DOI: https://doi.org/10.2298/PIM1818217B

ON CLASSES OF HARMONIC FUNCTIONS OF CARLEMAN TYPE

Elmostafa Bendib

ABSTRACT. Let f be harmonic functions on the unit disk \mathbb{D} , of the complex plane \mathbb{C} . We show that f can be expanded in a series $f = \sum_n f_n$, where f_n is a harmonic function on $\mathbb{D}_{n,\Gamma,A}$ satisfying $\sup_{z \in \mathbb{D}_n,\Gamma,A} |f_n(z)| \leq C\rho^n$ for some constants C > 0 and $0 < \rho < 1$, and where $(\mathbb{D}_{n,\Gamma,A})_n$ is a suitably chosen sequence of decreasing neighborhoods of the closure of \mathbb{D} . Conversely, if f admits such an expansion then f is of Carleman type. The decrease of the sequence $(\mathbb{D}_{n,\Gamma,A})_n$ characterizes the smoothness of f. These constructions are perfectly explicit.

1. Introduction

It was shown for special classes of harmonic functions in [2] that Gevrey harmonic functions on the unit disk, \mathbb{D} , of the complex plane are, in fact, sums of certain series of harmonic functions on specific neighborhoods of $\overline{\mathbb{D}}$. It seems that a similar result holds in largest classes. This gives a motivation for asking about classes of harmonic functions of Carleman type. The principal difficulty is that we have to control an infinity of derivatives of a function. The purpose of this paper is to extend results of [2] to he case of Harmonic functions of Carleman type. Our principal result (Theorem 4.1) gives a more useful characterization. Precisely, we show that the Harmonic functions of Carleman type on \mathbb{D} are exactly those which are sums of certain series in specific neighborhoods of $\overline{\mathbb{D}}$.

2. Notations and Definitions

Let $\mathbb{D} = \{z \in \mathbb{C}, |z| < 1\}$ the disk of the plane \mathbb{C} and m(t) be a real-valued \mathcal{C}^{∞} function defined for $t \gg 0$. We suppose that m(t), m'(t), m''(t) are strictly positive and $\lim_{t\to+\infty} m'(t) = +\infty$; we suppose also that there exists $\delta > 0$ such that $m''(t) \leq \delta$. Put $M(t) = \exp(m(t))$. $\mathcal{H}(\bar{\mathbb{D}})$ denotes the spaces of harmonic functions on a neighborhood of $\bar{\mathbb{D}}$. Let us consider $\mathcal{H}_M(\mathbb{D})$ to be the class of

217

²⁰¹⁰ Mathematics Subject Classification: 30B10; 26E10; 30E10.

 $Key\ words\ and\ phrases:$ approximations, analytic functions, Carleman classes, harmonic functions.

Communicated by Stevan Pilipović.

harmonic functions on $\mathbb D$ given by those f for which there are positive constants C and ρ such that

$$|f_{(x,y)}^{(n)}(z)| \leqslant C\rho^n M(n),$$

for any $z = x + iy \in \mathbb{D}$ and any $n = p + q \in \mathbb{N}$ where

$$f_{(x,y)}^{(n)}(z) := \frac{\partial^n f}{\partial x^p \partial y^q}(z).$$

Note that every function f belonging to a class $\mathcal{H}_M(\mathbb{D})$ can be extended in a unique way to a \mathcal{C}^{∞} function on $\overline{\mathbb{D}}$: if $\xi \in \partial \mathbb{D}$ and if $z_j \in \mathbb{D}$ converges to ξ , all partial derivatives of f at z_j are uniformly bounded on \mathbb{D} and we can apply the mean value theorem. We denote this extension by the same symbol f. The class does not change if we replace M(t) by $c\rho^t M(t)$, c, ρ being positive constants, so it does not change if we replace m(t) by m(t) + at + b (a, b being constants). $\mathcal{H}_M(\mathbb{D})$ is an algebra (immediate) closed under differentiation. In fact, m(n+1) - m(n) = $m'(\theta_n) \leq \delta n + r$, where $\theta_n \in]n, n + 1[$ and r is a suitable constant, so

(2.1)
$$M(n+1) \leqslant e^r [e^{\delta}]^n M(n)$$

In view of Cauchy's inequalities, Stirling formula and Heine–Borel theorem, if f is harmonic on neighborhood of $\overline{\mathbb{D}}$ and real valued, then f is real analytic on $\overline{\mathbb{D}}$ and the restriction of f to \mathbb{D} belongs to the class $\mathcal{H}_M(\mathbb{D})$. The class $\mathcal{H}(\overline{\mathbb{D}})$ correspond, then, to $M(t) = t^t$, so to $m(t) = t \ln(t)$. In this short paper, we will consider classes that contain strictly $\mathcal{H}(\overline{\mathbb{D}})$; for this end we suppose that m(t) = $t \ln(t) + t\mu(t)$ with $\mu(t)$ be a strictly increasing \mathcal{C}^{∞} function for $t \gg 0$ (so $\mu'(t) > 0$) and $\lim_{t\to+\infty} \mu(t) = +\infty$. In order to ensure that the functions $(m^{(i)}(t))_{0 \leqslant i \leqslant 2}$ are monotonic at infinity, we suppose that $\mu(t)$ belongs to a Hardy field (a field of germs at infinity in \mathbb{R} which is closed under differentiation). We have m'(t) = $1 + \ln(t) + \mu(t) + t\mu'(t)$ is strictly positive and $\lim_{t\to+\infty} m'(t) = +\infty$; so m'(t) is strictly increasing (μ belongs to a Hardy field) and m''(t) > 0.

It is interesting to note that there exist functions in $\mathcal{H}_M(\mathbb{D})$ which are not harmonic on any neighborhood of $\overline{\mathbb{D}}$. Take, for instance,

$$f(z) = \sum_{p \in \mathbb{Z}} \exp\left(-\sqrt{|p|}\right) |z|^{|p|} \exp(ip\theta).$$

This function belongs to $\mathcal{H}_M(\mathbb{D})$ for $\mu(t) = \ln(t)$ but it cannot be extended to be harmonic on any neighborhood of $\overline{\mathbb{D}}$ as we verify easily [2, p. 413].

Finally the condition $m''(t) \leq \delta$ means that m(t) has a growth at infinity less than t^2 ; then we may suppose also that

(2.2) $\mu(t) \leqslant at, \ t \gg 0, \ a > 0.$

3. The associated functions $\Omega(s)$ and $\Gamma(u)$

Set $\Omega(s) := \inf_{t \ge t_0} s^{-t} M(t)$, $s \gg 0$, where t_0 is fixed. The infinimum is attained when $m'(t) = \ln(s)$. The function $t\mu'(t) + \mu(t)$ tends to infinity as $t \to \infty$ and so it is strictly increasing $(\mu(t)$ belongs to a Hardy field); so we have a unique value

218

of t where the infinimum is attained. Thus, if $\Omega(s) = \exp(-\omega(s))$, then we get the system

(3.1)
$$s = \exp(m'(t)), \quad \omega(s) = tm'(t) - m(t).$$

Since $\mu'(t) > 0$, we have $\omega(s) > 0$ and $\lim_{s \to +\infty} \omega(s) = +\infty$. Thus $\Omega(s)$ is strictly decreasing and $\lim_{s \to +\infty} \Omega(s) = 0$. Set $\Gamma(u) := \exp(-\gamma(u))$, where u and $\gamma(u)$ are defined by

(3.2)
$$u = t^2 \mu'(t), \quad \gamma(u) = t \mu'(t) + \mu(t).$$

as $\mu(t)$ is strictly increasing, and $\lim_{t\to+\infty} \mu(t) = +\infty$, it follows that $\gamma(u)$ is strictly increasing and $\lim_{u\to+\infty} \gamma(u) = +\infty$. Hence $\Gamma(u)$ is strictly decreasing and $\lim_{u\to+\infty} \Gamma(u) = 0$. System (3.2) gives easily

(3.3)
$$t = \frac{1}{\gamma'(u)}, \quad \mu(t) = \gamma(u) - u\gamma'(u),$$

which shows that $\gamma'(u)$ is strictly decreasing, positive and $\lim_{u\to+\infty} \gamma'(u) = 0$. Note that $\gamma(u)$, just as $\mu(t)$, is defined modulo an additive constant.

4. Main Result

By harmonic polynomial on $\mathbb{R}^2 \simeq \mathbb{C}$, we mean a complex polynomial P of two variables which satisfies Laplace's equation, $\Delta P = 0$. In other words, P is a finite linear combinations, on the field \mathbb{C} , of harmonic polynomials δ_n $(n \ge 1)$:

$$\delta_1 = 1, \quad \delta_n(r \exp(i\theta)) = \begin{cases} r^k \cos k\theta & \text{if } n = 2k, \\ r^k \sin k\theta & \text{if } n = 2k+1. \end{cases}$$

Consequently a harmonic polynomial is a polynomial in |z| with coefficients in \mathbb{C} . Define $\mathbb{D}_{n,\Gamma,A} := \{z \in \mathbb{C}; d(z,\mathbb{D}) < A\Gamma(n)\}$, where A is a positive real number and $n = 1, 2, \ldots$

Under the condition

(4.1)
$$\lim_{t \to \infty} \frac{\ln(t)}{\mu(t)} \neq 0$$

we prove the following results:

THEOREM 4.1. (1) Let $f \in \mathcal{H}_M(\mathbb{D})$. Then there exist constants C > 0, and ρ with $0 < \rho < 1$; there exist a sequence $(P_l)_l$ of harmonic polynomials defined on $\mathbb{D}_{l,\Gamma,1}$ such that $f(z) = \sum_{l \ge 0} P_l(z)$ and $\|P_l\|_{\mathbb{D}_{l,\Gamma,1}} \le C\rho^l$, for every $l \gg 0$.

(ii) Conversely, suppose that there exist constants A > 0, $C > 0 < \rho < 1$, and a sequence $(f_n)_{n \ge 1}$ of harmonic functions on $(\mathbb{D}_{n,\Gamma,A})_n$, such that $||f_n||_{\mathbb{D}_{n,\Gamma,A}} \le C\rho^n$ for all $n \gg 1$; then the series $\sum_n f_n := f$ belong to $\mathcal{H}_M(\mathbb{D})$.

BENDIB

5. Proof of Theorem 4.1

Following [2–4], we denote by $\mathcal{H}_M([0, 2\pi])$ the indefinitely differentiable functions g on the interval $[0, 2\pi]$, $g \in \mathcal{C}^{\infty}([0, 2\pi])$, such that the following holds. There exist constants C > 0 and $\rho > 0$ such that $|g^n(x)| \leq C\rho^n M(n)$ for all $x \in [0, 2\pi]$ and for all $n \in \mathbb{N}$. By remarking a fact that a given function f which is harmonic on \mathbb{D} and \mathcal{C}^{∞} on $\overline{\mathbb{D}}$ belongs to the class $\mathcal{H}_M(\mathbb{D})$ if and only if the function $\theta \mapsto g(\theta) := f(\exp(i\theta))$ belongs to the class $\mathcal{H}_M([0, 2\pi])$, we have the following:

PROPOSITION 5.1. Let $f(z) = \sum_{p \in \mathbb{Z}} a_p |z|^{|p|} \exp(ip\theta)$ be a harmonic function on \mathbb{D} and \mathcal{C}^{∞} on $\overline{\mathbb{D}}$. Then $f \in \mathcal{H}_M(\mathbb{D})$ if and only if, there exist constants C > 0and $\rho > 0$ such that $|a_p| \leq Ce^{\frac{\delta}{2}}\Omega(\frac{|p|}{a})$, $|p| \gg 0$.

PROOF. If $f \in \mathcal{H}_M(\mathbb{D})$ then $g(\theta) := f(\exp(i\theta)) \in \mathcal{H}_M([0, 2\pi])$. There exist, then, constants C > 0 and $\rho > 0$ such that $|g^{(n)}(\theta)| \leq C\rho^n M(n)$. But $g^{(n)}(\theta) = \sum_{p \in \mathbb{Z}} a_p(ip)^n \exp(ip\theta)$; consequently $|a_p||p|^n \leq C\rho^n M(n)$ for every $n \geq 1$; and, so, $|a_p| \leq C \inf_{n \geq 1} (\frac{\rho}{|p|})^n M(n)$. A suitable application of Taylor's formula shows that the last infinimum is bounded by $e^{\frac{\delta}{2}} \inf_{t \geq 1} (\frac{\rho}{|p|})^t M(t)$, which is equal to $e^{\frac{\delta}{2}} \Omega(\frac{|p|}{\rho})$. Conversely, if the coefficients a_p satisfy these estimates then $|a_p| \leq C \inf_{n \geq 1} (\frac{\rho}{|p|})^n M(n)$; or equivalently $|a_p||p|^n \leq C\rho^n M(n)$, for every $n \geq 1$. Then, we have

$$|g^{(n)}(\theta)| \leq \sum_{p \in \mathbb{Z} \setminus \{0\}} |a_p| |p|^{n+2} \frac{1}{p^2} \leq C\rho^{n+2} M(n+2) \sum_{p \in \mathbb{Z} \setminus \{0\}} \frac{1}{p^2}$$

We conclude by (2.1) and the remark preceding the proposition (5.1) that $f \in \mathcal{H}_M(\mathbb{D})$. The proof is, then, complete.

Let us remark that, in general, $f(z) = \sum_{p \in \mathbb{Z}} \Omega(|p|) |z|^{|p|} \exp(ip\theta)$. This function belongs to $\mathcal{H}_M(\mathbb{D})$ but it cannot be extended to be harmonic function on any neighborhood of $\overline{\mathbb{D}}$ as we verify easily.

PROOF OF PART 1 OF THEOREM 4.1. Let

$$f(z) = \sum_{p \in \mathbb{Z}} a_p |z|^{|p|} \exp(ip\theta) \in \mathcal{H}_M(\mathbb{D}).$$

Without loss of generality, by proposition (5.1) we can suppose that we have $|a_p| \leq Ce^{\frac{\delta}{2} - \omega(|p|)}$, $|p| \gg 0$. Let $n \ge 0$ and consider all indexes $p \in \mathbb{Z}$ satisfying

$$(5.1) n \leqslant u(|p|) < n+1.$$

For p satisfying (5.1) and $z \in \mathbb{D}_{n+1,\Gamma,1}$ we have with $C_1 = C_0 e^{\frac{\delta}{2}}$,

 $|a_n||z|^{|p|}|\exp(ip\theta)| \leq C_1 e^{-\omega(|p|)+|p|\ln(1+\Gamma(n+1))}$

$$\begin{split} &\leqslant C_1 e^{-\omega(|p|)+|p|\Gamma(n+1)} \\ &\leqslant C_1 e^{-\omega(|p|)+|p|\Gamma(u(|p|))} \\ &\leqslant C_1 e^{-\omega(|p|)+|p|\omega'(|p|)}. \end{split}$$

Using (3.1) and (3.2) and taking into account (5.1), we obtain

$$|a_p||z|^{|p|} |\exp(ip\theta)| \leq C_1 e^{-u(|p|)} \leq C_1 e^{-n}.$$

Otherwise the number δ_n of indexes p satisfying (5.1) is bounded by

$$2(u^{-1}(n+1) - u^{-1}(n)) = 2\left(\frac{1}{\Gamma'(n)} - \frac{1}{\Gamma'(n+1)}\right) = 2\frac{\Gamma''(\theta)}{(\Gamma'(\theta))^2}$$

where $n < \theta < n + 1$. Condition (2.2) implies that the function Γ has subexponential decay when $u \longrightarrow \infty$. Then the function $\frac{1}{\Gamma}$ and its derivative have also subexponential decay. Thus $\delta_n \leq 2e^{\frac{1}{2}n}$ for $n \gg 0$. Now, set

$$P_n(z) = \sum_{u^{-1}(n) \leq |p| < u^{-1}(n+1)} a_p |z|^{|p|} \exp(ip\theta).$$

Clearly P_n is a harmonic polynomial and $f(z) = \sum_{n \ge 0} P_n(z), z \in \mathbb{D}$. Furthermore, by the preceding estimates, we have $||P_n||_{\mathbb{D}_{n+1,\Gamma,1}} \le 2C_1 e^{-\frac{1}{2}n}$. This completes the proof of part one of Theorem 4.1, by setting $C = 2C_1$ and $\rho = e^{-\frac{1}{2}}$. \Box

PROOF OF PART 2 OF THEOREM 4.1. Without loss of generality, we can suppose that all f_n are real valued. Consequently f_n is the real part of holomorphic function g_n on $\mathbb{D}_{n,\Gamma,A}$. We use Borel–Caratheodory's inequality [5, p. 21], to get

$$\begin{aligned} \|g_n\|_{\mathbb{D}_{n,\Gamma,\frac{A}{2}}} &\leqslant 2\left(\frac{A}{2}\Gamma(n)\right)^{-1}\left(1+\frac{A}{2}\Gamma(n)\right)\|f_n\|_{\mathbb{D}_{n,\Gamma,A}} \\ &+ \left(\frac{A}{2}\Gamma(n)\right)^{-1}\left(2+\frac{3A}{2}\Gamma(n)\right)|f_n(0)|. \end{aligned}$$

This implies

$$\|g_n\|_{\mathbb{D}_{n,\Gamma,\frac{A}{2}}} \leqslant \frac{2C}{A} \Big(4 + \frac{5A}{2}\Gamma(n)\Big) \frac{\rho^n}{\Gamma(n)} \quad \text{for} \quad n \gg 0.$$

We obtain, with $\lambda := -\ln(\rho)$,

$$\|g_n\|_{\mathbb{D}_{n,\Gamma,\frac{A}{2}}} \leqslant \frac{2C}{A} \left(4 + \frac{5A}{2}\Gamma(n)\right) \exp(-\lambda n + \gamma(n)) \quad \text{for} \quad n \gg 0.$$

By the assumption (4.1) and by [1, p. 224], we can choose $\gamma = \mu$ and hence there exists B > 0 such that $\gamma(n) \leq B \ln(n) \ n \gg 0$. Consequently,

$$||g_n||_{\mathbb{D}_{n,\Gamma,\frac{A}{2}}} \leqslant C_1 \exp\left(-\frac{\lambda n}{2}\right) \quad \text{for} \quad n \gg 0$$

where $C_1 = C(f, \Gamma, A) > 0$ does not depend on *n*. By Cauchy's inequalities, for each $p = 0, 1, \ldots$, we get

$$\|g_n^{(p)}\|_{\mathbb{D}} \leq C_1 p! \left(\frac{2}{A}\right)^p (\Gamma(n))^{-p} \exp\left(-\frac{\lambda n}{2}\right)$$
$$\leq C_1 p! \left(\frac{2}{A}\right)^p \left(\max_{t \geq 1} \exp\left(-\frac{\lambda t}{4} + p\gamma(t)\right)\right) \exp\left(-\frac{\lambda n}{4}\right).$$

BENDIB

That is because the closed disk $\overline{\mathbb{D}}\left(z, \frac{A\Gamma(n)}{2}\right)$ is contained in $\mathbb{D}_{n,\Gamma,\frac{A}{2}}$ for every $z \in \mathbb{D}$. On the other hand the maximum of the function $u \longrightarrow \exp\left(-\frac{\lambda}{4}u + p\gamma(u)\right)$ is obtained at u_0 such that $\frac{1}{\gamma'(u_0)} = \frac{4p}{\lambda}$ and equal, by the system (3.3), to $\exp\left(p\mu(\frac{4}{\lambda}p)\right)$. By [1], Lemma 3, we can replace $\mu(\frac{4}{\lambda}p)$ by $\mu(p)$. Then, we obtain

(5.2)
$$\|g_n^{(p)}\|_{\mathbb{D}} \leqslant C_1 p! \left(\frac{2}{A}\right)^p \exp(p\mu(p)) \exp\left(-\frac{\lambda n}{4}\right).$$

Adding the inequalities (5.2) over $n \gg 1$ and put $g := \sum_n g_n$, it follows that

$$\|g^{(p)}\|_{\mathbb{D}} \leqslant C_1 p! \left(\frac{2}{A}\right)^p \exp(p\mu(p)) \sum_n \exp\left(-\frac{\lambda n}{4}\right);$$

and, then, the derivatives of f have similar estimates, i.e.,

$$\|f^{(p)}\|_{\mathbb{D}} \leqslant C_1 p! \left(\frac{2}{A}\right)^p \exp(p\mu(p)) \sum_n \exp\left(-\frac{\lambda n}{4}\right).$$

We conclude that $f \in \mathcal{H}_M(\mathbb{D})$. This finishes the proof of Theorem 4.1.

EXAMPLE 5.1. $\mu(t) = \frac{1}{k} \ln(t), k > 0$, which correspond to Gevrey class of order k. From (3.2) we obtain $u = \frac{1}{k}t$ and $\gamma(u) = \frac{1}{k}\ln(t) + \frac{1}{k} = \frac{1}{k}(\ln(t) + \ln(k))$; so we can choose $\gamma(u) = \frac{1}{k}\ln(u)$. In this situation (that is, if $\mu(t) = \frac{1}{k}\ln(t), k > 0$) Theorem 4.1 is exactly the result of [2].

EXAMPLE 5.2. $\mu(t) = \beta \ln(\ln(t)) \ \beta > 0$. We obtain $u = \frac{\beta t}{\ln(t)}$, so $\ln(u) \sim \ln(t)$, and $\gamma(u) = \beta \ln(\ln(t)) + \frac{\beta}{\ln(t)}$; so we can choose $\gamma(u) = \beta \ln(\ln(u))$.

We can construct other examples by taking $\mu(t) = a_1 \ln_1(t) + \cdots + a_p \ln_p(t)$ where $\ln_1(t) = \ln(t)$ and $\ln_{p+1}(t) = \ln(\ln_p(t))$, a_i are positive constants $i = 1, \ldots, p$ and $p \in \mathbb{N}^*$.

EXAMPLE 5.3. $\mu(t) = at, a > 0$; (extremal case), we obtain $\gamma(u) = 2\sqrt{au}$.

5.1. Acknowledgements. The author would like to thank the editor and reviewers for their valuable comments and suggestions to improve the quality of the paper.

References

- T. Belghiti, Holomorphic series expansion of function of Carleman type, Ann. Pol. Math. 84 (2004), 219–224.
- T. Belghiti, L. Gendre, On classes of harmonic functions of Gevrey type, East J. Approx. 10 (2004), 413–418.
- 3. V. Katzenelson, An introduction to Harmonic Analysis, Dover, New York, 1976.
- S. Mandelbrojt, *Rice Institute Pamphlet* 29, January 1942 (reproduced in "Selecta", Gautier-Villars 1981).
- T. Ransford, Potentiel Theory in the complex plane, Lond. Math. Soc. Stud. Texts 28, Cambridge, Univ. Press, 1995.

Departement of Mathematics, Faculty of Sciences Ibn Tofail University Kenitra, Morocco bmelmostafa@hotmail.com (Received 05 01 2016) (Revised 05 07 2017)