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POLAR DECOMPOSITION OF THE ALUTHGE

TRANSFORMATION IN HILBERT C∗-MODULES

Mahnaz Chakoshi

Abstract. Let T = U |T | and S = V |S| be the polar decompositions of
adjointable operators T and S, respectively on a Hilbert C∗-module. We de-
termine these pairs of operators for which their products T S accepts the polar
decomposition as T S = UV |T S|. Specially, we provide sufficient conditions

for a certain operator T such that its Aluthge transform T̃ = |T |1/2U |T |1/2

admits the polar decomposition.

1. Introduction and preliminaries

In 1990 A. Aluthge in [1] gave the definition of the Aluthge transformation
T̃ = |T |1/2U |T |1/2 of an operator T whose polar decomposition is T = U |T | where
|T | = (T ∗T )1/2. Also he discussed on the polar decomposition of Aluthge transfor-
mation, but the complete solution of this problem has not been obtained. Further in
2004 Ito, Yamazaki and Yanagida [7] obtained the polar decomposition of Aluthge
transformation in the setting of Hilbert spaces. After that, many lectures began
to discuss the properties of T and T̃ such as p-hyponormal, log-hyponormal, spec-
trum, numerical range etc. Most results on T̃ show that it generally has better
properties than T and many authors have obtained results by using it. In this pa-
per we make an investigation on the polar decomposition of T̃ of a certain operator
T acting on the Hilbert C∗-modules. In orther to prove it, we need to investigate
polar decomposition theory on the product of operators. In 1983 Furuta [4, 5]
obtained the polar decomposition of the product of operators acting on Hilbert
spaces. Precisely, he presented suitable conditions that the partial isometry in the
polar decomposition of product of two operators is the product of partial isometrys
in each polar decomposition of them. We have to study Furuta’s theorem in the
setting of Hilbert C∗-modules.

We recall the definition of a Hilbert C∗-module and introduce our notations. A
pre-Hilbert C∗-module X over a C∗-algebra A, is a right A-module together with
an A-valued inner product 〈. , .〉 : X × X → A satisfying the conditions:
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(i) 〈x, x〉 > 0 for x ∈ X ,
(ii) 〈x, x〉 = 0 if and only if x = 0.
(iii) 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉 for x, y, z ∈ X , α, β ∈ C,
(iv) 〈x, ya〉 = 〈x, y〉a for x, y ∈ X , a ∈ A,
(v) 〈x, y〉∗ = 〈y, x〉 for x, y ∈ X ,

We can define a norm on X by ‖x‖X = ‖〈x, x〉‖
1

2

A
. A pre-Hilbert A-module X is

called a right Hilbert C∗-module over A if it is complate with respect to its norm.
Each Hilbert space is a Hilbert C-module and each C∗-algebra A can be regarded
as a Hilbert A-modules via 〈a, b〉 = a∗b(a, b ∈ A). Note that, some properties
of Hilbert spaces do not hold in Hilbert C∗-modules. For example, a bounded
operator T on Hilbert C∗-module X might not admit a bounded operator T ∗ as
its adjoint operator, that satisfy in the condition 〈T (x), y〉 = 〈x, T ∗(y)〉 for any
x, y ∈ X . But, it is easy to see that every adjointable operator T is a bounded
linear A-module mapping. Also, in general, a closed submodule F of X might not
be orthogonal complemented and F ⊥⊥ is usually larger than F . Recall that a closed
submodule F of X is said to be orthogonally complemented if X = F ⊕ F ⊥, where
F ⊥ = {x ∈ X : 〈x, x′〉 = 0 for all x′ ∈ F}. Lance [8] proved that if an adjointable
operator T ∈ B(X , Y) has closed range, then

(i) N(T ) is a complemented of X , with complement R(T ∗),
(ii) R(T ) is a complemented of Y, with complement N(T ∗).

The basic theory of Hilbert C∗-modules can be found in [8]. Throughout this
paper, A denotes a C∗-algebra, X and Y are Hilbert A-modules, B(X , Y) is the
set of all adjointable operators between X and Y and write B(X ) for B(X , X ). We
used D(.), N(.) and R(.) for domain, kernel and range of operators, respectively.
An operator T ∈ L(X , Y) (the set of all linear operators) for which D(T ) is a dense
submodule of X is called a densely defined operator. First, for the beginning, we
state a background for the theory of polar decomposition of operators. The polar
decomposition of operators is an important theoretical and computational tool that
shows an operator as a product of a partial isometry and a positive element. It
is known that every bounded operator T on Hilbert spaces can be decomposed
as T = U |T | where U is a partial isometry with N(U) = N(|T |). Also, Kato
[6] proved that a densely defined closed operator between Hilbert spaces has polar
decomposition. In general adjointable operators on Hilbert C∗-modules do not have
polar decomposition. In this respect, Wegge-Olsen stated a necessary and sufficient
condition for adjointable operator T to admit a polar decomposition as follows:

Theorem 1.1. [10, Theorem 15.3.7] Suppose T ∈ B(X , Y). Then the following

conditions are equivalent:

(i) T has a unique polar decomposition T = U |T |, where U ∈ B(X , Y) is a partial

isometry for which N(U) = N(T ) = N(|T |), N(U∗) = N(T ∗) = N(|T ∗|).

(ii) X = N(T ) ⊕ R(T ∗) and Y = N(T ∗) ⊕ R(T ).

In this situation, U∗U is the projection onto R(|T |) = R(T ∗) and UU∗ is the

projection onto R(|T ∗|) = R(T ) and U∗U |T | = |T |, U∗T = |T |, UU∗T = T .
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2. Polar decomposition of the product of two operators

In this section we obtain necessary and sufficient conditions when the operator
T S admits a polar decomposition in the setting of Hilbert C∗-modules.

Theorem 2.1. Let X is a Hilbert A-module and T, S ∈ B(X ) with N(T ) =
N(S∗). Then the operator T S admits a polar decomposition if and only if the

operators T and S have the polar decompositions.

Proof. Suppose the operators T and S admit the polar decompositions, then
by Theorem 2.1 we have

(2.1)
X = N(T ) ⊕ R(T ∗) = N(T ∗) ⊕ R(T ),

X = N(S) ⊕ R(S∗) = N(S∗) ⊕ R(S).

We claim that R(T ) ⊆ R(T S). Let y ∈ R(T ), then there exists a sequence (xn)
in X such that (T (xn)) converges to y. It is clear from the construction of X =

N(S∗) ⊕ R(S) that for each element xn ∈ X , there are elements x1n ∈ N(S∗)

and x2n ∈ R(S) such that xn = x1n + x2n. The closedness of R(S) together with

x2n ∈ R(S) implies that there exists a sequence (ym
2n)m in X such that (S(ym

2n))m

converges to x2n, as m → ∞. Moreover, x1n ∈ N(S∗) ⊆ N(T ) yields that T (xn) =
T (x1n + x2n) = T (x1n + limm→∞ S(ym

2n)) = 0 + T S(limm→∞ ym
2n) converges to

y, as m, n go to infinity. Hence y ∈ R(T S). Observe that equality (2.1) can be

rewritten as X = N(T ∗) ⊕ R(T ) ⊆ N((T S)∗) ⊕ R(T S) ⊆ X . Next, by using

X = N(T ) ⊕ R(T ∗), N(T ) ⊆ N(S∗) and the same reasoning, we can prove that

R(S∗) ⊆ R((T S)∗). Therefore X = N(S) ⊕ R(S∗) ⊆ N(T S) ⊕ R((T S)∗) ⊆ X . It
follows from Theorem 1.1 that the operator T S has the polar decomposition.

Conversely, suppose the operator T S has the polar decomposition, then X =

N(T S) ⊕ R((T S)∗) = N((T S)∗) ⊕ R(T S). Let y ∈ R(T S), then there exists a
sequence (xn) in X such that (T S(xn)) converges to y. Letting (S(xn)) = (yn),

so the sequence (T (yn)) converges to y, this means that y ∈ R(T ). Let x ∈
N((T S)∗), then T ∗x ∈ N(S∗) = N(T ) whence T T ∗x = 0. The equality 0 =

‖〈T T ∗x, x〉‖A = ‖〈T ∗x, T ∗x〉‖A = ‖T ∗x‖
2
X

implies that x ∈ N(T ∗). Finally X =

N((T S)∗)⊕R(T S) ⊆ N(T ∗)⊕R(T ) ⊆ X . The proof of X = N(T S)⊕R((T S)∗) ⊆

N(S) ⊕ R(S∗) ⊆ X is similar to the argument of above. �

The following lemma gives a necessary and sufficient condition for operators
that satisfy statement (i) of Lemma 2.1. The proof of this lemma is based on the
polar decomposition property for operators acting between Hilbert C∗-modules.

Lemma 2.1. Let T = U |T | and S = V |S| be the polar decompositions of T, S ∈
B(X ), respectively. Then the following assertions are equivalent:

(i) [T, S] = 0 and [T, S∗] = 0.

(ii) The following equations are satisfied:

[S, U ] = 0, [S∗, U ] = 0, [U, |S|] = 0,

[T, V ] = 0, [T ∗, V ] = 0, [V, |T |] = 0,
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[U, V ] = 0, [U∗, V ] = 0, [|T |, |S|] = 0.

Proof. (i) ⇒ (ii) Assume that (i) holds. Hence T S∗S = S∗T S = S∗ST and
so T |S| = |S|T . Similarly to |T |S = S|T |.

For the proof of [U, |S|] = 0, we first prove that [U, S] = 0 and [U, S∗] = 0.

Consider x ∈ X = N(T ) ⊕ R(|T |), such that x = x1 + |T |x2, where x1 ∈ N(T ) and
x2 ∈ D(|T |). Since x1 ∈ N(T ) = N(|T |), then S|T |x1 = 0. The comutativity S

and |T | implies that |T |Sx1 = 0, hence Sx1 ∈ N(|T |) = N(U), therefore USx1 = 0.

(US − SU)(x1 + |T |x2) = USx1 − SUx1 + US|T |x2 − SU |T |x2

= U |T |Sx2 − ST x2 = T Sx2 − ST x2 = 0.

Using the argeument above together with comutativity |T | and S∗, deduce that
US∗x1 = 0. Then we have

(US∗ − S∗U)(x1 + |T |x2) = US∗x1 − S∗Ux1 + US∗|T |x2 − S∗U |T |x2

= U |T |S∗x2 − S∗T x2 = T S∗x2 − S∗T x2 = 0.

To demonstrate [V, |T |], it is sufficient to show that [V, T ] = 0 and [V, T ∗] = 0. We

consider z ∈ X = N(S) ⊕ R(|S|), such that z = z1 + |S|z2, where z1 ∈ N(S) and
z2 ∈ D(|S|), then T |S|z1 = |S|T z1 = 0, whence T z1 ∈ N(|S|) = N(V ). This means
that V T z1 = 0, hence

(T V − V T )(z1 + |S|z2) = T V z1 − V T z1 + T V |S|z2 − V T |S|z2

= T Sz2 − V |S|T z2 = T Sz2 − ST z2 = 0.

Also, we have (T ∗V − V T ∗)(z1 + |S|z2) = 0, consequently [V, |T |] = 0.

We show that UV z = V Uz for any z ∈ X = N(S)⊕R(|S|). To see this, suppose
z = z1 + |S|z2, where z1 ∈ N(S) and z2 ∈ D(|S|). The equality N(S) = N(|S|)
yields that |S|z1 = 0, hence U |S|z1 = |S|Uz1 = 0. Therefore Uz1 ∈ N(|S|) =
N(V ), i.e., V Uz1 = 0. In addition V U |S|z2 = V |S|Uz2 = SUz2 = USz2 =
UV |S|z2. Consequently

(UV − V U)(z1 + |S|z2) = UV z1 − V Uz1 + UV |S|z2 − V U |S|z2

= UV |S|z2 − UV |S|z2 = 0.

Finally, assume that t ∈ X = N(T ∗) ⊕ R(|T ∗|), such that t = t1 + |T ∗|t2, where
t1 ∈ N(T ∗) = N(|T ∗|) and t2 ∈ D(|T ∗|). Hence t1 ∈ N(T ∗) = N(U∗), whence
V U∗t1 = 0.

On the other hand t1 ∈ N(T ∗) = N(|T ∗|). Since V commutes with |T ∗|, we
get V |T ∗|t1 = |T ∗|V t1 = 0, then V t1 ∈ N(|T ∗|) = N(U∗), that is U∗V t1 = 0.
Therefore,

(U∗V − V U∗)(t1 + |T ∗|t2) = U∗V t1 − V U∗t1 + U∗V |T ∗|t2 − V U∗|T ∗|t2

= U∗|T ∗|V t2 − V |T ∗|t2 = T ∗V t2 − V T ∗t2 = 0.

Hence we obtain [U∗, V ] = 0.
(ii) ⇒ (i) T S = U |T |V |S| = UV |T ||S| = V U |S||T | = V |S|U |T | = ST . �
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The following theorem presents the polar decomposition of the product of op-
erators.

Theorem 2.2. Let T = U |T | and S = V |S| be the polar decompositions of

T, S ∈ B(X ), respectively. If [T, S] = 0, [T, S∗] = 0 and N(T ) = N(S∗), then

T S = UV |T S| is the polar decomposition of T S that is UV is a partial isometry

with N(UV ) = N(|T ||S|) and |T ||S| = |T S|.

Proof. According to Theorem 2.1 the operator T S has a polar decomposition,
we are going to prove that T S = UV |T S|. Frist, we show that |T S| = |T ||S|,

|T S|2 = S∗T ∗T S = T ∗S∗T S = T ∗T S∗S = |T |2|S|2 = (|T ||S|)2.

The commutativity V with |T | implies that UV |T S| = UV |T ||S| = U |T |V |S| =
T S. Let x ∈ N(UV ), then V x ∈ N(U) = N(T ), hence T V x = V T x = 0. It follows
that T x ∈ N(V ) = N(S), therefore ST x = T Sx = 0. That is N(UV ) ⊆ N(T S).
Also, N(T S) ⊆ N(UV ) can be shown by the same way.

Finally, UV is partial isometry. Indeed N(UV )⊥ = N(|T S|)⊥ = R(|T S|),
then for any x ∈ N(UV )⊥ there exists a sequence (yn) in X such that x =
limn→∞ |T S|(yn).

‖UV x‖X = ‖UV lim
n→∞

|T S|(yn)‖X = ‖ lim
n→∞

UV |T ||S|(yn)‖X

= ‖ lim
n→∞

U |T |V |S|(yn)‖X = lim
n→∞

‖T S(yn)‖X

= lim
n→∞

‖|T S|(yn)‖X = ‖ lim
n→∞

|T S|(yn)‖X = ‖x‖X . �

Lemma 2.2. Let T = U |T | be the polar decomposition of T ∈ B(X ). Then for

any q > 0,

(i) |T |q = U∗U |T |q is the polar decomposition of |T |q,

(ii) |T ∗|q = UU∗|T ∗|q is the polar decomposition of |T ∗|q.

Proof. Since U∗U is the inital projection on R(|T |) and N(|T |q) = N(|T |) =

N(T ) for all q > 0, it follows that R(|T |q) = N(|T |q)⊥ = N(|T |)⊥ = R(|T |), hence
U∗U |T |q = |T |q. �

3. Polar decomposition of the Aluthge transformation

In this section we present a relationship between the polar decomposition of
a binormal operator and its Aluthge transform. An operator T ∈ B(X ) is said
to be binormal if [|T |, |T ∗|] = 0, where [A, B] = AB − BA. Binormality of
operators was defined by Campbell. He obtained some properties of these op-
erators in [2]. As a consequence, if T is a binormal operator, then we have
|T |1/2|T ∗|1/2 = ||T |1/2|T ∗|1/2|.

Lemma 3.1. Let T = U |T | be the polar decomposition of a binormal operator

T ∈ B(X ) with N(T ) = N(T ∗). Then |T |1/2|T ∗|1/2 = U∗UUU∗||T |1/2|T ∗|1/2| is

the polar decomposition of |T |1/2|T ∗|1/2.

Proof. Since N(|T |1/2) = N(|T |) = N(T ) = N(T ∗) = N(|T ∗|1/2), it follows
from Theorem 2.2 and Lemma 2.2. �
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Remark 3.1. Let T be an adjointable operator in B(X ) with the polar decom-
position T = U |T |, then [3, Lemma 6.1] shows that |T ∗|s = U |T |sU∗ holds for every
positive number s. By multiplying U∗ of the left-hand side of the above equality
and projectivity U∗U onto R(|T |), we obtain U∗|T ∗|s = |T |sU∗. Moreover, by
multiplying both sides of the same equality by U and U∗, we have |T |s = U∗|T ∗|sU

and similarly U |T |s = |T ∗|sU .
Let A > 0, then for any α > 0 and β > 0 obviously we have

(U |T |βA|T |βU∗)2 = U(|T |βA|T |β)2U∗.

By induction, the equality (U |T |βA|T |βU∗)
n

m = U(|T |βA|T |β)
n

m U∗ holds for all
natural numbers n, m.

The continuity of an operator yields that (U |T |βA|T |βU∗)α =U(|T |βA|T |β)αU∗

as n
m → α.

In the following theorem we present some conditions under which the Aluthge
transformation possesses the polar decomposition.

Theorem 3.1. Let T = U |T | be the polar decomposition of a binormal operator

T ∈ B(X ) with N(T ) = N(T ∗). Then T̃ = U∗UU |T̃ | is the polar decomposition

of T̃ .

Proof. For this purpose, observe that

T̃ = |T |1/2U |T |1/2 = |T |1/2|T ∗|1/2U = U∗UUU∗||T |1/2|T ∗|1/2|U

= U∗UUU∗(|T ∗|1/2|T ||T ∗|1/2)1/2U = U∗UU(U∗|T ∗|1/2|T ||T ∗|1/2U)1/2

= U∗UU(|T |1/2U∗|T |1/2|T |1/2U |T |1/2)1/2 = U∗UU |T̃ |.

x ∈ N(U∗UU) ⇔ U∗UUx = 0 ⇔ U∗UUU∗Ux = 0

⇔ Ux ∈ N(U∗UUU∗) ⇔ Ux ∈ N(|T |1/2|T ∗|1/2)

⇔ |T |1/2|T ∗|1/2Ux = 0 ⇔ |T |1/2U |T |1/2x = 0 ⇔ x ∈ N(T̃ ).

Applying the same procedure of Theorem 2.2 we conclude that U∗UU is the partial
isometry of T̃ . �

As an extension of T̃ = |T |1/2U |T |1/2, we consider T̃ = |T |qU |T |q for a positive
number q which is not necessarily 1

2 and call it the generalized Aluthge transfor-
mation. In the following theorem we obtain the polar decomposition of it.

Theorem 3.2. Let T = U |T | be the polar decomposition of a binormal operator

T ∈ B(X ) with N(T ) = N(T ∗). Then the generalized Aluthge transformation

T̃ = |T |qU |T |q accepts the polar decomposition.

Proof. Note that [|T |, |T ∗|] = 0 implies that [|T |q, |T ∗|q] = 0, for all q > 0.
By induction, the equality [|T |

n

m , |T ∗|
n

m ] = 0 holds for all positive integers n, m.
Hence [|T |q, |T ∗|q] = 0, as n

m → q. The proof follows from Theorem 3.1 and the
fact that N(|T |) = N(|T |q), for all q > 0. �
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The binormality of a bounded operator on Hilbert spaces does not imply the
binormality of the its Aluthge transform. See a counter example in the paper of
Ito, Yamazaki, and Yanagida [7]. As an application of the previous theorem we
state an interesting result as follows:

Corollary 3.1. Let T = U |T | be the polar decomposition of an operator

T ∈ B(X ). If T and T̃ are binormal operators with N(T ) = N(T ∗), then T̃ and

( ˜̃T ) = |T̃ |1/2Ũ |T̃ |1/2 accept the polar decompositions.

Proof. We first prove that N(T̃ ) = N((T̃ )∗). Since N(T ) = N(|T |), the
definition of T̃ implies that N(T ) ⊆ N(T̃ ). The results of Remark 3.1 yield that

‖T̃ x‖2
X = ‖〈|T |1/2U |T |1/2x, |T |1/2U |T |1/2x〉‖A

= ‖〈x, |T |1/2U∗|T |U |T |1/2x〉‖A = ‖〈x, U∗|T ∗|1/2|T ||T ∗|1/2Ux〉‖A

= ‖〈x, U∗||T |1/2|T ∗|1/2|2Ux〉‖A = ‖〈x, U∗(|T |1/2|T ∗|1/2)2Ux〉‖A

= ‖〈x, U∗(|T ||T ∗|)Ux〉‖A = ‖〈x, U∗|T ∗||T |Ux〉‖A.

Now let x ∈ N(T̃ ). By the above equality U∗|T ∗||T |Ux = 0, so UU∗|T ∗||T |Ux = 0.

The projectivity of UU∗ on R(|T ∗|) and binormality of T imply that |T ∗||T |Ux =
|T ||T ∗|Ux = 0, that is |T ∗|Ux ∈ N(|T |). Since N(|T |) = N(T ) ⊆ N(T ∗) =
N(|T ∗|), hence |T ∗|2Ux = 0, so Ux ∈ N(|T ∗|2) = N(|T ∗|) = N(U∗), whence
U∗Ux = |U |2x = 0. Therefore N(T̃ ) = N(T ).

Obviously N(T ∗) ⊆ N((T̃ )∗), by N(T ) = N(T ∗).

‖(T̃ )∗x‖
2
X

= ‖〈|T |1/2U∗|T |1/2x, |T |1/2U∗|T |1/2x〉‖A

= ‖〈x, |T |1/2U |T |U∗|T |1/2x〉‖A = ‖〈x, |T |1/2|T ∗||T |1/2x〉‖A

= ‖〈x, ||T ∗|1/2|T |1/2|2x〉‖A = ‖〈x, (|T ∗|1/2|T |1/2)2x〉‖A

= ‖〈x, |T ||T ∗|x〉‖A.

Suppose that x ∈ N((T̃ )∗). By the assumption and above equality, we reach that
|T ∗|x ∈ N(|T |) = N(T ) ⊆ N(T ∗) = N(|T ∗|), hence x ∈ N(|T ∗|2) = N(|T ∗|) =
N(T ∗), therefore N(T ∗) = N((T̃ )∗). Consequently N((T̃ )∗) = N(T̃ ). This means
that T̃ satisfies all assumptions of Theorem 3.1, hence the second Aluthge trans-

formation ( ˜̃T ) possesses the polar decomposition. �
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