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FUNCTIONS OF GENERALIZED BOUNDED
VARIATION AND ITS MULTIPLE
FOURIER COEFFICIENTS

Kiran N. Darji and Rajendra G. Vyas

ABSTRACT. Here, generalizing the class (A1, A2)* BV (?)(]0, 27]?) to the class
(A1, A%)* BV () ([0, 21]2) of functions of p, ¢-(A', A%)*-bounded variation, it
is observed that the class is a Banach space with respect to the pointwise
operations and the generalized variation norm. Moreover, we estimate the
order of magnitude of multiple Fourier coefficients of a function of this class.

1. Introduction

Fiilop and Méricz [3] estimated the order of magnitude of multiple Fourier coef-
ficients of functions of BV (TV) in the sense of Vitali and Hardy, where T = [0, 27),
which is generalized [6] for the functions of the class (A',..., ANV)BV ®)(TN). Here,
generalizing the class (A!, A2)* BV (?)(T?) to the class (A, A%)* BV ®9)(T?) of func-
tions of p, ¢-(A', A?)*-bounded variation, we prove that it is a Banach space with
respect to the pointwise operations and the generalized variation norm. Moreover,
we estimate the order of magnitude of multiple Fourier coefficients of a function of
this class.

2. Notations and definitions

Consider function f on R¥. For k = 1 and I = [a,b], define Af’ = f(I) =
f() = f(a). For k=2, I =[a,b] and J = [¢, d], define

AJOY = f(I x J) = f(I,d) = f(I,¢) = f(b,d) — f(a,d) — f(b,c) + f(a,c).

DEFINITION 2.1. Let L be the class of nondecreasing sequences A = {\,}5,
of positive numbers such that > % diverges. Given A = (A, A2?), where AF =
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224 DARJI AND VYAS

{\kyee €L, for k=1,2, and p,q > 1, a complex valued measurable function f
defined on T? is said to be of p, ¢-A-bounded variation (that is, f € ABV ("9 (T?)) if

Vi, (fT?) = sup  {Vy, (f,T? P)} < oo,
P:P1><P2

where P : 0 =2 <1 <+ <Zp =27, P : 0=yo < y1 < -+ < yp = 27 and

( |Af(mi,yj)|p)q/p 1/q

2 2 Al . .

Vi, ([, T, P) = E )\21 ,  in which
j J

Af(xi,y;) = f([xs, i) X [y, yj41])-

Consider a function f: T? — R defined by f(x,y) = g(z) + h(y), where g
and h are any two arbitrary functions from T into R. Then Va,..(f, T) =0
implies f € ABV ®9(T?). Here, g, or h, or both g and h need not be bounded
(or measurable). Thus a function f € ABV®9(T?) need not be bounded (or
measurable).

If f € ABV®9(T?) is such that the marginal functions f(0,.) € A2BV(@(T)
and f(.,0) € A'BV®)(T) (refer [4] for the definition of ABV (®)(T)) then f is said
to be of p, ¢-A*-bounded variation (that is, f € A*BV®9)(T?)).

Note that, for ¢ = p, the classes ABV®9)(T?) and A*BV®9)(T?) reduce to
the classes ABV (®)(T?) [6, Definition 1.2, p.28] and A* BV (?)(T?) respectively; for
q = p = 1, the classes ABV®9(T?) and A*BV®9(T?) reduce to the classes
ABV(T?) [, Definition 2, p. 8] and A* BV (T?) respectively.

DEFINITION 2.2. We say f € L®9(T?) (p,q > 1) if

o o q/p 1/q
o= ([ ([ wras) a) " <o

Note that, for ¢ = p, the class L9 (T?) reduces to the class LP(T?).
Benedek and Panzone [2] observed that the space (L®9)(T?), l-l(p,q)) is & Ba-
nach space.

3. New results for functions of two variables

For any x = (z,9) € T? and k = (m,n) € Z?, we denote their scalar product
by k-x=mz +ny.
For any f € L'(T?), where f is 2r-periodic in each variable, its Fourier series

is defined as
F&x) ~ Y ke,
kez2

f) = ﬁ / / Fei 0y

denotes the k** Fourier coefficient of f.
We prove the following results.

where
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LEMMA 3.1. If f € A*BVP9(T2) (p,q > 1) then f is bounded on T?.
Proor. For any f € A*BV P9 (T?),
|f ()| < 1£([0,2]) x [0,y])] + [ f(x,0) = f(0,0)[ +[£(0, ) — £(0,0)] + [£(0,0)|

= (A})%(A%)% (%(U([va]))\? [Ovy])|p) %)%

()\1 (lf(x 0) )\%f(oao)lp);_’_()ﬁ %('f(o y) A%f(0,0)|q)5+ |f(070)|
< (ADP )TV, (£, T2) + (W) 7Var (£(,0), T)
+ (A Va2 (£(0,.),T) + [ £(0,0)]
implies f is bounded on T2. O

THEOREM 3.1. The class A*BV (20 ('EQ) is a Banach space with respect to the
pointwise operations and the variation norm:

LAl = 1Flloe + Va,., (f, T?) + Vas (£(.,0), T) + Vaz (£(0,.), T), f € A*BV»9(T?).

PROOF. Let {fx}?2, be a Cauchy sequence in A*BV ™9 (T?). Then it con-
verges uniformly to some function say f. In view of [5] Corollary 2.7, p.183], we
get

(3.1) kIHI;OVAxl»(fk("O) —f(.,O),']T) =0,

For any P = P, X P, where P, : 0 =g <21 < - <xpm=2mand P, : 0=1yp <
y1 < - < yp = 2w, by Minkowski’s inequality, we have

> \Afkm,yj)w)% 7 3 |A<fk—fl)(mi,ynwfl(mi,ymp)% i

Z( g )\23 _ Z( g )\23

J J J J

(Z- (\A(fk—fz)(wi,yj>\+|Afl<zi,y,~>|>P)% i

) AL
< (> v
i J
1
[A(fr—f) (@i y5)l ENACEDIAAS 1
B Z ((Z ( (P * (ALP ) ) )
A
P % )P % q %
((Z |[A(fr— fl)(ml y])l ) + (ZZ ‘Afl()\?y]” ) )
< Z =
j
by 2 TN S
(Z |A(fx— ﬁ)(m i)l ) (Zi ‘Afl({!y])' )
L T e T —
J J J
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(Zi \A(fk—fg(zi,ymp)E 7 (Zi \Afz(;b\?yj)lp)% :
<X v +1 D2 =
; . 2

7 J

5

=V, ,(fx = [T, P)+ Vi, ,(f1,T?, P).

Thus,
<V, (fe— £, T2, P)+ Vy,  (fi, T?, P)
<Va,,(fi — fi. T?) + Vi, (fi, T?).
This implies,

Vi, (fi: T?) <V, (f — £1.T%) + Vi, , (f1,T?)
and

Vi, (fe, T?) = Vi,  (fi. T?)| < Vi, (fr = fi, T?) = 0 as k,l — oco.

Hence, {Vy, , (fx,T?)}32; is a Cauchy sequence in R and it is bounded by some
constant say M > 0. Therefore,

aq
(Zi |Af(z;1,yj)v) P\

VAp,q(faq_IQaP): Z )\21
ki J
(Z IAfk(zi-,yj)l”)% B
= lim Z ‘ ;\i
k—o0 7 )\j

< lim Vqu(fk,T[Q) <M < .
k—o0 ’

This together with (3I) and (2 imply f € A*BV @9 (T?). Moreover,

(Z,\Am—&)l(xi,yjnp)% .
VAp,q(fk_faTQaP): Z )\gi
J J

5 |A(fk—fi>1(mi,yj>|l7)% :

:zlggo Z ( )\?1

J

gllim Vqu(fk—fl,'ﬁQ)%O as k — oo.
—00 ’

This together with (B1]) and (Z2)) imply (A*BV @9 (T?), ||.||) is a Banach space.
O

THEOREM 3.2. If f € ABV®9(T2)NL®PD(T?) (p,q > 1) and k = (m,n) € Z?
is such that mn #£ 0, then

(3.3) fk)=0
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PROOF. Since f(m n) = 1tz [[r f(2,y)e”"™% e="Vdx dy, we have

| [ (e %} e E)emm s

Because of the periodicity of f in each variable, we get

J[insutestazay= [ [(fees 2] [ 7)) aeas

where Afji(x,y) = f([x—i—%,x—i—%} X [y—i—@,y—i—%ﬂ), for any j, k € Z.
Hence,

fomm) < 15z [ [ 185t ldedy,

Dividing both sides of the above inequality by )\} and then summing over 7 = 1 to

|m|, we have
i
A
(Z») — // ( | fjk(:i_y”)dl'dy,
-1

where r is the index conjugate to p. Applying Holder’s inequality on the right-hand
side of the above inequality, we get

(§A> ayy < $* 121ntr y>|> <|§:>\1>ldxdy.

|m|

|m| v
|f(m’n)|<217}> 16#2//TQ<ZIAMM )dzdy'

Jj= =1

Thus,

Dividing both sides of the above inequality by A7 and then summing over k =1 to

|n|, we have
\ml \Af]k(w,y)\p

|m| In| ‘n| »
o E4) (E4) il (£ e e

where s is the index conjugate to q. Applying Hoélder’s inequality on the right-hand
side of the above inequality, we get

(53 (1)
S T6m2 //Tz :

3 =

4
P

|m\ M)

T/ )
1
¥ J (Zri> da dy.

1

Therefore,
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n m| |Afik(z,y)|? % %
// |\ Z\j:|1| m/\(;y”) e o
LAY X VA, \Js .
167T2 A7

Theorem B2, with p = ¢, reduces to [6l Theorem 2.1, p. 30] as a particular case.

COROLLARY 3.1. If a measurable function f € A*BVPD(T2) (p,q > 1) and
k = (m,n) € Z? is such that mn # 0, then (B3) holds true.

PROOF. In view of Lemma[3.] f € A* BV ®9(T?) implies f is bounded on T?.
Since A* BV P9 (T?) ¢ ABV (9 (T?), the corollary follows from Theorem B2 [

COROLLARY 3.2. If a measurable function f € A*BV®D(T2) (p,q > 1) and
k = (m,0) € Z? is such that m # 0, then

PROOF. Since f(m = 122 [[5. (2, y)e""™®dx dy, we have

L -ty

Because of the periodicity of f in each variable, we get

JLas@ sy = [[ |#(e+ Z0) - fo|tsdy

where Afj(z,y) = f(z + j—“,y) — f(z+ %,y), for any j € Z. Hence,

m

A 1
Fm,0)l < g5 [ [ 185w do ay.
™ T2
Dividing both sides of the above inequality by )\} and then summing over j =1 to

|m|, we have
|m|
IAf] Yl
— 5 |dzdy,
<Z/\1> 87T2 //’]1‘2 (j—l +

where r is the index conjugate to p.
Applying Holder’s inequality on the right-hand side of the above inequality, we
get

2|f(m, 0)]| = }

1

(1) o

=

i

(54 < s 1 (55 i)

j=1
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Thus,

B =
B =

a LA

RV
j 87'('2 //Ez = )\j

dx dy

,_.

Z 1
VA}J(f(-ay)’T)
<2((A)iVa,, (£, T2) + Vi (£(.,0),T)),

follows from the inequalities |« + y[P < 2P(|z|? + |y|P) and |z + y|% < |x| + |y|
for all z,y € Rand p > 1. D
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