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WEAK PG-PROPERTY AND

BEST PROXIMITY POINTS

Muhammad Usman Ali and Tayyab Kamran

Abstract. Abkar and Gbeleh proved the existence of best proximity points
for multivalued nonself mappings on a complete metric space. We generalize/
extend their result by introducing the notion of weak PG-property. We also
construct some examples in the support of our results.

1. Introduction and Preliminaries

Nieto and Rodriguez-Lopez [23] generalized the Banach contraction principle
on partially ordered metric space. Jachymski [16] further extended the work of
Nieto and Rodriguez-Lopez, by considering a graph on a metric space. Afterwards,
Bojor [10–12], Nicolae et al. [22], Aleomraninejad et al. [4], Tiammee [30], Samreen
et al. [28, 29], Kamran et al. [19] and several other authors generalized the work
of Jachymski [16] in various directions. Abkar and Gbeleh [3] proved the existence
of best proximity points for multivalued nonself mappings on a complete metric
space. In this paper, by combining the ideas of Jachymski [16], and Abkar and
Gbeleh [3] we obtain the best proximity point theorems for multivalued mappings
on a complete metric space.

The solutions of the equation T x = x are fixed points of the mapping T : X →
X . If A, B are nonempty subsets of a metric space (X, d) and T : A → B, then for
the existence of a fixed point it is necessary that T (A) ∩ A 6= ∅. If this does not
hold, d(x, T x) > 0 for each x ∈ A. In this situation our aim is to minimize the
term d(x, T x). The best approximation theory has been developed is this sense.
Some important contributions to this theory can be found in [1–32]. Now, we
recollect some basic notions, definitions and results, from references. Let (X, d)
be a metric space. For A, B ⊆ X , dist(A, B) = inf{d(a, b) : a ∈ A, b ∈ B},
d(x, B) = inf{d(x, b) : b ∈ B}, A0 = {a ∈ A : d(a, b) = dist(A, B) for some b ∈ B},
B0 = {b ∈ B : d(a, b) = dist(A, B) for some a ∈ A}, CB(X) denotes the set of
all nonempty closed and bounded subsets of X and CL(X) denotes the set of all
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nonempty closed subsets of X . For every A, B ∈ CL(X), let

H(A, B) =

{

max{supx∈A d(x, B), supy∈B d(y, A)}, if the maximum exists;

∞, otherwise.

Such a map H is called generalized Hausdorff metric induced by the metric d.

Definition 1.1. [3] An element x∗ ∈ A is said to be a best proximity point
of a multivalued non-self mapping T : A → CL(B), if d(x∗, T x∗) = dist(A, B).

Definition 1.2. [32] Let (A, B) be a pair of nonempty subsets of a metric
space (X, d) with A0 6= ∅. Then the pair (A, B) is said to have the weak P -property
if and only if for any x1, x2 ∈ A and y1, y2 ∈ B, we have

{

d(x1, y1) = dist(A, B)

d(x2, y2) = dist(A, B)
⇒ d(x1, x2) 6 d(y1, y2).

Remark 1.1. Weak P -property is said to be P -property [24], if the inequality
is replaced with equality.

Theorem 1.1. [3] Let A and B be nonempty closed subsets of a complete

metric space (X, d) such that A0 is nonempty. Let T : A → CB(B) be a mapping

such that for each x, y ∈ A, we have

(1.1) H(T x, T y) 6 αd(x, y)

where α ∈ (0, 1). Assume that the following conditions hold:

(i) for each x ∈ A0, we have T x ⊆ B0 ;

(ii) the pair (A, B) satisfies the P -property;

Then there exists x∗ ∈ A0 such that d(x∗, T x∗) = dist(A, B).

We use the following lemma in our results.

Lemma 1.1. [18] Let (X, d) be a metric space and B ∈ CL(X). Then for each

x ∈ X and q > 1, there exists an element b ∈ B such that d(x, b) 6 qd(x, B).

The following definition is an extension of the definition introduced by Jachym-
ski [16].

Definition 1.3. A mapping T : A → CL(B) is said to be G-continuous if for
each sequence {xn} in A such that (xn, xn+1) ∈ E and xn → x, we have T xn → T x.

2. Main result

Throughout this section, A and B are nonempty closed subsets of a complete
metric space (X, d). G = (V, E) is a directed graph without parallel edges such
that its vertex set V = A0 and ∆ = {(x, x) : x ∈ A0} is contained in its edge set
E. For basic terminologies of graph theory we refer the reader to the excellent text
by Chartrand et al. [13].

We start this section by introducing the notion of weak PG-property.
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Definition 2.1. Let (A, B) be a pair of nonempty subsets of a metric space
(X, d). Assume that A0 6= ∅ and endowed with the graph G as defined above.
Then the pair (A, B) is said to have the weak PG-property if and only if for any
x1, x2 ∈ V and y1, y2 ∈ B, we have











(x1, x2) ∈ E

d(x1, y1) = dist(A, B)

d(x2, y2) = dist(A, B)

⇒ d(x1, x2) 6 d(y1, y2).

Remark 2.1. Note that if a pair (A, B) satisfies weak P -property then it
satisfies weak PG-property for the graph G = (A0, A0 × A0). In general, a weak
PG-property is weaker than the weak P -property.

Example 2.1. Let X = R
2 be endowed with metric d((x1, y1), (x2, y2)) =

|x1 − x2| + |y1 − y2|. Suppose that A = {(0, 0)} ∪ {(1, x) : 2 6 x 6 3} and
B = {(0, 1)} ∪ {(0, x) : 2 6 x 6 3}. Here, we have A0 = A. Consider a graph G
such that V = A0 and E = {((1, x), (1, y) : x, y ∈ [2, 3])} ∪ {(ξ, ξ) : ξ ∈ V }. Clearly,
the pair (A, B) satisfies the weak PG-property. Further note that the pair (A, B)
does not satisfy the weak P -property. To see, consider, x1 = (0, 0), x2 = (1, 2) and
y1 = (0, 1), y2 = (0, 2). Then we have d(x1, y1) = 1 = dist(A, B) and d(x2, y2) =
1 = dist(A, B), but d(x1, x2) = 3 and d(y1, y2) = 1.

Now, we are in the position to state our first result.

Theorem 2.1. Let A and B be nonempty closed subsets of a complete metric

space (X, d). Assume that A0 is nonempty set endowed with the graph G and

T : A → CL(B) be a mapping such that for each (x, y) ∈ E, we have

(2.1) H(T x, T y) 6 α d(x, y)

where α ∈ (0, 1). Further, assume that the following conditions hold:

(i) for each x ∈ A0, we have T x ⊆ B0 ;

(ii) the pair (A, B) satisfies weak PG-property;

(iii) for a, b ∈ A, u ∈ T x and v ∈ T y such that d(u, v) 6
√

αd(x, y) and

d(a, u) = d(b, v) = dist(A, B) then (a, b) ∈ E, whenever (x, y) ∈ E;

(iv) there exist x0, x1 ∈ A0 with (x0, x1) ∈ E and we have y0 ∈ T x0 such that

d(x1, y0) = dist(A, B);
(v) T is G-continuous.

Then there exists x∗ ∈ A0 such that d(x∗, T x∗) = dist(A, B).

Before giving the proof of our result we have the following remark.

Remark 2.2. Note that contractive condition (2.1) holds on a subset of A0×A0

whereas contractive condition (1.1) holds on A×A. Therefore, contractive condition
(2.1) is weaker then corresponding condition (1.1).

It is evident from Example 2.1 that condition (ii) of our Theorem 2.1 is weaker
than corresponding condition (ii) of Theorem 1.1.

If we consider the graph G = (A, A × A), we see that the contractive condition
(2.1) holds on A × A. In this case conditions (iii) and (iv) of our Theorem 2.1 are
automatically satisfied. Thus, Theorem 1.1 is a special case of Theorem 2.1.
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Proof. By hypothesis (iv) there exist x0, x1 ∈ A0 with (x0, x1) ∈ E and
y0 ∈ T x0 such that d(x1, y0) = dist(A, B). From (2.1), we have

d(y0, T x1) 6 H(T x0, T x1) 6 α d(x0, x1).

As α > 0, then by Lemma 1.1, we have y1 ∈ T x1 such that

(2.2) d(y0, y1) 6
1√
α

d(y0, T x1) 6
√

α d(x0, x1).

Since T x1 ⊆ B0, then for y1 ∈ T x1 ⊂ B0, we have x2 ∈ A0 satisfying d(x2, y1) =
dist(A, B). Thus, by hypothesis (iii), we have (x1, x2) ∈ E. As (A, B) satisfies the
weak PG-property, we have

(2.3) d(x1, x2) 6 d(y0, y1).

From (2.2) and (2.3), we have

(2.4) d(x1, x2) 6
√

α d(x0, x1).

Again from (2.1), we have d(y1, T x2) 6 H(T x1, T x2) 6 α d(x1, x2). By using
Lemma 1.1, we have y2 ∈ T x2 such that

(2.5) d(y1, y2) 6
1√
α

d(y1, T x2) 6
√

α d(x1, x2).

Since y2 ∈ T x2 ⊆ B0, there exists x3 ∈ A0 such that d(x3, y2) = dist(A, B). Thus,
by hypothesis (iii), we have (x2, x3) ∈ E. As (A, B) satisfies the weak PG-property,
we have

(2.6) d(x2, x3) 6 d(y1, y2).

From (2.6), (2.5) and (2.4), we have

d(x2, x3) 6
√

α d(x1, x2) 6 α d(x0, x1).

Continuing in this way, we get two sequences {xn} ⊆ A0 with (xn, xn+1) ∈ E and
{yn} ⊆ B0 with yn ∈ T xn, such that

(2.7) d(xn, yn−1) = dist(A, B) for each n ∈ N.

Moreover,

d(xn, xn+1) 6 d(yn−1, yn) 6 (
√

α)nd(x0, x1) for each n ∈ N.

For n > m, we have

d(xn, xm) 6
m−1
∑

i=n

d(xi, xi+1) 6
m−1
∑

i=n

(
√

α)id(x0, x1) <
∞

∑

i=n

(
√

α)id(x0, x1) < ∞.

Hence {xn} is a Cauchy sequence in A. Similarly, {yn} is a Cauchy sequence
in B. Since A and B are closed subsets of a complete metric space, there exist
x∗ ∈ A and y∗ ∈ B such that xn → x∗ and yn → y∗. By (2.7), we conclude that
d(x∗, y∗) = dist(A, B) as n → ∞. Since T is G-continuous, clearly, y∗ ∈ T x∗.
Hence dist(A, B) 6 d(x∗, T x∗) 6 d(x∗, y∗) = dist(A, B). Therefore x∗ is a best
proximity point of the mapping T . �
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Theorem 2.2. Let A and B be nonempty closed subsets of a complete metric

space (X, d). Assume that A0 is nonempty set endowed with the graph G and

T : A → CL(B) be a mapping such that for each (x, y) ∈ E, we have

H(T x, T y) 6 α d(x, y)

where α ∈ (0, 1). Further, assume that the following conditions hold:

(i) for each x ∈ A0, we have T x ⊆ B0;

(ii) the pair (A, B) satisfies weak PG-property;

(iii) for a, b ∈ A, u ∈ T x and v ∈ T y such that d(u, v) 6
√

α d(x, y) and

d(a, u) = d(b, v) = dist(A, B) then (a, b) ∈ E, whenever (x, y) ∈ E;

(iv) there exist x0, x1 ∈ A0 with (x0, x1) ∈ E and we have y0 ∈ T x0 such that

d(x1, y0) = dist(A, B);
(v) for each sequence {xn} in A0 such that (xn, xn+1) ∈ E for each n ∈ N

and xn → x, we have (xn, x) ∈ E.

Then there exists x∗ ∈ A0 such that d(x∗, T x∗) = dist(A, B).

Proof. Following the proof of Theorem 2.1, we get Cauchy sequences {xn} ⊆
A0 with (xn, xn+1) ∈ E and {yn} ⊆ B0 with yn ∈ T xn, such that

(2.8) d(xn, yn−1) = dist(A, B) for each n ∈ N

and xn → x∗ ∈ A and yn → y∗ ∈ B. By hypothesis (v), we have (xn, x∗) ∈ E.
From (2.1), we have

d(yn, T x∗) 6 H(T xn, T x∗) 6 α d(xn, x∗)

Letting n → ∞, in the above inequality, we get

d(y∗, T x∗) = lim
n→∞

d(yn, T x∗) = 0.

This implies that, y∗ ∈ T x∗. By (2.8), we conclude that d(x∗, y∗) = dist(A, B) as
n → ∞. Hence dist(A, B) 6 d(x∗, T x∗) 6 d(x∗, y∗) = dist(A, B). Therefore x∗ is a
best proximity point of the mapping T . �

Example 2.2. Let X = R
2 be endowed with metric d((x1, y1), (x2, y2)) =

|x1 − x2| + |y1 − y2|. Suppose that A = {(1, x) : x ∈ R} and B = {(0, x) : x ∈ R}.
For given A and B, we have A0 = A and B0 = B. The graph G = (V, E) is defined
as V = A and E = {((1, x), (1, y)) : 0 6 x, y 6 1} ∪ {((1, x), (1, x)) : x ∈ R}. Define
T : A → CL(B) by

T (1, x) =











{(0, 0)} if x < 0

{(0, 0), (0, x/4)} if 0 6 x 6 1

{(0, 0), (0, x2)} if x > 1.

It is easy to see that for each (x, y) ∈ E, the inequality (2.1) holds with α = 1
4 .

Furthermore,

• for each x ∈ A0 we have T x ⊆ B0 and the pair (A, B) satisfies the weak
PG-property;

• for each a, b ∈ A, u ∈ T x and v ∈ T y such that d(u, v) 6
√

α d(x, y) and
d(a, u) = d(b, v) = dist(A, B), we have (a, b) ∈ E, whenever (x, y) ∈ E;



214 ALI AND KAMRAN

• Hypothesis (iv) trivially holds. To see, take x0 = (1, 1), x1 = (1, 0) and
y0 = (0, 0) ∈ T x0;

• for each sequence {xn} in A0 such that (xn, xn+1) ∈ E for each n ∈ N

and xn → x, we have (xn, x) ∈ E.

Therefore, all the conditions of Theorem 2.2 hold and T has a best proximity point.

If we assume that T is a singlevalued nonself mapping, then the above theorems
reduce to the following results:

Corollary 2.1. Let A and B be nonempty closed subsets of a complete metric

space (X, d). Assume that A0 is nonempty set endowed with the graph G and

T : A → B be a mapping such that for each (x, y) ∈ E, we have

d(T x, T y) 6 α d(x, y)

where α ∈ (0, 1). Further, assume that the following conditions hold:

(i) for each x ∈ A0, we have T x ∈ B0;

(ii) the pair (A, B) satisfies weak PG-property;

(iii) for a, b ∈ A and u = T x, v = T y ∈ B such that d(u, v) 6
√

α d(x, y) and

d(a, u) = d(b, v) = dist(A, B) then (a, b) ∈ E, whenever (x, y) ∈ E;

(iv) there exist x0, x1 ∈ A0 with (x0, x1) ∈ E and we have y0 = T x0 such that

d(x1, y0) = dist(A, B);
(v) T is G-continuous.

Then there exists x∗ ∈ A0 such that d(x∗, T x∗) = dist(A, B).

Corollary 2.2. Let A and B be nonempty closed subsets of a complete metric

space (X, d). Assume that A0 is a nonempty set endowed with the graph G and

T : A → B be a mapping such that for each (x, y) ∈ E, we have

d(T x, T y) 6 αd(x, y)

where α ∈ (0, 1). Further, assume that the following conditions hold:

(i) for each x ∈ A0, we have T x ∈ B0;

(ii) the pair (A, B) satisfies weak PG-property;

(iii) for a, b ∈ A and u = T x, v = T y ∈ B such that d(u, v) 6
√

α d(x, y) and

d(a, u) = d(b, v) = dist(A, B) then (a, b) ∈ E, whenever (x, y) ∈ E;

(iv) there exist x0, x1 ∈ A0 with (x0, x1) ∈ E and we have y0 = T x0 ∈ B such

that d(x1, y0) = dist(A, B);
(v) for each sequence {xn} in A0 such that (xn, xn+1) ∈ E for each n ∈ N

and xn → x, we have (xn, x) ∈ E.

Then there exists x∗ ∈ A0 such that d(x∗, T x∗) = dist(A, B).
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