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ON CLASSES OF HARMONIC FUNCTIONS
OF CARLEMAN TYPE

Elmostafa Bendib

Abstract. Let f be harmonic functions on the unit disk D, of the complex
plane C. We show that f can be expanded in a series f =

∑

n
fn, where fn is

a harmonic function on Dn,Γ,A satisfying supz∈Dn,Γ,A
|fn(z)| 6 Cρn for some

constants C > 0 and 0 < ρ < 1, and where (Dn,Γ,A)n is a suitably chosen
sequence of decreasing neighborhoods of the closure of D. Conversely, if f

admits such an expansion then f is of Carleman type. The decrease of the
sequence (Dn,Γ,A)n characterizes the smoothness of f . These constructions
are perfectly explicit.

1. Introduction

It was shown for special classes of harmonic functions in [2] that Gevrey har-
monic functions on the unit disk, D, of the complex plane are, in fact, sums of
certain series of harmonic functions on specific neighborhoods of D̄. It seems that
a similar result holds in largest classes. This gives a motivation for asking about
classes of harmonic functions of Carleman type. The principal difficulty is that we
have to control an infinity of derivatives of a function. The purpose of this paper
is to extend results of [2] to he case of Harmonic functions of Carleman type. Our
principal result (Theorem 4.1) gives a more useful characterization. Precisely, we
show that the Harmonic functions of Carleman type on D are exactly those which
are sums of certain series in specific neighborhoods of D̄.

2. Notations and Definitions

Let D = {z ∈ C, |z| < 1} the disk of the plane C and m(t) be a real-valued
C∞ function defined for t ≫ 0. We suppose that m(t), m′(t), m′′(t) are strictly
positive and limt→+∞ m′(t) = +∞; we suppose also that there exists δ > 0 such
that m′′(t) 6 δ. Put M(t) = exp(m(t)). H(D̄) denotes the spaces of harmonic
functions on a neighborhood of D̄. Let us consider HM (D) to be the class of
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harmonic functions on D given by those f for which there are positive constants C

and ρ such that

|f (n)
(x,y)(z)| 6 CρnM(n),

for any z = x + iy ∈ D and any n = p + q ∈ N where

f
(n)
(x,y)(z) :=

∂nf

∂xp∂yq
(z).

Note that every function f belonging to a class HM (D) can be extended in a unique
way to a C∞ function on D̄: if ξ ∈ ∂D and if zj ∈ D converges to ξ, all partial
derivatives of f at zj are uniformly bounded on D and we can apply the mean
value theorem. We denote this extension by the same symbol f . The class does
not change if we replace M(t) by cρtM(t), c, ρ being positive constants, so it does
not change if we replace m(t) by m(t) + at + b (a, b being constants). HM (D) is
an algebra (immediate) closed under differentiation. In fact, m(n + 1) − m(n) =
m′(θn) 6 δn + r, where θn ∈ ]n, n + 1[ and r is a suitable constant, so

(2.1) M(n + 1) 6 er[eδ]nM(n)

In view of Cauchy’s inequalities, Stirling formula and Heine–Borel theorem,
if f is harmonic on neighborhood of D̄ and real valued, then f is real analytic
on D̄ and the restriction of f to D belongs to the class HM (D). The class H(D̄)
correspond, then, to M(t) = tt, so to m(t) = t ln(t). In this short paper, we will
consider classes that contain strictly H(D̄); for this end we suppose that m(t) =
t ln(t)+ tµ(t) with µ(t) be a strictly increasing C∞ function for t ≫ 0 (so µ′(t) > 0)
and limt→+∞ µ(t) = +∞. In order to ensure that the functions (m(i)(t))06i62

are monotonic at infinity, we suppose that µ(t) belongs to a Hardy field (a field
of germs at infinity in R which is closed under differentiation). We have m′(t) =
1 + ln(t) + µ(t) + tµ′(t) is strictly positive and limt→+∞ m′(t) = +∞; so m′(t) is
strictly increasing (µ belongs to a Hardy field) and m′′(t) > 0.

It is interesting to note that there exist functions in HM (D) which are not
harmonic on any neighborhood of D̄. Take, for instance,

f(z) =
∑

p∈Z

exp
(

−
√

|p|
)

|z||p| exp(ipθ).

This function belongs to HM (D) for µ(t) = ln(t) but it cannot be extended to be
harmonic on any neighborhood of D̄ as we verify easily [2, p. 413].

Finally the condition m′′(t) 6 δ means that m(t) has a growth at infinity less
than t2; then we may suppose also that

(2.2) µ(t) 6 at, t ≫ 0, a > 0.

3. The associated functions Ω(s) and Γ(u)

Set Ω(s) := inft>t0
s−tM(t), s ≫ 0, where t0 is fixed. The infinimum is attained

when m′(t) = ln(s). The function tµ′(t) + µ(t) tends to infinity as t → ∞ and so
it is strictly increasing (µ(t) belongs to a Hardy field); so we have a unique value
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of t where the infinimum is attained. Thus, if Ω(s) = exp(−ω(s)), then we get the
system

(3.1) s = exp(m′(t)), ω(s) = tm′(t) − m(t).

Since µ′(t) > 0, we have ω(s) > 0 and lims→+∞ ω(s) = +∞. Thus Ω(s) is strictly
decreasing and lims→+∞ Ω(s) = 0. Set Γ(u) := exp(−γ(u)), where u and γ(u) are
defined by

(3.2) u = t2µ′(t), γ(u) = tµ′(t) + µ(t).

as µ(t) is strictly increasing, and limt→+∞ µ(t) = +∞, it follows that γ(u) is
strictly increasing and limu→+∞ γ(u) = +∞. Hence Γ(u) is strictly decreasing and
limu→+∞ Γ(u) = 0. System (3.2) gives easily

(3.3) t =
1

γ′(u)
, µ(t) = γ(u) − uγ′(u),

which shows that γ′(u) is strictly decreasing, positive and limu→+∞ γ′(u) = 0. Note
that γ(u), just as µ(t), is defined modulo an additive constant.

4. Main Result

By harmonic polynomial on R2 ≃ C, we mean a complex polynomial P of two
variables which satisfies Laplace’s equation, ∆P = 0. In other words, P is a finite
linear combinations, on the field C, of harmonic polynomials δn (n > 1):

δ1 = 1, δn(r exp(iθ)) =

{

rk cos kθ if n = 2k,

rk sin kθ if n = 2k + 1.

Consequently a harmonic polynomial is a polynomial in |z| with coefficients in C.
Define Dn,Γ,A := {z ∈ C; d(z,D) < AΓ(n)}, where A is a positive real number and
n = 1, 2, . . .

Under the condition

(4.1) lim
t→∞

ln(t)

µ(t)
6= 0

we prove the following results:

Theorem 4.1. (1) Let f ∈ HM (D). Then there exist constants C > 0, and ρ

with 0 < ρ < 1; there exist a sequence (Pl)l of harmonic polynomials defined on

Dl,Γ,1 such that f(z) =
∑

l>0 Pl(z) and ‖Pl‖Dl,Γ,1
6 Cρl, for every l ≫ 0.

(ii) Conversely, suppose that there exist constants A > 0, C >, 0 < ρ < 1, and a

sequence (fn)n>1 of harmonic functions on (Dn,Γ,A)n, such that ‖fn‖Dn,Γ,A
6 Cρn

for all n ≫ 1; then the series
∑

n fn := f belong to HM (D).
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5. Proof of Theorem 4.1

Following [2–4], we denote by HM ([0, 2π]) the indefinitely differentiable func-
tions g on the interval [0, 2π], g ∈ C∞([0, 2π]), such that the following holds. There
exist constants C > 0 and ρ > 0 such that |gn(x)| 6 CρnM(n) for all x ∈ [0, 2π]
and for all n ∈ N. By remarking a fact that a given function f which is har-
monic on D and C∞ on D̄ belongs to the class HM (D) if and only if the function
θ 7→ g(θ) := f(exp(iθ)) belongs to the class HM ([0, 2π]), we have the following:

Proposition 5.1. Let f(z) =
∑

p∈Z
ap|z||p| exp(ipθ) be a harmonic function

on D and C∞ on D̄. Then f ∈ HM (D) if and only if, there exist constants C > 0

and ρ > 0 such that |ap| 6 Ce
δ
2 Ω( |p|

ρ
), |p| ≫ 0.

Proof. If f ∈ HM (D) then g(θ) := f(exp(iθ)) ∈ HM ([0, 2π]). There ex-
ist, then, constants C > 0 and ρ > 0 such that |g(n)(θ)| 6 CρnM(n). But
g(n)(θ) =

∑

p∈Z
ap(ip)n exp(ipθ); consequently |ap||p|n 6 CρnM(n) for every n >

1; and, so, |ap| 6 C infn>1( ρ
|p| )

nM(n). A suitable application of Taylor’s for-

mula shows that the last infinimum is bounded by e
δ
2 inft>1( ρ

|p|)
tM(t), which is

equal to e
δ
2 Ω( |p|

ρ
). Conversely, if the coefficients ap satisfy these estimates then

|ap| 6 C infn>1( ρ
|p| )

nM(n); or equivalently |ap||p|n 6 CρnM(n), for every n > 1.

Then, we have

|g(n)(θ)| 6
∑

p∈Zr{0}

|ap||p|n+2 1

p2 6 Cρn+2M(n + 2)
∑

p∈Zr{0}

1

p2 .

We conclude by (2.1) and the remark preceding the proposition (5.1) that f ∈
HM (D). The proof is, then, complete. �

Let us remark that, in general, f(z) =
∑

p∈Z
Ω(|p|)|z||p| exp(ipθ). This function

belongs to HM (D) but it cannot be extended to be harmonic function on any
neighborhood of D̄ as we verify easily.

Proof of part 1 of Theorem 4.1. Let

f(z) =
∑

p∈Z

ap|z||p| exp(ipθ) ∈ HM (D).

Without loss of generality, by proposition (5.1) we can suppose that we have |ap| 6
Ce

δ
2

−ω(|p|), |p| ≫ 0. Let n > 0 and consider all indexes p ∈ Z satisfying

(5.1) n 6 u(|p|) < n + 1.

For p satisfying (5.1) and z ∈ Dn+1,Γ,1 we have with C1 = C0e
δ
2 ,

|ap||z||p|| exp(ipθ)| 6 C1e−ω(|p|)+|p| ln(1+Γ(n+1))

6 C1e−ω(|p|)+|p|Γ(n+1)

6 C1e−ω(|p|)+|p|Γ(u(|p|))

6 C1e−ω(|p|)+|p|ω′(|p|).
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Using (3.1) and (3.2) and taking into account (5.1), we obtain

|ap||z||p|| exp(ipθ)| 6 C1e−u(|p|) 6 C1e−n.

Otherwise the number δn of indexes p satisfying (5.1) is bounded by

2(u−1(n + 1) − u−1(n)) = 2
( 1

Γ′(n)
− 1

Γ′(n + 1)

)

= 2
Γ′′(θ)

(Γ′(θ))2

where n < θ < n + 1. Condition (2.2) implies that the function Γ has subexpo-
nential decay when u −→ ∞. Then the function 1

Γ′
and its derivative have also

subexponential decay. Thus δn 6 2e
1
2

n for n ≫ 0. Now, set

Pn(z) =
∑

u−1(n)6|p|<u−1(n+1)

ap|z||p| exp(ipθ).

Clearly Pn is a harmonic polynomial and f(z) =
∑

n>0 Pn(z), z ∈ D. Further-

more, by the preceding estimates, we have ‖Pn‖Dn+1,Γ,1
6 2C1e− 1

2
n. This completes

the proof of part one of Theorem 4.1, by setting C = 2C1 and ρ = e− 1
2 . �

Proof of part 2 of Theorem 4.1. Without loss of generality, we can sup-
pose that all fn are real valued. Consequently fn is the real part of holomorphic
function gn on Dn,Γ,A. We use Borel–Caratheodory’s inequality [5, p. 21], to get

‖gn‖D
n,Γ, A

2

6 2
(A

2
Γ(n)

)−1(

1 +
A

2
Γ(n)

)

‖fn‖Dn,Γ,A

+
(A

2
Γ(n)

)−1(

2 +
3A

2
Γ(n)

)

|fn(0)|.

This implies

‖gn‖D
n,Γ, A

2

6
2C

A

(

4 +
5A

2
Γ(n)

) ρn

Γ(n)
for n ≫ 0.

We obtain, with λ := − ln(ρ),

‖gn‖D
n,Γ, A

2

6
2C

A

(

4 +
5A

2
Γ(n)

)

exp(−λn + γ(n)) for n ≫ 0.

By the assumption (4.1) and by [1, p. 224], we can choose γ = µ and hence
there exists B > 0 such that γ(n) 6 B ln(n) n ≫ 0. Consequently,

‖gn‖D
n,Γ, A

2

6 C1 exp
(

− λn

2

)

for n ≫ 0

where C1 = C(f, Γ, A) > 0 does not depend on n. By Cauchy’s inequalities, for
each p = 0, 1, . . . , we get

‖g(p)
n ‖D 6 C1p!

( 2

A

)p

(Γ(n))−p exp
(

− λn

2

)

6 C1p!
( 2

A

)p(

max
t>1

exp(−λt

4
+ pγ(t))

)

exp
(

− λn

4

)

.
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That is because the closed disk D̄
(

z,
AΓ(n)

2

)

is contained in Dn,Γ, A
2

for every z ∈ D.

On the other hand the maximum of the function u −→ exp
(

− λ
4 u + pγ(u)

)

is ob-

tained at u0 such that 1
γ′(u0) = 4p

λ
and equal, by the system (3.3), to exp

(

pµ( 4
λ

p)
)

.

By [1], Lemma 3, we can replace µ
(

4
λ

p
)

by µ(p). Then, we obtain

(5.2) ‖g(p)
n ‖D 6 C1p!

( 2

A

)p

exp(pµ(p)) exp
(

− λn

4

)

.

Adding the inequalities (5.2) over n ≫ 1 and put g :=
∑

n gn, it follows that

‖g(p)‖D 6 C1p!
( 2

A

)p

exp(pµ(p))
∑

n

exp
(

− λn

4

)

;

and, then, the derivatives of f have similar estimates, i.e.,

‖f (p)‖D 6 C1p!
( 2

A

)p

exp(pµ(p))
∑

n

exp
(

− λn

4

)

.

We conclude that f ∈ HM (D). This finishes the proof of Theorem 4.1. �

Example 5.1. µ(t) = 1
k

ln(t), k > 0, which correspond to Gevrey class of order

k. From (3.2) we obtain u = 1
k
t and γ(u) = 1

k
ln(t)+ 1

k
= 1

k
(ln(t)+ln(k)); so we can

choose γ(u) = 1
k

ln(u). In this situation (that is, if µ(t) = 1
k

ln(t), k > 0) Theorem
4.1 is exactly the result of [2].

Example 5.2. µ(t) = β ln(ln(t)) β > 0. We obtain u = βt
ln(t) , so ln(u) ∼ ln(t),

and γ(u) = β ln(ln(t)) + β
ln(t) ; so we can choose γ(u) = β ln(ln(u)).

We can construct other examples by taking µ(t) = a1 ln1(t) + · · · + ap lnp(t)
where ln1(t) = ln(t) and lnp+1(t) = ln(lnp(t)), ai are positive constants i = 1, . . . , p

and p ∈ N∗.

Example 5.3. µ(t) = at, a > 0; (extremal case), we obtain γ(u) = 2
√

au.
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