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EXPONENTIAL SPLINE APPROACH FOR THE

SOLUTION OF NONLINEAR FOURTH-ORDER

BOUNDARY VALUE PROBLEMS

Pooja Khandelwal and Arshad Khan

Abstract. Exponential sextic spline function is used for the numerical solu-
tion of nonlinear fourth-order two-point boundary value problems. Spline re-
lations are derived and direct methods of order two, four and six are obtained.
Convergence analysis of the methods is discussed. The proposed method is
tested on linear and nonlinear problems. Comparisons are made to confirm
the reliability and accuracy of the proposed technique.

1. Introduction

We consider the nonlinear fourth-order two-point boundary value problems of
the form

(1.1)
u(4) = g(x, u), x ∈ [a, b],

u(a) = A0, u(b) = B0, u′(a) = A1, u′(b) = B1,

where g(x, u) is continuous on the interval x ∈ [a, b] and Ai, Bi (i = 0, 1) are finite
real arbitrary constants.

Fourth-order nonlinear boundary value problem (1.1) arise in the mathematical
modelling of viscoelastic and inelastic flows, deformation of beams and plate de-
flection theory. For a brief introduction on the subject by using spline functions for
the treatment of ordinary differential equations, the reader is referred to Ahlberg
et al. [3]. Theorems which list the conditions for the existence and uniqueness
of solution of such problems are thoroughly discussed in a book by Agarwal [1],
though no numerical methods are contained therein.

Agarwal and Akrivis [2] and Chawla and Katti [5] used a finite difference
method for solving fourth-order nonlinear two-point boundary value problems pre-
scribed with boundary conditions at the second derivative, such as

u(a) = A0, u(b) = B0, u′′(a) = A2, u′′(b) = B2.
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Several authors [7, 14–19] have discussed the linear fourth-order boundary
value problem:

u(4) + f(x)u = g(x),

u(a) = A0, u(b) = B0, u′(a) = A1, u′(b) = B1,

where f(x) and g(x) are continuous functions on the interval [a, b].
Khan et al. [9] used parametric quintic spline, Al-said and Noor [4] used uni-

form quartic polynomial splines and Noor and Tirmizi [12] developed some finite
difference methods based on Pade’s approximants for the solution of a system of
fourth-order boundary value problems associated with obstacle, unilateral and con-
tact problems. Recently, Khan and Khandelwal [10] derived a non-polynomial sex-
tic spline function for the solution of linear fourth-order two-point boundary value
problems with boundary conditions involving second derivatives and Zahra [21]
solved linear and nonlinear fourth-order boundary value problems based on expo-
nential quintic spline function.

The fourth-order nonlinear boundary value problems (1.1) were discussed by
many authors using different techniques such as Sinc Galerkin method by Gamel et
al. [6], B-spline method by Viswanadhan et al. [8], variational iteration technique by
Noor and Mohyud-Din [13] and modified decomposition method by Wazwaz [20].

According to [11], the space Tn = span{1, x, x2, x3, x4, ekx, e−kx} generates
an extended complete Chebyshev space on [a, b]. Thus it is possible to construct
a spline approximation that has a polynomial and an exponential part. In this
paper, we construct a new spline method that is based on an exponential spline

function of the form aekx + be−kx + pn−2(x), with pn−2(x) =
∑n−2

i=0 mix
i is an

ordinary polynomial of degree n − 2 and an exponential part to develop a family of
numerical methods of order two, four and six for obtaining smooth approximations
for the solution of problem (1.1). This approach has its advantage that it does not
only provide continuous approximations to u(x), but also for u′(x), u′′(x) and higher
derivatives at every point of the range of integration. The exponential sextic spline
function proposed in this paper has the form T6 = span{1, x, x2, x3, x4, ekx, e−kx},
where k is a free parameter which can be real or pure imaginary. It will be used to
raise the accuracy of the method. Thus in each subinterval xi 6 x 6 xi+1, we have

span{1, x, x2, x3, x4, ekx, e−kx} or span{1, x, x2, x3, x4, cos kx, sin kx}

or span{1, x, x2, x3, x4, cosh kx, sinh kx}, or span{1, x, x2, x3, x4, x5, x6},

when k → 0.
The paper is organized into six sections. In Section 2, we present our method

for the solution of nonlinear fourth-order two-point boundary value problems. In
Section 3, methods of different orders are obtained. In Section 4, the exponential
sextic spline solution approximating the analytic solution of boundary value prob-
lem is determined. Convergence analysis is briefly discussed in Section 5. In Section
6, several linear and nonlinear problems are considered to illustrate the accuracy
and performance of the proposed method and the results are presented along with
their comparison.
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2. Exponential sextic spline

To develop the spline approximation for the fourth-order nonlinear boundary
value problem (1.1), the interval [a, b] is divided into n equal subintervals using the

grid xi = a + ih, i = 0, 1, . . . , n, where h = (b−a)
n

. The method is developed by
using the exponential sextic spline of the form:

Ei(x) = aie
k(x−xi) + bie

−k(x−xi) + ci(x − xi)
4 + di(x − xi)

3(2.1)

+ ei(x − xi)
2 + fi(x − xi) + gi, i = 0, 1, . . . , n,

where ai, bi, ci, di, ei, fi, gi are real finite constants and k is a free parameter which
will be used to raise the accuracy of the method. If k → 0, then Ei(x) reduces to
sextic polynomial spline.

Let u(x) be the exact solution of system (1.1) and ui be an approximation
to u(xi), obtained by the segment Ei(x) of the mixed splines function passing
through the points (xi, ui) and (xi+1, ui+1). To obtain the necessary conditions for
the coefficients introduced in (2.1), we do not only require that Ei(x) satisfies (1.1)
at xi, xi+1 and that the boundary conditions are fulfilled, but also the continuity
of the first, second, third, fourth and fifth derivatives at the common nodes (xi, ui).
To determine the coefficients of equation (2.1) in terms of ui, ui+1, Mi, Mi+1, Fi

and Fi+1, we first define

Ei(xi) = ui, Ei(xi+1) = ui+1,

E′

i(xi) = mi, E′′

i (xi) = Mi, E′′

i (xi+1) = Mi+1,(2.2)

E
(4)
i (xi) = Fi, E

(4)
i (xi+1) = Fi+1.

We obtain via a long but straightforward calculation

ai =
a{−12(ui+1 − ui)+h2(4Mi+2Mi+1)+12mih}+h4(b)Fi+1 +h4(−b − a/2)Fi

α
,

bi =
c{12(ui+1 − ui) − h2(4Mi + 2Mi+1) − 12mih} + h4(d)Fi+1 + h4(c/2 − d)Fi

α
,

ci =
Fi − aik

4 − bik
4

24
,

di =
u(ui − ui+1) + h(u)mi + h2(vMi + wMi+1) + h4(mFi + nFi+1)

h3α
,

ei =
Mi − aik

2 − bik
2

2
, fi = mi − aik + bik, gi = ui − ai − bi, θ = kh

and i = 0(1)n − 1 where

a = θ4e−θ − θ4, b =
θ4

2
− 4θ2 − 2θ2e−θ + 12θ − 12e−θ − 12,

c = θ4eθ − θ4, d =
−θ4

2
+ 4θ2 + 2θ2eθ + 12θ − 12eθ + 12,

u = −θ8(eθ − e−θ),
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v =
−5θ8

12
(eθ − e−θ) + θ6(eθ − e−θ) − 2θ5(eθ + e−θ − 2),

w =
−θ8

12
(eθ − e−θ) − θ6(eθ − e−θ) + 2θ5(eθ + e−θ − 2),

m =
5θ6

12
(eθ − e−θ) − θ5(eθ + e−θ) + 2θ3(eθ + e−θ − 2),

n =
θ6

12
(eθ − e−θ) + 2θ5 − 2θ3(eθ + e−θ − 2),

α =
θ8

2
(eθ − e−θ) − 6θ6(eθ − e−θ) + 12θ5(eθ + e−θ − 2).

Using the continuity conditions of the first, third and fifth derivatives at the

point (xi, ui), that is E
(m)
i−1 (xi) = E

(m)
i (xi), m = 1, 3 and 5 we derive the relations

for i = 1, 2, . . . , n − 1

mi + mi+1 =
2(ui − ui+1)

h
+

h(Mi − Mi−1)

6
−

h3p(Fi − Fi−1)

α
,(2.3)

mi + mi+1 =
(ui+1 − ui−1)

h
(2.4)

−
h[(β/6 + α)Mi+1 + (β/2 − 2α)Mi + (β/3 + α)Mi−1]

β

+
h3(p1Fi+1 + q1Fi + r1Fi−1)

β
,

mi + mi+1 =
(ui+1 − ui−1)

h
−

h(Mi+1 + 3Mi + 2Mi−1)

6
(2.5)

+
h3(p2Fi+1 + q2Fi + r2Fi−1)

γ
,

where

p =
θ6

12
(eθ − e−θ) −

θ5

2
(eθ + e−θ + 2) + 8θ3(eθ + e−θ + 1)

− 24θ2(eθ − e−θ) + 24θ(eθ + e−θ − 2),

p1 = −θ7 −
θ6

2
(eθ − e−θ) + 2θ5(eθ + e−θ − 2),

q1 = θ7(eθ + e−θ) − 4θ6(eθ − e−θ) − 24θ5 + 24θ4(eθ − e−θ) − 24θ3(eθ + e−θ − 2),

r1 = −θ7 −
3θ6

2
(eθ − e−θ) + 10θ5(eθ − e−θ) + 4θ5

− 24θ4(eθ − e−θ) + 24θ3(eθ + e−θ − 2),

p2 = −θ4 + 2θ2(eθ + e−θ) + 8θ2 − 12(eθ + e−θ − 2),

q2 = θ4(eθ + e−θ) − 6θ2(eθ + e−θ + 2) + 12θ(eθ − e−θ),

r2 = −θ4 + 4θ2(eθ + e−θ + 1) − 12θ(eθ − e−θ) + 12(eθ + e−θ − 2),

β = −6θ8(eθ − e−θ) + 12θ7(eθ + e−θ − 2), γ = 12θ4(eθ + e−θ − 2).
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From equations (2.3), (2.4) and (2.5) we obtain on equating the right-hand sides of
the equality sign

ui+1 − 2ui + ui−1 =
h2[(β + 6α)Mi+1 + (4β − 12α)Mi + (β + 6α)Mi−1]

6β
(2.6)

−
h4[(p1α)Fi+1 + (q1α + pβ)Fi + (r1α − pβ)Fi−1]

βα
,

ui+1 − 2ui + ui−1 =
h2[Mi+1 + 4Mi + Mi−1]

6
(2.7)

−
h4[(p2α)Fi+1 + (q2α + pγ)Fi + (r2α − pγ)Fi−1]

αγ
.

From the above equations we deduce

h2Mi = ui+1 − 2ui + ui−1(2.8)

−
h4[(p1γ − p2(β + 6α))Fi+1 +(r1γ − r2(β + 6α) + 6pγ)Fi−1]

6αγ

−
h4[(q1γ − q2(β + 6α) − 6pγ)]Fi

6αγ
.

Substituting for Mj(j = i, i ± 1) from equation (2.8) into (2.7), we arrive at the
following useful relation:

ui+2−4ui+1+6ui−4ui−1+ui−2 = h4(λFi+2 +µFi+1+νFi+µFi−1+λFi−2);(2.9)

i = 2, 3, . . . , n − 2,

where λ = A
Z

, µ = B
Z

, ν = C
Z

and A, B, C and Z are given by

A = − 3θ12(eθ − e−θ) + 144θ9 − 72θ9(eθ + e−θ − 2) + 360θ8(eθ − e−θ)

+ 36θ8(eθ2

− e−θ2

) − 864θ7(eθ + e−θ) + 864θ6(eθ − e−θ)

− 432θ6(eθ2

− e−θ2

) + 5185θ5 − 3456θ5(eθ + e−θ) + 864θ5(eθ2

+ e−θ2

),

B = − 30θ12(eθ − e−θ) + 3θ12(eθ2

+ e−θ2

) + 432θ10(eθ − e−θ) + 1584θ9

− 864θ9(eθ + e−θ) + 72θ9(eθ2

+ e−θ2

) − 576θ8(eθ − e−θ) − 576θ8(eθ2

− e−θ2

)

− 1728θ7 + 864θ7(eθ2

+ e−θ2

) − 3456θ6(eθ − e−θ) + 1728θ6(eθ2

− e−θ2

)

− 20736θ5 + 13824θ5(eθ + e−θ) − 3456(eθ2

+ e−θ2

),

C = − 6θ12(eθ − e−θ) + 30θ12(eθ2

− e−θ2

) − 432θ10(eθ2

− e−θ2

) + 1728θ9

− 1584θ9(eθ + e−θ) + 720θ9(eθ2

+ e−θ2

) + 432θ8(eθ − e−θ)

+ 1080θ8(eθ2

− e−θ2

) + 1728θ7(eθ + e−θ) − 1728θ7(eθ2

+ e−θ2

)

+ 5184θ6(eθ − e−θ) − 2592θ6(eθ2

− e−θ2

) + 31104θ5 − 20736θ5(eθ + e−θ)

+ 5184θ5(eθ2

+ e−θ2

),

Z = − 72θ12(eθ − e−θ) + 36θ12(eθ2

− e−θ2

) + 864θ10(eθ − e−θ)
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− 432θ10(eθ2

− e−θ2

) + 5184θ9 − 3456θ9(eθ + e−θ) + 864θ9(eθ2

+ e−θ2

).

If θ → 0, then (λ, µ, ν) → 1
360 (1, 56, 246), the spline defined by (2.9) reduces to a

sextic spline and the above spline relations reduce to the corresponding ordinary
sextic-spline relations [3].

Relation (2.9) gives (n − 3) linear algebraic equations in (n − 1) unknowns ui,
i = 1, 2, . . . , n − 1. We require two more equations, one at each end of the range of
integration. These two equations are given by

(2.10)

3
∑

k=0

bkuk + chu′

0 + h4
5

∑

k=0

dku
(4)
k + t1 = 0, i = 1,

n
∑

k=n−3

bkuk − chu′

n + h4
n

∑

k=n−5

dku
(4)
k + tn−1 = 0, i = n − 1,

where bk, c and dk are arbitrary parameters to be determined.
To obtain the local truncation error ti; i = 2, 3, . . . , n − 2, associated with the

scheme (2.9), we first rewrite it in the form

ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

= h4(λu
(4)
i+2 + µu

(4)
i+1 + νu

(4)
i + µu

(4)
i−1 + λu

(4)
i−2) + ti;

i = 2, 3, . . . , n − 2.

Using Taylor’s series expansion, the terms u
(4)
i+2, u

(4)
i+1, etc. are expanded around

the point xi and the expression for ti, i = 2, 3, . . . , n − 2 is obtained:

ti = (1 − 2λ − 2µ − ν)h4u
(4)
i +

(1

6
− 4λ − µ

)

h6u
(6)
i

+
( 1

80
−

16

12
λ −

1

12
µ

)

h8u
(8)
i

+
( 17

30240
−

64

360
λ −

1

360
µ

)

h10u
(10)
i + O(h12).

Thus for different choices of parameters λ, µ, ν in scheme (2.9), we can obtain the
class of methods.

3. Class of methods

3.1. Second-order methods. In order to obtain the second-order methods
we find that

(b0, b1, b2, b3, d0, d1, d2, d3, d4, d5) =
(

−
11

2
, 9, −

9

2
, 1,

3

20
, −

9

10
, 0, 0, 0, 0

)

, c = −3,

(bn−3, bn−2, bn−1, bn, dn−5, dn−4, dn−3, dn−2, dn−1, dn)

=
(

1, −
9

2
, 9, −

11

2
, 0, 0, 0, 0, −

9

10
,

3

20

)

,

and the local truncation error is

(3.1) ti =
7

40
h6u

(6)
i + O(h7), i = 1, n − 1.
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(i) If we choose (λ, µ, ν) = 1
120 (1, 26, 66), we obtain the second order method

with truncation error

(3.2) ti = −
1

12
h6u

(6)
i + O(h8), i = 2, 3, . . . , n − 2.

(ii) If we choose (λ, µ, ν) = (0, 0, 1), we obtain the second-order method with
truncation error

(3.3) ti =
1

6
h6u

(6)
i + O(h8), i = 2, 3, . . . , n − 2.

3.2. Fourth-order methods. In order to obtain the fourth-order methods
we find that

(b0, b1, b2, b3, d0, d1, d2, d3, d4, d5) =
(

−
11

2
, 9, −

9

2
, 1, −

1

35
, −

151

280
, −

13

70
,

1

280
, 0, 0

)

,

c = −3,

(bn−3, bn−2, bn−1, bn, dn−5, dn−4, dn−3, dn−2, dn−1, dn)

=
(

1, −
9

2
, 9, −

11

2
, 0, 0,

1

280
, −

13

70
, −

151

280
, −

1

35

)

,

and the local truncation error is

(3.4) ti =
1

6720
h8u

(8)
i + O(h9), i = 1, n − 1.

(i) If we choose (λ, µ, ν) = 1
6 (0, 1, 4), we obtain the fourth-order method with

truncation error

(3.5) ti = −
1

720
h8u

(8)
i + O(h10), i = 2, 3, · · · , n − 2.

(ii) If we choose (λ, µ, ν) = 1
360 (1, 56, 246), we obtain the fourth-order method

with truncation error

(3.6) ti = −
1

240
h8u

(8)
i + O(h10), i = 2, 3, · · · , n − 2.

3.3. Sixth-order method. In order to obtain the sixth-order method we find

(b0,b1, b2, b3, d0, d1, d2, d3, d4, d5)

=
(

−
11

2
, 9, −

9

2
, 1, −

71

2546
, −

19

35
, −

599

3360
, −

1

240
,

9

2240
, −

1

1200

)

,

(bn−3, bn−2, bn−1, bn, dn−5, dn−4, dn−3, dn−2, dn−1, dn)

=
(

1, −
9

2
, 9, −

11

2
, −

1

1200
,

9

2240
, −

1

240
, −

599

3360
, −

19

35
, −

71

2546

)

, c = −3

and the local truncation error is

(3.7) ti = −
1

960
h10u

(10)
i + O(h11), i = 1, n − 1.

If we choose (λ, µ, ν) = 1
720 (−1, 124, 474), we obtain the sixth-order method

with truncation error

(3.8) ti =
1

3024
h10u

(10)
i + O(h12), i = 2, 3, . . . , n − 2.
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Remarks 3.1. (1) When (λ, µ, ν) → 1
120 (1, 26, 66), then our method (2.9) re-

duces to Usmani’s second-order method [19], Siddiqi and Akram [16], Rashi-
dinia and Golbabaee [15] based on quintic polynomial spline.

(2) When (λ, µ, ν) → 1
48 (1, 12, 22), then our method (2.9) reduces to Al-said and

Noor second-order method [4] based on quartic polynomial spline.
(3) When (λ, µ, ν) → 1

81 (1, 14, 51), then our method (2.9) reduces to Noor and
Tirmizi second-order method [12].

(4) When (λ, µ, ν) → 1
360 (1, 56, 246), then our method (2.9) reduces to Usmani’s

second order method [19] based on sextic polynomial spline.
(5) When (λ, µ, ν) → 1

6 (0, 1, 4), then our method (2.9) reduces to Usmani’s fourth-
order finite difference method [18].

(6) When (λ, µ, ν) → 1
720 (−1, 124, 474), then our method (2.9) reduces to Usmani’s

sixth order finite difference method [18].

4. Exponential spline solution

Let U = u(xi), Ū = (ui), V = (vi), W = (wi), T = (ti), E = (ei) = U − Ū , i =
1, 2, . . . , n−1 be an exact column vectors, where U , Ū , T , E are exact, approximate,
local truncation error and discretization error respectively.

For solving nonlinear fourth-order two-point boundary value problem u(4) =
g(x, u), the family of numerical methods is described by the set of equations given
by (2.9) and (2.10), and the solution vector Ū = [u1, u2, . . . , un−1]T , T denoting
transpose, is obtained by solving a nonlinear algebraic system of order (n−1) which
has the form M0Ū (i+1) − h4Bg(x, Ū (i)) = V , i = 0, 1, 2, 3 . . .

In case of linear fourth-order boundary value problem u(4) + f(x)u = g(x), we
can write the standard matrix equation for the method developed in the form

(4.1) MU = W + T, MŪ = W, ME = T,

where M is a matrix of order (n − 1) with M = (M0 + h4BF ) and M0, B, F =
diag(fi), i = 1, 2, . . . , n − 1 are (n − 1) × (n − 1) matrices.

The five band matrix M0 has the form

M0 = J2 =



































9 − 9
2 1

−4 6 −4 1
1 −4 6 −4 1

. . .

. . .

. . .

1 −4 6 −4 1
1 −4 6 −4

1 − 9
2 9


































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where J = (Jij) is a tridiagonal symmetric matrix given by

J =



































−2 1
1 −2 1

1 −2 1
. . .

. . .

. . .

1 −2 1
1 −2 1

1 −2



































and the matrix B has the form

B =



































−d1 −d2 −d3 −d4 −d5

µ ν µ λ
λ µ ν µ λ

. . .

. . .

. . .

λ µ ν µ λ
λ µ ν µ

−dn−5 −dn−4 −dn−3 −dn−2 −dn−1



































For the (n − 1) column vector V , we have

vi =































−b0A0 − cA1 − h4(d0g0), i = 1,

h4(λg0) − A0, i = 2,

0, 3 6 i 6 n − 3,

h4(λgn) − B0, i = n − 2,

−bnB0 + chB1 − h4(dngn), i = n − 1.

and for the (n − 1) column vector W , we have

wi =















































−b0A0 − cA1 − h4d0(g0 − f0A0)

−h4(d1g1 + d2g2 + d3g3 + d4g4 + d5g5), i = 1,

h4(λ(g0 − f0A0) + µg1 + νg2 + µg3 + λg4) − A0, i = 2,

h4(λgi−2 + µgi−1 + νgi + µgi+1 + λgi+2), 3 6 i 6 n − 3,

h4(λ(gn − fnB0) + λgn−4 + µgn−3 + νgn−2 + µgn−1) − B0, i = n − 2,

−bnB0 + chB1 − h4dn(gn − fnB0)

−h4(dn−5gn−5+dn−4gn−4+dn−3gn−3+dn−2gn−2+dn−1gn−1), i = n − 1.
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5. Convergence analysis

In this section, we discuss the convergence analysis of the method (2.9) along
with (2.10) based on exponential sextic spline. Our main purpose is to derive
bounds on ‖E‖∞. For this, the following lemma is needed [18].

Lemma 5.1. If H is a matrix of order N and ‖H‖ < 1, then there exist (I +
H)−1 and

‖(I + H)−1‖∞ <
1

(1 − ‖H‖)∞

.

We can rewrite error equation (4.1) in the form

E = M−1T = (M0 + h4BF )−1T = (1 + h4M−1
0 BF )−1M−1

0 T.

We get

(5.1) ‖E‖∞ 6
‖M−1

0 ‖∞‖T ‖∞

1 − h4‖M−1
0 ‖∞‖B‖∞‖F‖∞

,

provided that h4‖M−1
0 ‖∞‖B‖∞‖F‖∞ < 1. Now ‖B‖∞ = 1 and ‖F‖∞ 6 ‖f‖ =

maxa6x6b |f(x)|. It was shown by Usmani [18] that

(5.2) ‖M−1
0 ‖∞ =

(b − a)4 + 8h3(b − a)

384h4 = O(h−4).

Now, using equations (3.1)–(3.8), we investigate the convergence analysis of second-
order, fourth-order and sixth-order methods.

Case (i) Second-order method. For (λ, µ, ν) = 1
120 (1, 26, 66), then from equa-

tion (3.1), we have

(5.3) ‖T ‖∞ =
7

40
h6M6, M6 = max

a6x6b
|u(6)(x)|,

then from (5.1)–(5.3), it follows that

(5.4) ‖E‖∞ 6
7ξh2M6

40(1 − ξ|f(x)|)
= K2h2 = O(h2),

where

ξ =
(b − a)4 + 8h3(b − a)

384
and K2 =

7ξM6

40(1 − ξ|f(x)|)
,

which shows that the method developed for the solution of fourth-order boundary
value problem is second-order convergent.

Case (ii) Fourth-order method. For (λ, µ, ν) = 1
6 (0, 1, 4), then from equation

(3.4), we have

(5.5) ‖T ‖∞ =
1

6720
h8M8, M8 = max

a6x6b
|u(8)(x)|,

then from (5.1)–(5.2) and (5.5), it follows that

(5.6) ‖E‖∞ 6
ξh4M8

6720(1 − ξ|f(x)|)
= K4h4 = O(h4),
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where

ξ =
(b − a)4 + 8h3(b − a)

384
and K4 =

ξM8

6720(1 − ξ|f(x)|)
,

which shows that the method developed for the solution of fourth-order boundary
value problem is fourth-order convergent.

Case (iii) Sixth-order method. For (λ, µ, ν) = 1
720 (−1, 124, 474), then from

equation (3.7), we have

(5.7) ‖T ‖∞ =
1

960
h10M10, M10 = max

a6x6b
|u(10)(x)|,

then from (5.1)–(5.2) and (5.7), it follows that

(5.8) ‖E‖∞ 6
ξh6M10

960(1 − ξ|f(x)|)
= K6h6 = O(h6),

where

ξ =
(b − a)4 + 8h3(b − a)

384
and K6 =

ξM10

960(1 − ξ|f(x)|)
,

which shows that the method developed for the solution of fourth-order boundary
value problem is sixth-order convergent.

We summarize the above results in the following theorem:

Theorem 5.1. Let u(x) be the exact solution of fourth-order boundary value

problem and let ui, i = 1, 2, . . . , n be the numerical solution obtained by the differ-

ence scheme (4.1). Further, if ei = u(xi) − ui, then

(i) ‖E‖ = O(h2), is a second-order method which is given by (5.4).
(ii) ‖E‖ = O(h4), is a fourth-order method which is given by (5.6).
(iii) ‖E‖ = O(h6), is a sixth-order method which is given by (5.8).

neglecting all errors due to rounding off.

6. Numerical results and discussion

The numerical methods outlined in the previous sections are tested on the
following linear and nonlinear problems.

Nonlinear problems. Example 6.1. Consider the boundary value problem,
which is discussed in [2,5],

u(4) − 6 exp(−4u(x)) = −12(1 + x)−4, x ∈ [0, 1],

u(0) = 0, u(1) = log 2, u′(0) = 1, u′(1) = 0.5.

The analytical solution of the above problem is u(x) = log(1 + x).

Example 6.2. Consider the boundary value problem:

u(4) = sin x + sin2 x − (u′′)2, x ∈ [0, 1],

u(0) = 0, u(1) = sin(1), u′(0) = 1, u′(1) = cos(1).

The analytical solution of the above problem is u(x) = sin(x).
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Table 1. Observed maximum absolute errors, Example 6.1

Methods ↓ h = 1

8
h = 1

16
h = 1

32
h = 1

64

Second order method
(λ, µ, ν) = 1

120
(1, 26, 66) 3.09 × 10−5 1.17 × 10−5 3.10 × 10−6 7.83 × 10−7

(λ, µ, ν) = (0, 0, 1) 1.01 × 10−4 2.51 × 10−5 6.25 × 10−6 1.57 × 10−6

Chawla and Katti [5] 5.3 × 10−4 1.3 × 10−4 3.4 × 10−5 −

Fourth order method
(λ, µ, ν) = 1

6
(0, 1, 4) 2.48 × 10−7 1.84 × 10−8 1.20 × 10−9 7.54 × 10−11

(λ, µ, ν) = 1
360

(1, 56, 246) 7.79 × 10−7 5.66 × 10−8 3.64 × 10−9 2.28 × 10−10

Chawla and Katti [5] 2.8 × 10−6 1.4 × 10−7 7.6 × 10−9 −

Sixth order method
(λ, µ, ν) = 1

720
(−1, 124, 474) 5.10 × 10−8 7.49 × 10−9 1.00 × 10−9 1.26 × 10−10

Chawla and Katti [5] 1.7 × 10−7 4.1 × 10−9 6.3 × 10−11 −

Agarwal and Akrivis [2] 1.4 × 10−5 8.3 × 10−7 5.4 × 10−8 −

Table 2. Observed maximum absolute errors, Example 6.2

Methods ↓ h = 1

8
h = 1

16
h = 1

32
h = 1

64

Second order method

(λ, µ, ν) = 1
120

(1, 26, 66) 1.32 × 10−6 3.91 × 10−7 9.98 × 10−8 2.50 × 10−8

(λ, µ, ν) = (0, 0, 1) 3.25 × 10−6 8.00 × 10−7 2.00 × 10−7 5.01 × 10−8

Fourth order method

(λ, µ, ν) = 1
6

(0, 1, 4) 3.95 × 10−10 2.58 × 10−11 1.71 × 10−12 1.20 × 10−12

(λ, µ, ν) = 1
360

(1, 56, 246) 1.19 × 10−9 7.75 × 10−11 4.96 × 10−12 1.39 × 10−12

Sixth order method

(λ, µ, ν) = 1
720

(−1, 124, 474) 1.20 × 10−12 2.15 × 10−13 8.13 × 10−14 1.10 × 10−12

Table 3. Observed maximum absolute errors, Example 6.3

Methods ↓ h = 1

8
h = 1

16
h = 1

32
h = 1

64

Second order method
(λ, µ, ν) = 1

120
(1, 26, 66) 1.11 × 10−6 9.99 × 10−8 1.67 × 10−8 4.44 × 10−9

(λ, µ, ν) = (0, 0, 1) 2.28 × 10−6 3.77 × 10−7 7.09 × 10−8 1.49 × 10−8

Fourth order method
(λ, µ, ν) = 1

6
(0, 1, 4) 3.08 × 10−7 3.88 × 10−8 4.86 × 10−9 6.06 × 10−10

(λ, µ, ν) = 1
360

(1, 56, 246) 4.21 × 10−7 5.59 × 10−8 7.24 × 10−9 9.17 × 10−10

Sixth order method
(λ, µ, ν) = 1

720
(−1, 124, 474)) 2.44 × 10−7 2.93 × 10−8 3.55 × 10−9 4.36 × 10−10

Example 6.3. Consider the boundary value problem

u(4) = −6 exp(−4u(x)), x ∈ [0, 1],

u(0) = 1, u(1) = log(e + 1), u′(0) =
1

e
, u′(1) =

1

(e + 1)
.

The analytical solution of the above problem is u(x) = log(e + x).
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Table 4. Observed maximum absolute errors, Example 6.4

Methods ↓ h = 1

4
h = 1

8
h = 1

16
h = 1

32
h = 1

64

Second order method

(λ, µ, ν) = 1

120
(1, 26, 66) 1.81 × 10−4 4.97 × 10−5 1.25 × 10−5 3.13 × 10−6 7.82 × 10−7

(λ, µ, ν) = (0, 0, 1) 4.06 × 10−4 1.00 × 10−4 2.50 × 10−5 6.26 × 10−6 1.56 × 10−6

Fourth order method

(λ, µ, ν) = 1

6
(0, 1, 4) 2.82 × 10−8 1.79 × 10−9 1.12 × 10−10 5.24 × 10−12 −

(λ, µ, ν) = 1

360
(1, 56, 246) 1.28 × 10−6 8.50 × 10−8 5.37 × 10−9 3.38 × 10−10 2.53 × 10−11

Sixth order method

(λ, µ, ν) = 1

720
(−1, 124, 474) 1.01 × 10−8 1.85 × 10−10 2.10 × 10−12 9.52 × 10−13 5.63 × 10−11

Gupta and Kumar [7] − 1.29 × 10−7 3.08 × 10−8 7.54 × 10−9 −

Rashidinia and Aziz [14] − 1.43 × 10−8 1.87 × 10−10 1.68 × 10−10 −

Rashidinia and Golbabaee [15] 1.77 × 10−3 4.06 × 10−4 1.00 × 10−4 2.50 × 10−5 6.22 × 10−6

Siddiqi and Akram [16] − 6.35 × 10−5 1.33 × 10−5 3.17 × 10−6 7.84 × 10−7

Siraj-ul-Islam et al. [17] − 9.90 × 10−9 1.89 × 10−10 2.82 × 10−12 −

Table 5. Observed maximum absolute errors, Example 6.5

Methods ↓ h = 1

4
h = 1

8
h = 1

16
h = 1

32
h = 1

64

Second order method

(λ, µ, ν) = 1

120
(1, 26, 66) 5.39 × 10−3 1.72 × 10−3 4.48 × 10−4 1.12 × 10−4 2.81 × 10−5

(λ, µ, ν) = (0, 0, 1) 1.45 × 10−2 3.58 × 10−3 9.00 × 10−4 2.25 × 10−4 5.62 × 10−5

Fourth order method

(λ, µ, ν) = 1

6
(0, 1, 4) 1.27 × 10−5 8.52 × 10−7 5.43 × 10−8 3.40 × 10−9 1.94 × 10−10

(λ, µ, ν) = 1

360
(1, 56, 246) 3.87 × 10−5 2.57 × 10−6 1.63 × 10−7 1.02 × 10−8 6.37 × 10−10

Sixth order method

(λ, µ, ν) = 1

720
(−1, 124, 474) 2.38 × 10−7 5.15 × 10−9 1.09 × 10−10 7.84 × 10−12 3.18 × 10−11

Rashidinia and Aziz [14] − 3.31 × 10−7 5.15 × 10−9 8.10 × 10−11 1.12 × 10−12

Linear problems. Example 6.4. Consider the boundary value problem,
which is discussed in [7,14–17],

u(4) + 4u = 1, x ∈ [−1, 1],

u(−1) = u(1) = 0, u′(−1) = −u′(1) =
sinh(2) − sin(2)

4(cosh(2) + cos(2))
.

The analytical solution of the above problem is

u(x) = 0.25
{

1 − 2
(sin(1) sinh(1) sin(x) sinh(x) + cos(1) cosh(1) cos(x) cosh(x)

cos(2) + cosh(2)

)}

.

Example 6.5. Consider the boundary value problem, which is discussed in [14],

u(4) − xu = −(11 + 9x + x2 − x3)ex, x ∈ [−1, 1],

u(−1) = 0, u(1) = 0, u′(−1) =
2

e
, u′(1) = −2e.

The analytical solution of the above problem is u(x) = (1−x2)ex. The observed
maximum absolute errors corresponding to the Examples 6.1–6.5 for our second,
fourth and sixth-order methods are briefly summarized in Tables 1–5. Comparisons
with other existing methods are also listed in Tables 1–5. These tables show that
our methods are more accurate than the existing spline methods.

It is verified from Tables 1–5 that on reducing the step-size from h to h/2, the
maximum observed error ‖E‖ is approximately reduces by a factor 1/2P , where p
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is the theoretical order of numerical method, except possibly when the round off
errors are significant.

Conclusion

Exponential sextic spline functions are used to develop a class of numerical
methods for finding the numerical solution of fourth-order linear and nonlinear
boundary value problems, with two-point boundary conditions. The computations
associated with the examples discussed above were performed by using MATLAB 7.
The methods are computationally efficient and can be easily implemented on a com-
puter. The present method enables us to approximate the solution at every point
of the range of integration. Comparison of the method is also depicted through
Tables 1–5 which show that our methods perform better than the existing finite
difference and spline methods.
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