) = {f [Hn] : f : Hn → Hn is an embedding}. We prove that a linear
order L is isomorphic to the maximal chain in the partial order 〈P(Hn)∪{∅}, ⊂〉
if and only if L is isomorphic to the order type of a compact set of reals whose
minimal element is nonisolated.

1. Introduction

1.1. Background and the statement of the result. We completely char-
acterize chains of isomorphic substructures of the Fraïssé limit of finite n-uniform
hypergraphs for each n > 1, thus generalizing some results from [8] and [7] to
higher dimensions. Fraïssé theory, the systematic study of ultrahomogeneous uni-
versal structures, was initiated in the mid 1950’s by Roland Fraïssé [2]. Typical
examples of Fraïssé limits are the rational line 〈Q, <〉 and the countable random
graph (i.e., Rado graph). A particularly active research area is the investigation
of the automorphism groups of these structures (see [4] for the most notable ex-
ample). Besides that, there has been interest in considering the embeddings of
an ultrahomogeneous structure into itself (for a relational structure X, denote
Emb(X) = {f : X → X : f is an embedding}). See [1] for some results on the self-
embeddings of ultrahomogeneous n-uniform hypergraphs or [10] for one of the most
prominent results concerning self-embeddings of ultrahomogeneous structures. In
this context, one usually investigates the set of isomorphic substructures of a struc-
ture X, denoted P(X) = {f [X ] : f ∈ Emb(X)} = {A ⊂ X : A ∼= X}.

The set P(X) is naturally ordered by inclusion, and we will be interested in
order types of chains in these partial orders where X is the countable random n-
uniform hypergraph (for all n > 2). Some recent results related to the ones in this
paper can be found in [6, 9, 8]. The main result of this paper is the following.
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Theorem 1.1. Let Hn, n > 1, be a countable random n-uniform hypergraph.
Then a linear order L is isomorphic to a maximal chain in the partial order
〈P(Hn) ∪ {∅}, ⊂〉 if and only if it is isomorphic to the order type of a compact
set of reals whose minimum is nonisolated.

1.2. Preliminaries. In this paper n will be reserved for natural numbers and
|X | denotes the cardinality of a set X , in particular, ω is the cardinality of a
countably infinite set. For a set X and n > 1, by [X ]n we denote the set of all
n-element subsets of X , i.e., [X ]n = {y ⊂ X : |y| = n}. Also, [X ]<ω denotes the
set of all finite subsets of X . If f maps A into B, then f [A] = {f(x) : x ∈ A}. The
power set of X is denoted by P (X). If J is a subset of the real line and x ∈ R,
then we denote (−∞, x)J = (−∞, x) ∩ J and (−∞, x]J = (−∞, x] ∩ J .

A relational structure X = 〈X, {ρi : i ∈ I}〉 consists of a set X and relations
ρi (i ∈ I). Often, when there can be no confusion, we do not make distinction
between denoting the structure X and the underlying set X . We say that a structure
Y = {Y, {σi : i ∈ I}} is a substructure of X if and only if Y ⊂ X and for each i ∈ I
we have σi = Y ar(ρi) ∩ ρi. A mapping f : X → Y is an embedding of a relational
structure X into a relational structure Y of the same signature (denoted f : X →֒ Y)
if and only if f is 1-1 and it holds (ki = ar(ρi))

∀i ∈ I ∀ 〈a1, . . . , aki
〉∈Xki (〈a1, . . . , aki

〉∈ρi ⇔ 〈f(a1), . . . , f(aki
)〉∈σi) .

We say that a relational structure X is ultrahomogeneous if and only if any
isomorphism φ between finite substructures of X can be extended to an automor-
phism of X. Further, we say that a relational structure X is universal for a class of
structures K if and only if for each K ∈ K there is an embedding f : K → X. We
use the following characterization of ultrahomogeneity (see [3, Theorem 12.1.2.]).

Lemma 1.1. Let X be a countable relational structure. Then X is ultrahomoge-
neous if and only if for any finite substructure F of X, any embedding f : F → X,
and any element y ∈ X r F , there exists an embedding g : F ∪ {y} → X which is
an extension of f .

Now we mention a few notions related to order theory. We say that a linear
order is complete if and only if it is Dedekind-complete and has minimum and
maximum (the reader may find this definition of completeness nonstandard, but
we use it in order to shorten some statements). We say that a linear order L is
boolean if and only if it is complete and has dense jumps, i.e., complete and for any
x, y ∈ L if x < y, then there are s, t ∈ L such that x 6 s < t 6 y and (s, t)L = ∅.

We will also need the notions of a filter and a set dense in a partial order. Let
〈P,6〉 be a partial order, a set D ⊂ P is dense in P if for any p ∈ P there is q ∈ D
such that q 6 p. A set G ⊂ P is a filter in P if and only if for all x, y ∈ G there is
q ∈ G such that q 6 x, y (i.e., elements of G are pairwise compatible in G) and for
any x ∈ G if y > x, then also y ∈ G. The following is a well-known fact.

Lemma 1.2 (Rasiowa–Sikorski). Let 〈P,6〉 be a partially ordered set and D =
{Dn : n ∈ N} a countable family of sets dense in P . Then there is a filter G in P
such that G ∩ Dn 6= ∅, for all n ∈ N.
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1.3. Maximal chains. First note that a linear order L is isomorphic to the
order type of a compact (nowhere dense compact) set of reals whose minimum
is nonisolated if and only if it is complete (boolean), R embeddable and has a
nonisolated minimum. For a proof of this fact see [5].

Recall that a positive family on a countable set X is a family P ⊂ P (X)
satisfying (see also [5]):

(P1) ∅ /∈ P ;
(P2) A ∈ P ∧ B ∈ [A]<ω ⇒ A r B ∈ P ;
(P3) A ∈ P ∧ A ⊂ B ⊂ X ⇒ B ∈ P ;
(P4) ∃A ∈ P |X r A| = ω.

For example, each nonprincipal ultrafilter on ω is a positive family on ω. Also,
the family of all dense subsets of the rational line Q is a positive family on Q.
Positive families play an important role in investigation of maximal chains in the
posets of the form 〈P(X) ∪ {∅}, ⊂〉. Namely, Theorem 2.2. in [9] states that if
there is a positive family P on X such that P ⊂ P(X), then for each countable and
complete linear order L whose minimum is nonisolated, there is a maximal chain in
〈P(X) ∪ {∅}, ⊂〉 isomorphic to L. This allows us to reformulate Theorem 3.2. from
[8] in the following slightly weaker manner.

Theorem 1.2. Let X be a countable relational structure and 〈Q, <〉 the rational
line. If there exist a partition {Jm : m ∈ ω} of Q and a structure with the domain
Q of the same signature as X such that:

(i) J0 is a dense subset of 〈Q, <〉,
(ii) Jm (m ∈ ω) are coinitial subsets of 〈Q, <〉,
(iii) (−∞, x)J0

⊂ A ⊂ (−∞, x)Q implies A ∼= X for x ∈ R ∪ {∞},
(iv) (−∞, q]J0

⊂ C ⊂ (−∞, q]Q implies C 6∼= X for q ∈ J0,
(v) there is a positive family P on X such that P ⊂ P(X),

then for each R-embeddable complete linear order L with min L nonisolated, there
is a maximal chain in 〈P(X) ∪ {∅}, ⊂〉 isomorphic to L.

The next result, proved in [9], shows that ultrahomogeneous structures provide
a nice framework for investigating maximal chains of their isomorphic substructures.

Theorem 1.3. Let X be a countable ultrahomogeneous structure of an at most
countable relational language which contains at least one nontrivial isomorphic sub-
structure, i.e., P(X) 6= {X}. Then for each linear order L the implication (1) ⇒ (2)
is true, where

(1) L is isomorphic to a maximal chain in the poset 〈P(X) ∪ {∅}, ⊂〉;
(2) L is a complete R-embeddable linear order with min L nonisolated.

2. Random hypergraphs

For n > 2, an n-uniform hypergraph is a relational structure 〈X, ρ〉, satisfying
ar(ρ) = n and such that 〈x0, . . . , xn−1〉 ∈ ρ implies xi 6= xj for all i 6= j in n and
〈

xπ(0), . . . , xπ(n−1)
〉

∈ ρ for all permutations π of n (see [3]). Note that this is
equivalent to saying that n-uniform hypergraph is a pair 〈X, ρ〉 where X is a set
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and ρ ⊂ [X ]n, so we will sometimes refer to the first formulation, and sometimes,
when it is more convenient, to the second. For example, if, in addition, Z = 〈Z, σ〉
is an n-uniform hypergraph and g : Z → X is 1-1, then g ∈ Emb(Z,X) iff

(2.1) ∀K ∈ [Z]n (K ∈ σ ⇔ g[K] ∈ ρ).

Recall that the class of countably many (up to isomorphism) finite structures is
a Fraïssé class (see [3]) if it is hereditary, satisfies joint embedding and amalgama-
tion property and contains structures of arbitrary large finite cardinality. It is well
known that the class Kn of finite n-uniform hypergraphs (n > 2) is a Fraïssé class,
hence the famous Fraïssé’s theorem states there there is a unique up to isomorphism
countable ultrahomogeneous relational structure whose age is exactly Kn (the age
of a relational structure is the class of all of its finitely generated substructures).

Definition 2.1. For n > 2, the countable ultrahomogeneous n-uniform hyper-
graph universal for all finite n-uniform hypergraphs is called the countable random
n-uniform hypergraph.

The countable random n-uniform hypergraph will be denoted Hn. The follow-
ing lemma gives a useful reformulation of the definition of the countable random
n-uniform hypergraph. Note also that Fraïssé’s theorem states that the count-
able random n-uniform hypergraph is universal even for the class of all countable
n-uniform hypergraphs.

Lemma 2.1. If n > 2, |X | = ω, X = 〈X, Γ〉 for Γ ⊂ [X ]n, then

∀A ∈
⋃

k>n−1

[X ]k ∀B ⊂ [A]n−1 ∃q ∈ X r A ∀C ∈ [A]n−1 ({q} ∪ C ∈ Γ ⇔ C ∈ B) ,

if and only if X ∼= Hn.

Proof. First we prove that if X ∼= Hn, then X satisfies the assumption in the
lemma. Without any loss of generality, we can work with Hn itself. Suppose that a
finite set A ⊂ Hn of size k > n−1, and B ⊂ [A]n−1 are given. Take any x ∈ HnrA,
and consider the following set ρ = {C ∪ {x} : C ∈ B} ∪ Γ ↾ A. Then it is clear that
ρ ⊂ [A ∪ {x}]n and Γ ↾ A = ρ ↾ A, so 〈A ∪ {x}, ρ〉 is a finite n-uniform hypergraph.
Since Hn is universal for all finite n-unifrom hypergraphs, there is E ⊂ Hn and an
isomorphism f : 〈A ∪ {x}, ρ〉 → 〈E, Γ ↾ E〉. Let y denote the single point in the
set E r f [A] and let g = f ↾ A. By ultrahomogeneity of Hn, Lemma 1.1 applied
to f [A] = E r {y}, g−1, and y, gives us an embedding h : E → Hn which is an
extension of g−1. Denote q = h(y), and note that since h is an isomorphism and
h[f [A]] = A, it must be the case that q /∈ A. Hence, for C ∈ [A]n−1

{q} ∪ C ∈ Γ ⇔ h−1[C ∪ {q}] ∈ Γ ⇔ {y} ∪ g[C] ∈ Γ ⇔ {x} ∪ C ∈ ρ ⇔ C ∈ B,

as required.
Next, we have to prove that the n-uniform hypergraph X satisfying the as-

sumption in the lemma is ultrahomogeneous and universal for all finite n-uniform
hypergraphs. We will be using the following claim.

Claim 2.1. If Y = 〈Y, σ〉 is an n-uniform hypergraph, F ∈ [Y ]<ω, y ∈ Y r F ,
and f : F →֒ X, then there is a ∈ Xrf [F ] such that g := f ∪{〈y, a〉} : F ∪{y} →֒ X.
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Proof. Let B =
{

B ∈ [f [F ]]n−1 : {y} ∪ f−1[B] ∈ σ
}

. Then by the assump-
tion of the lemma, there is a ∈ X r f [F ] such that:

∀B ∈ [f [F ]]n−1 (

{a} ∪ B ∈ ρ ⇔ B ∈ B
)

.

Now, defining Z = F ∪{y} we prove (2.1) for g := f ∪{〈y, a〉}. Take any K ∈ [Z]n.
There are two possibilities: either y ∈ K or y /∈ K. If y /∈ K, since f is an
embedding and g is an extension of f , we clearly have that K ∈ σ if and only if
g[K] = f [K] ∈ ρ. If y ∈ K, then K = C ∪ {y} for some C ∈ [F ]n−1. Now using
the fact that f is one-to-one we get

K ∈ σ ⇔ C ∪ {y} ∈ σ ⇔ f [C] ∈ B ⇔ {a} ∪ f [C] ∈ ρ ⇔ f [K] ∈ ρ,

as required. So g is an embedding extending f . �

Now we prove the ultrahomogeneity of X using Lemma 1.1. Let F be any finite
substructure of X, f : F →֒ X any embedding, and y ∈ X r F arbitrary. Applying
Claim 2.1 to Y := F ∪ {y}, y, and f , we obtain a ∈ X r f [F ] and embedding
g := f ∪ {〈y, a〉} : F ∪ {y} →֒ X exactly as required in Lemma 1.1. Thus X is
ultrahomogeneous.

In order to finish the proof, we also have to show that X is universal for all
finite n-uniform hypergraphs. We show that it is in fact universal for all at most
countable n-uniform hypergraphs. Let Y = 〈Y, σ〉 be an arbitrary at most countable
n-uniform hypergraph. Fix an enumeration Y = {y1, y2, . . . }. If |Y | < n then any
1-1 mapping h : Y → X is an embedding because in that case [Y ]n = ∅, and that
implies σ ∩ [Y ]n = ρ ∩ [h[Y ]]n = ∅. If |Y | > n, then we define the embedding f by
induction on l. First, pick any elements x1, . . . , xn−1 ∈ X and define fn−1(yi) = xi

for 1 6 i 6 n − 1. Note that fn−1 is an embedding according to the previous
considerations in this paragraph. Assume that an embedding fl : {y1 . . . , yl} → X is
given for n−1 6 l. Applying Claim 2.1 to Y , F = {y1, . . . , yl}, yl+1 ∈ Y rF and fl,
we obtain a ∈ Xrf [F ] and an embedding fl+1 := fl∪{〈yl+1, a〉} = F ∪{yl+1} →֒ X.
In this way an increasing sequence of embeddings fl : {y1, . . . , yl} →֒ X is obtained,
and it is clear that f =

⋃

n−16l<|Y | fl+1 is an embedding of Y into X. Thus X is

universal and the lemma is proved. �

3. Main theorem

In this section we prove the central result of this note by constructing a specific
representation of Hn in order to easily locate its isomorphic substructures. So n > 1
is fixed for the rest of the paper. We essentially plan to use Theorem 1.2, so pick
any partition [0, 1) ∩ Q =

⋃

m∈ω J ′
m into countably many sets, all of them being

dense in [0, 1) ∩ Q. Now define the sets Jm = J ′
m + Z for every m ∈ ω. It is clear

that the family {Jm : m ∈ ω} is a partition of the rational line into dense sets such
that if x ∈ Jm, then x + k ∈ Jm for any k ∈ Z and m ∈ ω. In order to simplify
some further statements, for a ∈ Q denote M(a) = {a − i : i ∈ n}.

Let P be the set of pairs p = 〈Hp, Γp〉 such that

(3.1) Hp ∈ [Q]<ω ∧ Γp ⊂ [Hp]n,
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(3.2) ∀a, b ∈ Hp

[(

M(a) ⊂ Hp ∧ ∀B ∈ [M(a)]n−1 B ∪ {b} ∈ Γp

)

⇒ b > a
]

.

For p1, p2 ∈ P, let

(3.3) p1 6 p2 ⇔ Hp1
⊃ Hp2

∧ Γp1
∩ [Hp2

]n = Γp2
.

Thus, each element of P is a finite n-uniform hypergraph, p1 6 p2 if and only if p2

is a substructure of p1.

Lemma 3.1. The set P with the relation 6 on P is a partially ordered set.

Proof. The reflexivity is clear. For the transitivity, notice that if p1 6 p2 and
p2 6 p3, we have Hp3

⊂ Hp2
⊂ Hp1

and Γp1
∩ [Hp2

]n = Γp2
and Γp2

∩ [Hp3
]n = Γp3

,
and it is easy to see that Γp1

∩ [Hp3
]n = Γp3

. To see that 6 is antisymmetric notice
that if p1 6 p2 and p2 6 p1, then from Hp1

⊂ Hp2
⊂ Hp1

follows Hp1
= Hp2

and
then Γp1

= Γp1
∩ [Hp1

]n = Γp1
∩ [Hp2

]n = Γp2
, or equivalently p1 = p2. �

Lemma 3.2. If A ∈
⋃

k>n−1[Q]k, B ⊂ [A]n−1, and m ∈ N, then the set DA,m
B

of all p ∈ P satisfying A ⊂ Hp and

(3.4) ∃q ∈ (max A, max A+1/m)∩J0 ∩Hp ∀C ∈ [A]n−1 ({q} ∪ C ∈ Γp ⇔ C ∈ B)

is dense in P.

Proof. Take any p ∈ P and assume that A ⊂ Hp (if not, define Hp2
= Hp ∪ A

and Γp2
= Γp and continue with p2 instead p). Because J0 is dense in Q, there is

(3.5) q ∈
(

(max A, max A + 1/m) ∩ J0
)

r
⋃

a∈Hp

⋃

k∈(−n,n)∩Z {a + k} .

Define p1 in the following way: Hp1
= Hp∪{q}, while Γp1

= Γp∪{{q} ∪ C : C ∈ B}.

It is clear that if p1 ∈ P, then p1 ∈ DA,m
B and p1 6 p. Now we prove that p1 ∈ P.

Assume the contrary, i.e., that for some a, b ∈ Hp1
:

(3.6) b 6 a ∧ M(a) ⊂ Hp1
∧ ∀C ∈ [M(a)]n−1 {b} ∪ C ∈ Γp1

.

Since p satisfies (3.2), q must appear in (3.6), so there are three possibilities:

• q = a which is not possible because in that case q = (a − 1) + 1 with
a − 1 ∈ Hp. Contradiction with the choice of q.

• q ∈ M(a)r{a}. Then q = (a−k)−1 for some k < n−1 which is impossible
because a − k ∈ M(a) r {q} ⊂ Hp, and again we have a contradiction
with the choice of q.

• q = b. In this case, the definition of Γp1
implies [M(a)]n−1 ⊂ B ⊂ [A]n−1.

This in turn implies a ∈ M(a) ⊂ A, but this implies q = b > max A > a,
which contradicts the first part of assumption (3.6).

Hence, p1 ∈ P and the lemma is proved. �

Since there are only countably many positive integers and only countably many

finite subsets of the rational line, there are countably many sets DA,m
B , and, ac-

cording to Lemma 1.2, there is a filter G in P such that G ∩ DA,m
B 6= ∅ for each

A ∈
⋃

k>n−1[Q]k, B ⊂ [A]n−1, m ∈ N. Define Γ =
⋃

p∈G Γp. Because Γp ⊂ [Q]n for
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all p ∈ G, we have that Γ ⊂ [Q]n so 〈Q, Γ〉 is a countable n-uniform hypergraph.
Notice also that for each p ∈ G we have that:

(3.7) Γ ∩ [Hp]n = Γp.

It is clear that Γp ⊂ [Hp]n ∩ Γ (from the definition of Γ), so assume that for some
p ∈ G there is some B ∈ (Γ∩ [Hp]n)rΓp. Because B ∈ Γ there is some p1 ∈ G such
that B ∈ Γp1

. Since G is a filter, there is some p2 ∈ G such that p2 6 p, p1, i.e.,
p2 is an extension of both p and p1. Because B /∈ Γp, from (3.3) we conclude that
B /∈ Γp2

. However, because B ∈ Γp1
, again from (3.3), we conclude that B ∈ Γp2

which is a contradiction so (3.7) holds.
Using Lemma 2.1, we prove that 〈Q, Γ〉 is isomorphic to the countable random

n-uniform hypergraph Hn. Take any finite A ⊂ Q such that |A| > n − 1 and

B ⊂ [A]n−1. The set DA,1
B is dense in P so there is some p ∈ G∩DA,1

B . This implies
that A ⊂ Hp and that there is some q > max A (which implies q /∈ A) such that
for all C ∈ [A]n−1, we have {q} ∪ C ∈ Γp ⇔ C ∈ B. Finally (3.7) gives us

∀C ∈ [A]n−1 {q} ∪ C ∈ Γ ⇔ C ∈ B,

as required by Lemma 2.1. Hence X = 〈Q, Γ〉 ∼= Hn.

Lemma 3.3. There is a positive family P on Q such that P ⊂ P(X).

Proof. We will prove that

P =
{

Qr
⋃

m∈Z Fm : 〈Fm : m ∈ Z〉 ∈
∏

m∈Z [[m, m + 1)Q]
<ω}

is a positive family in P(Q, Γ). Take any Y ∈ P . We will show that 〈Y, Γ〉 satisfies
the conditions of Lemma 2.1. Take any finite A ⊂ Y such that |A| > n − 1 and
any B ⊂ [A]n−1. First we find m0 ∈ Z such that max A ∈ [m0, m0 + 1)Q. This
m0 clearly exists because A is a finite set. Also, because Fm0

is a finite set and
A ∩ Fm0

= ∅, there is an m ∈ N such that (max A, max A + 1
m

) ∩ Fm0
= ∅, i.e.,

(max A, max A + 1
m

) ∩Q ⊂ Y . Now, since the set DA,m
B is dense in P, there is some

p ∈ G ∩ DA,m
B , i.e., there is some q ∈ Y such that

∀C ∈ [A]n−1 ({q} ∪ C ∈ Γp ⇔ C ∈ B).

Now, in the same way as before (3.7) and Lemma 2.1 prove that Y ∈ P(X).
To conclude the proof, we also have to show that P is a positive family on

Q. The condition (P1) is clearly satisfied because only finitely many points are
removed from each bounded interval in Q to obtain the elements of P . For the
same reason (P2) and (P3) are also satisfied. The set Qr Z is in P and witnesses
that the condition (P4) is true. �

The following lemma shows that we can apply Theorem 1.2 in order to prove
the main theorem.

Lemma 3.4. It holds:

(1) (−∞, x)J0
⊂ Y ⊂ (−∞, x)Q implies 〈Y, Γ〉 ∼= 〈Q, Γ〉 for x ∈ R ∪ {∞};

(2) (−∞, q]J0
⊂ Y1 ⊂ (−∞, q]Q implies 〈Y1, Γ〉 6∼= 〈Q, Γ〉 for q ∈ J0.
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Proof. To prove (1) take any finite A ⊂ Y such that |A| > n − 1 and take
B ⊂ [A]n−1. There is some m ∈ N such that max A + 1

m
< sup Y = x (this can be

done by the choice of Y and J0). Now, because the set DA,m
B is dense in P, there

is some p ∈ G ∩ DA,m
B . So in the same way as before (using (3.7) and properties

of DA,m
B ), there is q ∈ Y such that ∀C ∈ [A]n−1 ({q} ∪ C ∈ Γ ⇔ C ∈ B). So by

Lemma 2.1, Y ∼= Hn
∼= X.

To prove (2) consider the set M(q) ⊂ Y1 (we know that M(q) ⊂ Y1 by the
choice of the partition {Jm : m ∈ ω}). Suppose that 〈Y1, Γ〉 is isomorphic to Hn.
This means that there is an element b ∈ Y1 (in particular b 6 q = max Y1) such
that ∀C ∈ [M(q)]n−1 ({b} ∪ C ∈ Γ). According to the definition of Γ, for each
C ∈ [M(q)]n−1 there is some pC ∈ G such that {b} ∪ C ⊂ HpC

. Because G
is a filter there is some p 6 pC for all C ∈ [M(q)]n−1. Then M(q) ⊂ Hp and
∀C ∈ [M(q)]n−1 ({b}∪C ∈ Γp) but b 6 max Y1 = q. This contradicts the definition
of P (condition (3.2) for p). �

Now we can prove the main result of this note.

Theorem 3.1. For a linear order L, the following conditions are equivalent.

(1) L is a complete, R-embeddable linear order with min L nonisolated;
(2) L is isomorphic to a maximal chain in the poset 〈P(Hn) ∪ {∅}, ⊂〉;
(3) L is isomorphic to a compact set K of reals such that min K ∈ K ′.

Proof. The equivalence of (1) and (3) was shown in [6], while the implication
(2) ⇒ (1) follows from Theorem 1.3.

To prove (1) ⇒ (2), note that from the choice of the partition {Jm : m ∈ ω}
and according to Lemma 3.4, conditions (i)–(iv) of Theorem 1.2 are satisfied. Also,
Lemma 3.3 proves that the condition (v) of Theorem 1.2 is satisfied. Hence, The-
orem 1.2 implies that (1) ⇒ (2) is proved. �
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