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REMARKS ON NEIGHBORHOOD

STAR-MENGER SPACES

Yan-Kui Song

Abstract. A space X is said to be neighborhood star-Menger if for every
sequence (Un : n ∈ N) of open covers of X one can choose finite An ⊆ X,
n ∈ N such that for every open On ⊇ An, n ∈ N, {St(On, Un) : n ∈ N} is
an open cover of X. We investigate the relationship between neighborhood
star-Menger spaces and related spaces, and study the topological properties of

neighborhood star-Menger spaces.

1. Introduction

By a space, we mean a topological space. We give definitions of terms which are
used in this paper. Let N denote the set of positive integers. Let X be a space and
U a collection of subsets of X . For A ⊆ X , let St(A, U) =

⋃

{U ∈ U : U ∩ A 6= ∅}.
As usually, we write St(x, U) instead of St({x}, U).

Let A and B be collections of open covers of a space X . Then the symbol
S1(A, B) denotes the selection hypothesis so that for each sequence (Un : n ∈ N)
of elements of A there exists a sequence (Un : n ∈ N) such that for each n ∈ N,
Un ∈ Un and {Un : n ∈ N} is an element of B. The symbol Sfin(A, B) denotes the
selection hypothesis so that for each sequence (Un : n ∈ N) of elements of A there
exists a sequence (Vn : n ∈ N) such that for each n ∈ N, Vn is a finite subset of Un

and
⋃

n∈N
Vn is an element of B (see [6, 11]).

Kočinac [7, 8] introduced a star selection hypothesis similar to the previous
ones. Let A and B be collections of open covers of a space X . Then:

(A) The symbol S∗

fin(A, B) denotes the selection hypothesis so that for each
sequence (Un : n ∈ N) of elements of A there exists a sequence (Vn : n ∈ N) such
that for each n ∈ N, Vn is a finite subset of Un and

⋃

n∈N
{St(V, Un) : V ∈ Vn} is

an element of B.
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(B) The symbol SS∗

fin(A, B) denotes the selection hypothesis so that for each
sequence (Un : n ∈ N) of elements of A there exists a sequence (An : n ∈ N) of
finite subsets of X such that {St(An, Un) : n ∈ N} ∈ B.

Bonanzinga et al. [2] introduced the following definition.
(C) The symbol NSM(A, B) denotes the selection hypothesis so that for each

sequence (Un : n ∈ N) of elements of A one can choose finite An ⊆ X, n ∈ N, such
that for every open On ⊇ An, n ∈ N, {St(On, Un) : n ∈ N} ∈ B.

Let O denote the collection of all open covers of X .

Definition 1.1. [7, 8] A space X is said to be star-Menger if it satisfies the
selection hypothesis S∗

fin(O, O).

Definition 1.2. [7, 8] A space X is said to be strongly star-Menger if it
satisfies the selection hypothesis SS∗

fin(O, O).

Definition 1.3. [2] A space X is said to be neighborhood star-Menger if it
satisfies the selection hypothesis NSM(O, O).

From the above definitions, we have the following diagram

strongly star-Menger ⇒ neighborhood star-Menger ⇒ star-Menger.

The purpose of this paper is to investigate the relationships between neighbor-
hood star-Menger spaces and related spaces, and also study topological properties
of neighborhood star-Menger spaces.

Throughout this paper, let ω denote the first infinite cardinal, ω1 the first
uncountable cardinal, c the cardinality of the set of all real numbers. For a cardinal
κ, let κ+ be the smallest cardinal greater than κ. For each pair of ordinals α, β
with α < β, we write [α, β) = {γ : α 6 γ < β}, (α, β] = {γ : α < γ 6 β},
(α, β) = {γ : α < γ < β} and [α, β] = {γ : α 6 γ 6 β}. As usually, a cardinal is an
initial ordinal and an ordinal is the set of smaller ordinals. Every cardinal is often
viewed as a space with the usual order topology. Other terms and symbols that we
do not define follow from [5].

2. Neighborhood star-Menger spaces and related spaces

In this section, first we give some examples to clarify the relationships between
neighborhood star-Menger spaces and related spaces. Recall that a space is called
Urysohn if every two distinct points have neighborhoods with disjoint closures.
Clearly, the property is between the Hausdorff condition and regularity. First we
give a consistent example showing that there exists a neighborhood star-Menger
space that is not strongly star-Menger by using the following example from [2]. We
make use of one of the cardinals defined in [4]. Define ωω as the set of all functions
from ω to itself. For all f, g ∈ωω, we say f 6∗ g if and only if f(n) 6 g(n) for all but
finitely many n. The dominating number, denoted by d, is the smallest cardinality
of a cofinal subset of (ωω,6∗) (see [4] for details). Recall that a space X is strongly

star-Lindelöf (see [3] or [9] under different names) if for every open cover U of
X there exists a countable subset A of X such that X = St(A, U). Clearly every
strongly star-Menger space is strongly star-Lindelöf.
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Example 2.1. [2] (ω1 < d) There is a Urysohn neighborhood star-Menger
space that is not strongly star-Lindelöf (hence not strongly star-Menger).

Recall that a space X is strongly starcompact (see [3] or [9] under different
names) if for every open cover U of X there exists a finite subset A of X such
that X = St(A, U). It is well known that strongly starcompactness is equivalent to
countable compactness for Hausdorff spaces (see [3] or [9]). Recall that a space X
is weakly starcompact [1] if for every open cover U of X there exists a finite subset
A of X such that for every open O ⊇ A, X = St(O, U). It is clear that every
weakly starcompact space is neighborhood star-Menger. For T1 spaces, we have
the following example.

Example 2.2. There exists a T1 neighborhood star-Menger space that is not
strongly star-Menger.

Proof. Let X = [0, ω1) ∪ D, where D = {dα : α < ω1} is a set of cardinality
ω1. We topologize X as follows: [0, ω1) has the usual order topology and is an open
subspace of X ; a basic neighborhood of a point dα ∈ D takes the form

Oβ(dα) = {dα} ∪ (β, ω1), where β < ω1.

Then X is a T1 space.
First we show that X is neighborhood star-Menger. We only show that X is

weakly starcompact, since every weakly starcompact space is neighborhood star-
Menger. To this end, let U be an open cover of X . Without loss of generality,
we can assume that U consists of basic open subsets of X . Thus it is sufficient
to show that there exists a finite subset A of X such that for every open O ⊇ A,
X = St(O, U). Since [0, ω1) is countably compact, it is strongly starcompact (see
[3, 9]), then we can find a finite subset A1 of [0, ω1) such that [0, ω1) ⊆ St(A1, U).
On the other hand, if we pick α0 < ω1, then for every open O ∋ dα0

, D ⊆ St(O, U).
In fact, for each α < ω1, if dα ∈ Uα ∈ U , then Uα ∩ O 6= ∅ by the construction
of the topology of X , thus dα ∈ St(O, U). Therefore D ⊆ St(O, U). If we put
A = A1 ∪ {dα0

}, then A is a finite subset of X and X = St(O, U) for every open
O ⊇ A, which shows that X is weakly starcompact.

Next we show that X is not strongly star-Menger. For each n ∈ N, let

Un = {Oα(dα) : α < ω1} ∪ {[0, ω1)}.

Then Un is an open cover of X . Let us consider the sequence (Un : n ∈ N) of
open covers of X . It suffices to show that

⋃

n∈N
St(An, Un) 6= X for any sequence

(An : n ∈ N) of finite subsets of X . Let (An : n ∈ N) be any sequence of finite
subsets of X . For each n ∈ N, the set An ∩ {dα : α < ω1} is finite, since An

is finite. Then there exists αn < ω1 such that An ∩ {dα : α > αn} = ∅. Let
α′ = sup{αn : n ∈ N}. Then α′ < ω1 and

(
⋃

n∈N
An

)

∩ {dα : α > α′} = ∅. For
each n ∈ N, the set An ∩ [0, ω1) is finite suborder of the linear order [0, ω1) and
thus has a maximum. Let α′

n = max(An ∩ [0, ω1)). Then An ∩ (α′

n, ω1) = ∅. Let
α′′ = sup{α′

n : n ∈ N}. Then α′′ < ω1 and
(

⋃

n∈N
An

)

∩ (α′′, ω1) = ∅. If we pick
β > max{α′, α′′}. Then Oβ(dβ) ∩ An = ∅ for each n ∈ N. Hence dβ /∈ St(An, Un)
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for each n ∈ N, since Oβ(dβ) is the only element of Un containing the point dβ for
each n ∈ N, which shows that X is not strongly star-Menger. �

Remark 2.1. The author does not know if there exists a Hausdorff (Urysohn,
regular or Tychonoff) neighborhood star-Menger space that is not strongly star-
Menger.

Bonanzinga et al. [2] constructed an example showing that there exists a Ty-
chonoff star-Menger space X that is not strongly star-Lindelöf. In fact, the Ex-
ample also shows that there exists a Tychonoff star-Menger space X that is not
neighborhood star-Menger. Here we give the construction roughly for the sake of
completeness.

Example 2.3. [2] There exists a Tychonoff star-Menger space X that is not
neighborhood star-Menger.

Proof. Let D = {dα : α < κ} be a discrete space of cardinality κ and let
Y = D ∪ {d∗} be one-point compactification of D.

Let X = (Y × [0, κ+)) ∪ (D × {κ+}) be the subspace of the product space Y ×
[0, κ+]. Then X is star-Menger, but not strongly star-Lindelöf (see [2, Example 3.7]
for detail). Hence it is not neighborhood star-Menger, since every neighborhood
star-Menger space is strongly star-Lindelöf. �

Next we study the topological properties of neighborhood star-Menger spaces.
First we give an example from [1] that we shall use it in the following text.

Example 2.4. [1] Let A be an almost disjoint family of infinite subsets of ω
(i.e., the intersection of every two distinct elements of A is finite) and Let X = ω∪A
be the Isbell-Mrówka space constructed from A [3, 5]. Then

(1) X is strongly star-Menger if and only if |A| < d;
(2) If |A| = c, then X is not star-Menger.

If ω1 < d, the space X = ω ∪ A with |A| = ω1 is strongly star-Menger (hence
neighborhood star-Menger) by Example 2.4. It shows that a closed subset of a Ty-
chonoff strongly star-Menger (hence neighborhood star-Menger) space X need not
be neighborhood star-Menger, since A is a discrete closed subset of cardinality ω1.
Now we give a stronger example showing that a regular-closed subset of a Tychonoff
neighborhood star-Menger space X need not be neighborhood star-Menger. Here
a subset A of a space X is said to be regular-closed in X if Int A = A. For the next
example, we need the following Lemma.

Lemma 2.1. [2] A space X is neighborhood star-Menger if and only if for every

sequence (Un : n ∈ N) of open covers of X there exists a sequence (An : n ∈ N)
of finite subsets of X such that for every x ∈ X there exists n ∈ N such that

St(x, U) ∩ An 6= ∅.

Example 2.5. (ω1 < d) There exists a Tychonoff strongly star-Menger (hence
neighborhood star-Menger) space having a regular-closed subspace which is not
neighborhood star-Menger.
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Proof. Let S1 = ω ∪ A be the Isbell-Mrówka space with |A| = ω1 in Exam-
ple 2.4. Then S1 is Tychonoff strongly star-Menger by Example 2.4. Hence S1 is
neighborhood star-Menger.

Let D = {dα : α < ω1} be a discrete space of cardinality ω1 and Y = D ∪ {d∗}
one-point compactification of D. Let S2 = (Y × [0, ω))∪ (D ×{ω}) be the subspace
of the product space Y × [0, ω]. We show that S2 is not neighborhood star-Menger.
For each n ∈ N, let

Un = {Y × {m} : m ∈ ω} ∪ {{dα} × [0, ω] : α < ω1}.

Then Un is an open cover of S2. Let us consider the sequence (Un : n ∈ N) of open
covers of S2. It suffices to show that for any sequence (An : n ∈ N) of finite subsets
of S2, there exists a point a ∈ S2 such that St(a, Un) ∩ An = ∅ for all n ∈ N by
Lemma 2.1. Let (An : n ∈ N) be any sequence of finite subsets of S2. For each
n ∈ N, since An is finite, there exists αn < ω1 such that An ∩ ({dα} × [0, ω]) = ∅
for each α > αn. Let β = sup{αn : n ∈ N}. Then β < ω1 and

(

⋃

n∈N

An

)

∩ ({dα} × [0, ω]) = ∅ for each α > β.

Let us pick α > β. Since {dα} × [0, ω] is the only element of Un containing the
point 〈dα, ω〉 for each n ∈ N, St(〈dα, ω〉, Un) = {dα} × [0, ω] for each n ∈ N. Thus

(

⋃

n∈N

An

)

∩ St(〈dα, ω〉, Un) = ∅.

By the constructions of the topology of S2 and the open cover Un, we have

St(〈dα, ω〉, Un) = {dα} × [0, ω].

Hence St(〈dα, ω〉, Un) ∩ An = ∅ for all n ∈ N.
We assume S1 ∩ S2 = ∅. Let π : D × {ω} → A be a bijection. Let X be the

quotient image of the disjoint sum S1 ⊕ S2 obtained by identifying 〈dα, ω〉 of S2

with π(〈dα, ω〉) of S1 for every α < c. Let ϕ : S1 ⊕ S2 → X be the quotient map.
It is clear that ϕ(S2) is a regular-closed subspace of X which is not neighborhood
star-Menger, since it is homeomorphic to S2.

Finally we show that X is strongly star-Menger. To this end, let (Un : n ∈ N)
be a sequence of open covers of X . Since ϕ(S1) is homeomorphic to S1, then ϕ(S1)
is strongly star-Menger, there exists a sequence (A′

n : n ∈ N) of finite subsets of
ϕ(S1) such that ϕ(S1) ⊆

⋃

n∈N
St(A′

n, Un). On the other hand, for each n ∈ ω,
since ϕ(Y × {n}) is homeomorphic to Y × {n}, then ϕ(Y × {n}) is compact, we
can find a finite subset A′′

n ⊆ ϕ(Y × {n}) such that ϕ(Y × {n}) ⊆ St(A′′

n, Un+1).
For each n ∈ N, we put An = A′

n ∪ A′′

n−1. Then the sequence (An : n ∈ N) of
finite subsets of X witnesses that X is strongly star-Menger, which completes the
proof. �

In the following, we give a positive result, which can be easily proved.

Theorem 2.1. If X is a neighborhood star-Menger space, then every open and

closed subset of X is neighborhood star-Menger.
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It is known that a continuous image of a strongly star-Menger space is strongly
star-Menger. Similarly, we have the following result.

Theorem 2.2. A continuous image of a neighborhood star-Menger space is

neighborhood star-Menger.

Proof. Let f : X → Y be a continuous mapping from a neighborhood star-
Menger space X onto a space Y . Let (Un : n ∈ N) be a sequence of open covers of
Y . Then ({f−1(U) : U ∈ Un} : n ∈ N) is a sequence of open covers of X . Since X is
neighborhood star-Menger, there exists a sequence (An : n ∈ N) of finite subsets of
X such that for every open On ⊇ An, n ∈ N, {St(On, {f−1(U) : U ∈ Un}) : n ∈ N}
is an open cover of X . Thus (f(An) : n ∈ N) is a sequence of finite subsets of Y .
We only show that for every open Wn ⊇ f(An), n ∈ N, {St(Wn, Un) : n ∈ N} is an
open cover of Y . In fact, let y ∈ Y . Then there is x ∈ X such that f(x) = y. Let
Wn be an open subset of Y such that f(An) ⊆ Wn for n ∈ N. Then f−1(Wn) is an
open subset of X , An ⊆ f−1(Wn) for each n ∈ N and

{St(f−1(Wn), {f−1(U) : U ∈ Un}) : n ∈ N}

is an open cover of X . Hence there exist n ∈ N and U ∈ Un such that x ∈ f−1(U)
and f−1(U) ∩ f−1(Wn) 6= ∅. Thus y = f(x) ∈ f(f−1(U)) = U and U ∩ Wn 6= ∅.
This means that y ∈ St(Wn, Un), which completes the proof. �

Next we turn to considering preimages. To show that the preimage of a neigh-
borhood star-Menger space under a closed 2-to-1 continuous map need not be neigh-
borhood star-Menger, we use the Alexandorff duplicate A(X) of a space X . The
underlying set A(X) is X × {0, 1}; each point of X × {1} is isolated and a basic
neighborhood of 〈x, 0〉 ∈ X×{0} is a set of the form (U×{0})∪((U×{1})r{〈x, 0〉}),
where U is a neighborhood of x in X .

Example 2.6. (ω1 < d) There exists a closed 2-to-1 continuous map f : X → Y
such that Y is a neighborhood star-Menger space, but X is not neighborhood star-
Menger.

Proof. Let Y be the space S1 in the proof of Example 2.5. Then Y is neigh-
borhood star-Menger. Let X be the Alexandorff duplicate A(Y ) of the space Y .
Then X is not neighborhood star-Menger. In fact, let A = {〈a, 1〉 : a ∈ A}. Then
A is an open and closed subset of X with |A| = ω1, and each point 〈a, 1〉 is iso-
lated. Hence A(X) is not neighborhood star-Menger by Theorem 2.1, since A is
not neighborhood star-Lindelöf. Let f : X → Y be the projection. Then f is a
closed 2-to-1 continuous map, which completes the proof. �

Now we give a positive result:

Theorem 2.3. Let f be an open and closed, finite-to-one continuous map from

a space X onto a neighborhood star-Menger space Y . Then X is neighborhood

star-Menger.

Proof. Let (Un : n ∈ N) be a sequence of open covers of X and let y ∈ Y . For
each n ∈ N, since f−1(y) is finite, there exists a finite subcollection Un,y of Un such
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that f−1(y) ⊆
⋃

Un,y and U ∩f−1(y) 6= ∅ for each U ∈ Un,y. Since f is closed, there
exists an open neighborhood Vn,y of y in Y such that f−1(Vn,y) ⊆

⋃

{U : U ∈ Un,y}.
Since f is open, we can assume that

(2.1) Vn,y ⊆
⋂

{f(U) : U ∈ Un,y}.

For each n ∈ N, taking such open set Vn,y for each y ∈ Y , we have an open cover
Vn = {Vn,y : y ∈ Y } of Y . Thus (Vn : n ∈ N) is a sequence of open covers of Y,
so that there exists a sequence (An : n ∈ N) of finite subsets of Y such that for
very open On ⊇ An, n ∈ N, {St(On, Vn) : n ∈ N} is an open cover of Y , since
Y is neighborhood star-Menger. Since f is finite-to-one, (f−1(An) : n ∈ N) is a
sequence of finite subsets of X . We show that for very open O′

n ⊇ f−1(An), n ∈ N,
{St(O′

n, Un) : n ∈ N} is an open cover of X . Since f is closed and An is finite, there
exists an open subset On such that An ⊆ On and f−1(On) ⊆ O′

n for each n ∈ N,
thus {St(On, Vn) : n ∈ N} is an open cover of Y . Let x ∈ X . Then there exist
n ∈ N and y ∈ Y such that f(x) ∈ Vn,y and Vn,y ∩ On 6= ∅. Since

x ∈ f−1(Vn,y) ⊆
⋃

{U : U ∈ Un,y},

we can choose U ∈ Un,y with x ∈ U . Then Vn,y ⊆ f(U) by (2.1), and hence
U ∩ f−1(On) 6= ∅. Since f−1(On) ⊆ O′

n for each n ∈ N, U ∩ O′

n 6= ∅. Thus
x ∈ St(O′

n, Un). Hence {St(O′

n, Un) : n ∈ N} is an open cover of X , which shows
that X is neighborhood star-Menger. �

Example 2.7. (ω1 < d) There exist a neighborhood star-Menger space X and
a compact space Y such that X × Y is not neighborhood star-Menger.

Proof. Let X be the space S1 in the proof of Example 2.5. Then X is neigh-
borhood star-Menger. Let D = {dα : α < ω1} be a discrete space of cardinality ω1

and Y = D ∪{d∗} the one-point compactification of D. We show that X ×Y is not
neighborhood star-Menger. Since |A| = ω1, we can enumerate A as {aα : α < ω1}.
For each n ∈ N, let

Un = {({aα} ∪ aα) × (Y r {dα}) : α < ω1} ∪ {X × {dα} : α < ω1} ∪ {ω × Y }.

Then Un is an open cover of X × Y . Let us consider the sequence (Un : n ∈ N) of
open covers of X × Y . It suffices to show that for any sequence (An : n ∈ N) of
finite subsets of X × Y there exists a point a ∈ X × Y such that St(a, Un) ∩ An = ∅
for all n ∈ N by Lemma 2.1. Let (An : n ∈ N) be any sequence of finite subsets
of X × Y . For each n ∈ N, since An is finite, there exists αn < ω1 such that
An ∩ (X × {dα}) = ∅ for each α > αn. Let β = sup{αn : n ∈ N}. Then β < ω1 and
(

⋃

n∈N
An

)

∩ (X × {dα}) = ∅ for each α > β. Pick α > β, since X × {dα} is the
only element of Un containing the point 〈aα, dα〉 for each n ∈ N, St(〈aα, dα〉, Un) =
X × {dα} for each n ∈ N. Thus

(

⋃

n∈N

An

)

∩ St(〈aα, dα〉, Un) = ∅.

By the constructions of the topology of X × Y and the open cover Un, we have
St(〈aα, dα〉, Un) = X × {dα}. Hence St(〈aα, dα〉, Un) ∩ An = ∅ for all n ∈ N. �
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Remark 2.2. Example 2.7 also shows that Theorem 2.3 fails to be true if
“open and closed, finite-to-one" is replaced by “open perfect”. The author does not
know if there exists a ZFC example showing that the product of a neighborhood
star-Menger space X and a compact space Y is not neighborhood star-Menger

The following well-known example shows that the product of two countably
compact (and hence neighborhood star-Menger) spaces need not be neighborhood
star-Menger. Here we give the proof roughly for the sake of completeness. For a
Tychonoff space X , let βX denote the Čech-Stone compactification of X .

Example 2.8. There exist two countably compact (hence neighborhood star-
Menger) spaces X and Y such that X × Y is not neighborhood star-Menger.

Proof. Let D be a discrete space of cardinality c. We can define X =
⋃

α<ω1
Eα and Y =

⋃

α<ω1
Fα, where Eα and Fα are the subsets of βD which

are defined inductively so as to satisfy the following conditions (1), (2) and (3):

(1) Eα ∩ Fβ = D if α 6= β;
(2) |Eα| 6 c and |Fβ | 6 c;
(3) every infinite subset of Eα (resp., Fα) has an accumulation point in Eα+1

(resp., Fα+1).

These sets Eα and Fα are well-defined since every infinite closed set in βD has
cardinality 2c (see [10]). Then X × Y is not neighborhood star-Menger, because
the diagonal {〈d, d〉 : d ∈ D} is a discrete open and closed subset of X × Y with
cardinality c and the open and closed subsets of neighborhood star-Menger spaces
are neighborhood star-Menger. �
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