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HARMONIC BETA-CONVEX FUNCTIONS
INVOLVING HYPERGEOMETRIC FUNCTIONS

Muhammad Aslam Noor, Khalida Inayat Noor,
and Sabah Iftikhar

ABSTRACT. We introduce and study a new class harmonic convex functions,
which is called harmonic beta-convex functions. This new class includes several
new and previously known classes of harmonic convex functions as special
cases. We obtain some new integral inequalities involving hypergeometric
functions. Some special cases are also discussed. Results obtained in this
paper continue to hold for these cases. Ideas and techniques of this paper may
stimulate further research.

1. Introduction

Convexity theory provides us a sound basis for studying a wide class of unre-
lated problems in a unified and general framework. Integral inequalities present a
very active and fascinating field of research. These integral inequalities are useful
in physics, where upper and lower bounds for natural phenomena described by in-
tegrals such as mechanical work are required. It is known that integral inequalities
are closely related with convex functions and their variant forms. In recent years,
convex sets and convex functions have been generalized and extended in several
directions using different techniques and ideas. In fact, it is known that a function
f is a convex function, if and only if, it satisfies an integral inequality, which is
known as Hermite-Hadamard inequality. A very significant and important gener-
alization of the convex functions is called the harmonic convex functions. Some
authors established new integral inequalities related to harmonically convex func-
tions. For recent results, refinements, generalizations, and new integral inequalities,
see [1H9)12-19,22].

Motivated and inspired by the on going research, we introduce and investigate
a new class of harmonic convex functions, which is called the harmonic beta-convex
functions. It is shown that harmonic beta-convex functions are quite general and
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unifying ones. We obtain some new estimates for the harmonic beta-convex func-
tions involving the Euler beta function and the Hypergeometric function. Some
special special cases are also discussed. Results obtained in this paper represent
significant improvement and refinement of the known results. The ideas and tech-
nique of this paper may stimulate further research in this dynamic field.

2. Preliminaries

In this section, we discuss some new and known results.

DEFINITION 2.1. [20]. A set I = [a,b] C R~ {0} is said to be a harmonic

convex set, if
Ly

ter+ (1 —1t)y
DEFINITION 2.2. [5]. A function f: I = [a,b] C R~ {0} — R is said to be
harmonic convex function, if
Ty )
— 7 )1 <(1=tf(x)+t , Ve,ye I, t €[0,1].
ara=a,) <0 9@+ y 0,1]

It has been shown by Noor and Noor [10] that the minimum of a differentiable
harmonic convex functions on the harmonic convex sets can be characterized by a
class of variational inequalities, which is called the harmonic variational inequalities.
For the properties and other aspects of the harmonic convex functions, see [S810J11]
and the references therein.

We now introduce a new class of the harmonic convex functions, which is called
harmonic beta-convex functions.

DEFINITION 2.3. A function f: I = [a,b] C R~ {0} — R is said to be harmonic

beta-convex function, where p,q > —1, if
ry

2.1 (7)<1—tptq PA—t)1f(y), Ve,yel, te(0,1).
@D H(Grig,) S Q- DE@ -, ey 0,1)

The function f is said to be harmonic beta-concave function, if — f is harmonic
beta-convex function. We say that f is harmonic beta-mid convex, if 22 is
assumed only for ¢ = %, that is

f( 2zy ) I+
Tty 2r+q

REMARK 2.1. In the above definition, if (p,q) = (0,0),(1,0),(—1,0),(—s,0),
(s,0),(1,1), we obtain harmonic P-function, ordinary harmonic convex function,
Godunova—Levin harmonic convex function, s-Godunova—Levin harmonic convex
function, harmonic s-convex function and harmonic tgs-convex function respec-
tively.

We remark that, if p = ¢, then Definition 23] reduces to:

DEFINITION 2.4. A function f: I = [a,b] C R~ {0} — R is said to be general-

ized harmonic beta-convex function, where p,q > —1, if

(2.2) f(ﬁ) < (1 —=t)Ptf(z) + fv)], Vo,y €I, t € (0,1).

el, Vo,y €I, t €[0,1].
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It is worth mentioning that these generalized harmonic beta-convex functions
have been introduced and studied by Noor [8]. For recent developments, see [8l[10]
12H14/[17] and the references therein.

THEOREM 2.1. [8]. Let f: I = [a,b] C R~ {0} — R be harmonic beta-convez
function with a < b. If f € L[a b, then
_ 2ab f(x F(p +1I'(g+1)
optg—1 / .
f(a+b INa+ 5+ 2) [f(a) + f(b)]

We recall the following special functions which are known as beta function and
hypergeometric function respectively.

1
L@)I'(y) :/ £ L — e, @y >0,
0

B(‘Tay) = F(z+y)

1 1
oF[a,b;c; 2] = ) / 71— )70 (1 — 2t) T, c>b>0,]z] < L

ﬁ(b7 c—b 0
The generalized quadrature formula of Guass—Jacobi type has the form
b m
[ @06 = ) s =Y Busfon) + Rl
a k=0

for some B, k, v and rest term R,,[f]. For more information, see [21].

3. Integral Inequalities

We need the following result in order to obtain new integral inequalities related
to harmonic beta-convex function involving hypergeometric functions.

LEMMA 3.1. [6]. If f: I = [a,b] C R~ {0} — R is a function such that
f € Lla,b], then the following equality holds for some fixed o, 8 > 0.

b 1
N N o t*(1—t)# ,rab
J R O e e e | et (G
where Ay = ta+ (1 —¢)b.
We now derive the main results of this paper.

THEOREM 3.1. Let f: I = [a,b] C R~ {0} — R be a differentiable function
on the interior I° of 1. If f € Lla,b] and |f]| is harmonic beta-convex function on
[a,b] and «, 8 > 0, then

b 1
[ @=ar0-0sen < (5)7 6= 0 (@5t a1, 54p+ )

2Fila 542, a g1 at f+ptq 21— 7]
+1fO)B(a+p+1,8+q+1)

oFi[a+p42, a+p+1;a+B+p+g+2;1— %])
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ProOOF. Using Lemma Bl and harmonic beta-convexity of |f|, we have
b 1 a B
t*(1 —t b
/ (& — a)*(b — 2)? f(x)dx = a®T1HP (b — a)a+5+1/ i Gl f(“ )‘dt
a 0 At
+1pB+1 +ﬁ+1j[ “(1-1)°
<a®m T b — a)®

A?+'B+2
; W{ 1 —t)Pt9|f(a)| + 7 (1 — )9| f(b)| } dt

_ oz+1bB+1(b . )a+B+1

tota(1 —t)f+p tetp(1 — t)B+a
(lf |/ Aa+5+2 dt +[f(b |/ Wdt)

atl1B4+1/p  Natftl Bla+q+1,8+p+1)
@ (b — ) (|£(a) R

a
2F1[oz+ﬁ+2,oe+q+1;a+ﬂ+p+q+2;1fﬂ

1 1
NIDIESSAR AN

2F1{oe+ﬂ+2,oz+p+1;a+ﬂ+p+q+2;17%D. a

THEOREM 3.2. Let f: I =[a,b] CR~ {0} — R be a differentiable function on

the interior I° of I. If f € Lla,b] and |f|* is harmonic beta-convex function on
[a,b] and o, 8 >0, A > 1, then

/ab(x —a)*(b—2)" f(@)de < (%)aﬂ(b _ g)ath

>=

al\1-
(MQ+L3+Uﬂﬁh+B+Za+La+B+21—ED
(If@PBa+g+1,8+p+1)

a
2F1[oz+ﬁ+2,oz+q+1;Oz+ﬂ+p+q+2;17ﬂ

Bla+p+1,8+q+1)
+ £ () e

2F1[oz+ﬂ+2,oz+p+1;a+ﬂ+p+q+2;1f%])X

PRrOOF. Using Lemma [B.I] harmonic beta-convexity of |f|* and power mean
inequality, we have

b 1 Y .
[ a2 s = v apenn [P (2

A?+'B+2
1 1—1 1 1
t*(1 —t)? X t*(1—=t)P |, raby >\
camripngp gy ([POUZ0 )T U0
( ) o AtaJrﬁJrQ o AtaJrﬁJrQ f A,

1,0 1-%
< aa+1b6+1(b7 a)a+[3+1 (/ t (1 — ﬁ)ﬂ dt> X
0

Ata+[3+2
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M=

t*(1
(/ ﬁ{l—optw U |}dt)
« a ! ta(l 7t>ﬁ 17%
a +1bﬁ+1(b7a) +ﬁ+1</0 r*ﬁﬂ dt>

1 1 *
tota(q — t)B+p tetr(1 — t)B-‘rq P
A A
(1rr [ e o [
a+lbﬁ+1(b _ a)aJrﬁJrl

(ﬁ(a+ 1,8+1)

a1\ 1-%
potB+2 2F1{0‘+3+2a04+1;a+3+2;1—ED

|Aﬂ(a+q+ LB+p+1)
pot+B+2

(1f(a)
a
2Fifa+B+2,a+q+Tlia+f+prq+2l-T]

|Aﬂ(a+p+ LB+q+1)
hot+B+2

+1£(b)

>=

a
2F1[oz+ﬂ+2,oz+p+1;a+ﬂ+p+q+2;1fED ,
which is the required result. (I

THEOREM 3.3. Let f: I =[a,b] CR~ {0} = R be a differentiable function on
the interior I° of I. If f € Lla,b] and |f|* is harmonic beta-convex function on
[a,b] and «, 8 > 0, then

b
/ (z — a)*(b — 2)° f (x)dx

< (%)Ml(b —~ a)”‘+5+1(ﬁ(au +1,8p+1)

E=

2F1[(a+ﬁ+2)u,au+1;(a+ﬁ)ﬂ+2?1—%D

< ([IF@* + £ )] Bp+ 1,0+ 1)),
where % + i =1.

PROOF. Using Lemma 3.1l harmonic beta-convexity of |f|* and Hélder’s inte-
gral inequality, we have

b
[ @0 b= o) fa)do

a+118+1 a+p+1 ! ta(l

t”‘“(l
a+lpB+1l(p _ \atB+l1
careero - [ )(/ i)’
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1 1
to‘“(l _ t)ﬂu m
a+1pB+1(p _ \otB+1
<a®T (b - a) (/0 AlFF+2 dt)

</0 (1 =07t f(a)* + (1 — t)q|f(b)|A]dt> }

_ jatlpB+lop _ yat+B+l Blap+1,Bu+1)
= 1P+ (h — q) ( g

QFl[(a+ﬂ+2)u,au+1;(a+ﬂ)u+2;1f%D

< ([If(@) + | FOPBp+1,q+ 1), 0

ES
m

THEOREM 3.4. Let f: I =[a,b] CR~ {0} — R be a differentiable function on
the interior I° of I. If f € Lla,b] and |f|* is harmonic beta-convex function on
[a,b] and «, 8 > 0, then

b
<(%)a+1(b_a)a+ﬂ+16 (CW'i‘l 5#"’1 ( | 5 q+1,p+ 1)
+

oFi[(a+B+2)N g+ L;p+q+2;1— b] |f(@)*B(p+1,q+1)

>~

a
2Fif(a+B+2)Np+Lip+q+2;1— 5]) ,
where%—i—ﬁ: 1.

PRrOOF. Using Lemma 3] harmonic beta-convexity of |f|* and the Holder’s
integral inequality, we have

b
/Xx—a>w—xwﬂ>

atlpftl(p _ g)ath+l
B 5 Aa+6+2 ’f( )‘dt

v A\ X
at1pftl(y gyt a £)? " 1 ab ‘
< a*b ( t“ Hdt) (/O A(a+ﬂ+2)k‘f(At) dt
t
1
( ta# mtdt)

(/0 W{ 6Pt f () + (1 —t)qlf(b)lA}dt)

1 M
a® TP+ (b — q)o A+ (/ (1 — t)ﬁ“dt>
0

< a+1bﬁ+1 a+ﬁ+1

1
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1 1 *
N R N AR
(|f(a)| /O Wdt‘F £ (D) ; Wdt

— anrlbﬁJrl(b_a)aJrﬁJrlﬁ% (O‘M"" 1;BM+ 1)(|f(a)|/\ﬂ(q+ 17p+ 1)

pla+B+2)A
a Blp+1,q+1)
2F1[(0<+5+2))\7Q+1;P+Q+2;1— 3} +|f(a)|AW
2F1[(oe+ﬂ+2)/\,p+1;p+q+2;1f%])X, O

THEOREM 3.5. Let f: I =[a,b] CR\ {0} — R be a differentiable function on
the interior I° of I. If f € Lla,b] and |f|* is harmonic beta-convex function on
[a,b] and «, 8 > 0, then

b «a 1
/ (x —a)*(b— z)° f(z)dz < (%) Jrl(b — a) TP [(a + 684 2)p,1;2;1— %

(I[f(@)*Blar+g+1,8A+p+1)
FIFOPBA+p+1, A+ q+ 1),

where%—i—i:l.

ProOF. Using Lemma (1], harmonic beta-convexity of | f|* and the Holder’s
integral inequality, we have

[ @0 b= o) o

1
t*(1—t)% | rab
— qotlpB+lip  yatB+1
@b —a) /o AGTAT2 ’f(At)’dt

1 1 m 1 abyd O\ X
a+1pB4+1p _ ya+pB+1 a1 _ p\BA -
< @B (b — a) </O A(a+ﬂ+2)udt> </Ot (1-1) ‘f(At)‘dt>
t
+1p8+1 co( [ 1
t
1
</’wwlw”ulw%ﬂﬂwv+t%1wﬂﬂwPuQ
0
8 8 ' 1 "
_ o+l +1 o a+B+1
=a*" b’ (b—a) </0 A§a+ﬁ+2)#dt>
1 1
(1r@P [ e - o g [ oo
0 0

Filla+8+2)p,1;21— 4]\ +
— o181y _ yotB+1 (201 kit b )“
=a®" P (b — a) ( peETE,

E=

ES
BN

1
PN

(F(@)PBaA+q+1,8A+p+1)+ [FB)*Bar+p+ 1,80+ g+ 1)), O
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4. Conclusion

We have introduced and investigated the class of harmonic beta-convex func-

tion. We have derived some new integral inequalities via harmonic beta-convex

fu

nctions. This new class is quite general and unifying one. Consequently, the

results obtained in this paper continue to hold for all new and known classes of
harmonic convex functions.
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