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CERTAIN CURVATURE CONDITIONS

ON KENMOTSU MANIFOLDS ADMITTING

A QUARTER-SYMMETRIC METRIC CONNECTION

Peibiao Zhao, Uday Chand De,

Krishanu Mandal, and Yanling Han

Abstract. We study certain curvature properties of Kenmotsu manifolds
with respect to the quarter-symmetric metric connection. First we consider
Ricci semisymmetric Kenmotsu manifolds with respect to a quarter-symmetric
metric connection. Next, we study ξ-conformally flat and ξ-concircularly
flat Kenmotsu manifolds with respect to the quarter-symmetric metric con-
nection. Moreover, we study Kenmotsu manifolds satisfying the condition
Z̃(ξ, Y ) · S̃ = 0, where Z̃ and S̃ are the concircular curvature tensor and
Ricci tensor respectively with respect to the quarter-symmetric metric connec-
tion. Then, we prove the non-existence of ξ-projectively flat and pseudo-Ricci
symmetric Kenmotsu manifolds with respect to the quarter-symmetric metric
connection. Finally, we construct an example of a 5-dimensional Kenmotsu
manifold admitting a quarter-symmetric metric connection for illustration.

1. Introduction

A linear connection ∇̃ in a Riemannian manifold M is said to be a quarter
symmetric connection [7] if the torsion tensor T of the connection ∇̃

(1.1) T (X, Y ) = ∇̃XY − ∇̃Y X − [X, Y ]

satisfies

(1.2) T (X, Y ) = η(Y )φX − η(X)φY,

where η is a 1-form and φ is a (1, 1) tensor field. A linear connection ∇̃ is called a
metric connection of M if

(1.3) (∇̃Xg)(Y, Z) = 0,
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where X, Y, Z ∈ χ(M), where χ(M) is the set of all differentiable vector fields on M .
A linear connection ∇̃ satisfying (1.2) and (1.3) is called a quarter-symmetric met-
ric connection [7]. If we change φX by X , then the connection is called a semi-
symmetric metric connection [30]. Thus the notion of quarter-symmetric con-
nection generalizes the notion of the semi-symmetric connection. Semi-symmetric
metric connections have been studied by several authors such as Özgür and Sular
[18, 19], Ozen et al [20, 21], Prvanović [23], Smaranda and Andonie [26], Singh
and Pandey [27] and many others.

A transformation in an n-dimensional Riemannian manifold M , which trans-
forms every geodesic circle of M into a geodesic circle of M , is said to be a concir-
cular transformation [31, 14]. A concircular transformation is always a conformal
transformation [14]. Here, we mean a geodesic circle by a curve in M whose first
curvature is constant and second curvature is identically zero. Thus, the geometry
of concircular transformations is a generalization of inversive geometry in the sense
that the change of metric is more general than that induced by a circle preserving
diffeomorphism [2]. An important invariant of a concircular transformation is the
concircular curvature tensor Z, defined by [31]

(1.4) Z(X, Y )W = R(X, Y )W −
r

n(n − 1)
[g(Y, W )X − g(X, W )Y ],

for all X, Y, W ∈ χ(M), where R is the Riemannain curvature tensor and r is the
scalar curvature with respect to the Levi-Civita connection. The importance of
concircular transformation and concircular curvature tensor is very well known in
the differential geometry of certain F -structure such as complex, almost complex,
Kähler, almost Kähler, contact and almost contact structure etc., [3, 34, 33].

Riemannian manifolds with vanishing concircular curvature tensor are of con-
stant curvature. Thus, the concircular curvature tensor is a measure of the failure
of a Riemannian manifold to be of constant curvature.

The Weyl conformal curvature tensor is defined by [33]

C(X, Y )Z = R(X, Y )Z −
1

n − 2
{S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX(1.5)

− g(X, Z)QY } +
r

(n − 1)(n − 2)
{g(Y, Z)X − g(X, Z)Y },

where S is the Ricci tensor of type (0, 2) and Q is the Ricci operator defined by

S(X, Y ) = g(QX, Y ).

Let M be an n-dimensional Riemannian manifold. If there exists a one-to-
one correspondence between each coordinate neighborhood of M and a domain in
Euclidean space such that any geodesic of the Riemannian manifold corresponds to
a straight line in the Euclidean space, then M is said to be locally projectively flat.
For n > 3, M is locally projectively flat if and only if the well-known projective
curvature tensor P vanishes. Here P is defined by [28]

(1.6) P (X, Y )Z = R(X, Y )Z −
1

n − 1
[S(Y, Z)X − S(X, Z)Y ],
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for all X, Y, Z ∈ χ(M). In fact, M is projectively flat if and only if it is of constant
curvature. Thus the projective curvature tensor is the measure of the failure of a
Riemannian manifold to be of constant curvature.

A non-flat n-dimensional Riemannian manifold (M, g), n > 3 is called pseudo
Riccisymmetric [5] with respect to the quarter-symmetric metric connection if there
exists a non-zero 1-form α on M such that

(1.7) (∇̃X S̃)(Y, U) = 2α(X)S̃(Y, U) + α(Y )S̃(X, U) + α(U)S̃(Y, X),

where X, Y, U ∈ χ(M).
Quarter-symmetric metric connection in a Riemannian manifold have been

studied by several authors such as Mandal and De [15], Rastogi [24, 25], Yano and
Imai [32], Mukhopadhyay, Roy and Barua [16], Han et al [8, 9], Biswas and De [4]
and many others. Recently, Sular, Özgür and De [29] studied quarter-symmetric
metric connection in a Kenmotsu manifold.

Motivated by the above studies in the present paper, we study quarter-sym-
metric metric connection in a Kenmotsu manifold. The paper is organized as
follows: In section 2, we give a brief account of Kenmotsu manifolds. In section
3, we give the curvature tensor and the Ricci tensor of a Kenmotsu manifold with
respect to the quarter-symmetric metric connection. Next, in section 4 we consider
Ricci semisymmetric Kenmotsu manifolds with respect to the quarter-symmetric
metric connection and prove that a Ricci semisymmetric Kenmotsu manifold with
respect to the quarter-symmetric metric connection is an Einstein manifold with
respect to the Levi-Civita connection. Section 5 is devoted to study ξ-conformally
flat Kenmotsu manifolds with respect to the quarter-symmetric metric connec-
tion and prove that a ξ-conformally flat Kenmotsu manifold with respect to the
quarter-symmetric metric connection is an η-Einstein manifold with respect to the
Levi-Civita connection. Section 6 deals with ξ-concircularly flat Kenmotsu mani-
folds with respect to the quarter-symmetric metric connection and prove that if a
Kenmotsu manifold is ξ-concircularly flat then the scalar curvature r = −n(n − 1).
Next, we study Kenmotsu manifolds satisfying the condition Z̃(ξ, Y ) · S̃ = 0, where
Z̃ and S̃ are the concircular curvature tensor and Ricci tensor respectively with
respect to the quarter-symmetric metric connection and prove that in this case the
manifold is η-Einstein with respect to the Levi-Civita connection. In section 8, we
consider ξ-projectively flat and pseudo Riccisymmetric Kenmotsu manifolds with
respect to the quarter-symmetric metric connection. We obtain the non-existence
of these type manifolds. Finally, we construct an example of a 5-dimensional Ken-
motsu manifold admitting a quarter-symmetric metric connection to verify some
theorems.

2. Kenmotsu Manifolds

Let M be an n=(2m + 1)-dimensional almost contact metric manifold with an
almost contact metric structure (φ, ξ, η, g), where φ is a (1.1) tensor field, ξ is the
associated vector field, η is a 1-form and g is the Riemannian metric satisfying [1]

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(φX) = 0,(2.1)
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g(φX, φY ) = g(X, Y ) − η(X)η(Y ),(2.2)

g(φX, Y ) = −g(X, φY ), g(X, ξ) = η(X),(2.3)

for any vector fields X, Y on M . If an almost contact metric manifold satisfies
(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX , where ∇ denotes the Levi-Civita connection of
g, then M is called a Kenmotsu manifold [12]. From the above equations it follows

∇Xξ = X − η(X)ξ,(2.4)

(∇Xη)Y = g(X, Y ) − η(X)η(Y ).(2.5)

In addition to the above results in a Kenmotsu manifold the following conditions
hold [12, 29, 11]

R(X, Y )ξ = η(X)Y − η(Y )X, R(ξ, X)Y = η(Y )X − g(X, Y )ξ,

S(X, ξ) = −(n − 1)η(X), Qξ = −(n − 1)ξ, R(ξ, X)ξ = X − η(X)ξ,

S(φX, φY ) = S(X, Y ) + (n − 1)η(X)η(Y ),(2.6)

S(φX, Y ) = −S(X, φY ),(2.7)

where R is the curvature tensor, S is the Ricci tensor and Q is the Ricci operator.
A Kenmotsu manifold is normal, that is, the Nijenhuis tensor of φ equals −2dη ⊗ ξ

but not Sasakian. Moreover, Kenmotsu manifold is not compact since from the
equation (2.4) we have divξ = n − 1. In [12], Kenmotsu showed (1) that locally
a Kenmotsu manifold is a warped product I ×f N , where I is an interval, N

is a Kähler manifold and f is a warping function defined by f(t) = set, s is a
nonzero constant; (2) that a Kenmotsu manifold of constant φ-sectional curvature
is a space of constant curvature −1, hence it is hyperbolic space. Let M be a
Kenmotsu manifold. M is said to be an η-Einstein manifold if there exists the real
valued functions a and b such that S(X, Y ) = ag(X, Y ) + bη(X)η(Y ). For b = 0,
the manifold M is an Einstein manifold. Now we state the following:

Lemma 2.1. [12] Let M be an η-Einstein Kenmotsu manifold of the form
S(X, Y ) = ag(X, Y ) + bη(X)η(Y ). Then a + b = −(n − 1). If b = constant
(or, a = constant), then M is an Einstein one.

Kenmotsu manifolds have been studied by several authors such as Pitis [22],
De and Pathak [6], Jun, De and Pathak [11], Özgür and De [17], Kirichenko [13],
Hong et al [10] and many others.

3. Curvature Tensor

The quarter-symmetric metric connection ∇̃ and the Levi-Civita connection ∇
on a Kenmotsu manifold are related by [29]

(3.1) ∇̃XY = ∇XY − η(X)φY,

for all vector fields X, Y on M . Let R̃ and R be the Riemannian curvature tensor
with respect to the quarter-symmetric metric connection and Levi-Civita connec-
tion respectively of a Kenmotsu manifold. Then the relation between R̃ and R is
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given by [29]

R̃(X, Y )Z = R(X, Y )Z + η(X)g(φY, Z)ξ − η(Y )g(φX, Z)ξ

− η(X)η(Z)φY + η(Y )η(Z)φX.

Also in a Kenmotsu manifold with respect to the quarter-symmetric metric con-
nection the following relations hold [29]

R̃(X, Y )ξ = η(X)Y − η(Y )X − η(X)φY + η(Y )φX,(3.2)

R̃(X, ξ)Y = g(X, Y )ξ − η(Y )X − g(φX, Y )ξ + η(Y )φX,(3.3)

R̃(ξ, X)ξ = X − η(X)ξ − φX,(3.4)

S̃(X, Y ) = S(X, Y ) + g(φX, Y ),(3.5)

S̃(X, ξ) = S(X, ξ) = −(n − 1)η(X),(3.6)

r̃ = r,(3.7)

where S̃ and r̃ are the Ricci tensor and the scalar curvature respectively with respect
to the quarter-symmetric metric connection. Moreover, it is noted that the Ricci
tensor S̃ with respect to the quarter-symmetric metric connection is not symmetric.
Using expressions (3.2) and (3.3), the following are easily obtained from (1.4)

Z̃(ξ, Y )U =
[

1 +
r̃

n(n − 1)

]

[η(U)Y − g(Y, U)ξ] + g(φY, U)ξ − η(U)φY(3.8)

Z̃(ξ, Y )ξ =
[

1 +
r̃

n(n − 1)

]

[Y − η(Y )ξ] − φY.(3.9)

4. Ricci Semisymmetric Kenmotsu Manifolds

with Respect to the Quarter-symmetric Metric Connection

In this section we consider Ricci semisymmetric Kenmotsu manifold with re-
spect to the quarter-symmetric metric connection ∇̃.

Definition 4.1. A manifold M is said to be Ricci semisymmetric manifold if
it satisfies R(X, Y ) · S = 0, where R is (1, 3)-type curvature tensor and S is the
(0, 2)-type Ricci tensor.

Let us consider an n-dimensional Kenmotsu manifold which is Ricci semisym-
metric with respect to the quarter-symmetric metric connection, that is,

R̃(X, Y ) · S̃ = 0,

where R̃(X, Y ) denotes the derivation of the tensor algebra at each point of the
manifold. This implies

(4.1) S̃(R̃(X, Y )U, V ) + S̃(U, R̃(X, Y )V ) = 0.

Substituting X = ξ in (4.1) and using (3.5) we get

S(R̃(ξ, Y )U, V ) + S(U, R̃(ξ, Y )V ) − g(R̃(ξ, Y )U, φV ) + g(φU, R̃(ξ, Y )V ) = 0.

Putting U = ξ in the above equation and in view of (3.3) and (3.4) yields

(4.2) S(Y, V ) − S(φY, V ) + (n − 2)g(φV, Y ) + ng(Y, V ) − η(Y )η(V ) = 0.
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Interchanging Y and V in the above equation we have

(4.3) S(V, Y ) − S(φV, Y ) + (n − 2)g(φY, V ) + ng(V, Y ) − η(V )η(Y ) = 0.

Adding (4.2) and (4.3) and using the facts (2.3) and (2.7) we obtain

(4.4) S(Y, V ) = −ng(Y, V ) + η(Y )η(V ).

Hence by Lemma 2.1, (4.4) implies that the manifold is an η-Einstein manifold.
Now, in this position we can state the following:

Theorem 4.1. Let M be a Ricci semisymmetric Kenmotsu manifold with re-
spect to the quarter-symmetric metric connection ∇̃. Then the manifold is an η-
Einstein manifold with respect to the Levi-Civita connection.

Now, using Lemma 2.1 and Theorem 4.1 we can state the following:

Theorem 4.2. Let M be a Ricci semisymmetric Kenmotsu manifold with re-
spect to the quarter-symmetric metric connection ∇̃. Then the manifold is an Ein-
stein manifold with respect to the Levi-Civita connection.

Since Ricci symmetric manifold (∇̃S̃ = 0) with respect to the quarter-symmetri-
c metric connection implies R̃ · S̃ = 0, therefore we obtain the following:

Corollary 4.1. If a Kenmotsu manifold is Ricci symmetric with respect to
the quarter-symmetric metric connection, then the manifold is an Einstein manifold
with respect to the Levi-Civita connection.

5. ξ-conformally Flat Kenmotsu Manifolds with Respect to the

Quarter-symmetric Metric Connection

ξ-conformally flat K-contact manifolds have been studied by Zhen et al [35].
Since at each point p ∈ Mn the tangent space Tp(Mn) can be decomposed into the
direct sum Tp(Mn) = φ(Tp(Mn)) ⊕ {ξp}, where {ξp} is the one-dimensional linear
subspace of Tp(Mn) generated by ξp, the conformal curvature tensor C is a map

C : Tp(Mn) × Tp(Mn) × Tp(Mn) → φ(Tp(Mn)) ⊕ {ξp}.

Definition 5.1. [35] An almost contact metric manifold Mn is called ξ-
conform-ally flat if the projection of the image of C onto {ξp} is zero, that is,
C(X, Y )ξ = 0, where C is the conformal curvature tensor defined in (1.5).

This section deals with ξ-conformally flat Kenmotsu manifold with respect to
the quarter-symmetric metric connection ∇̃, that is, C̃(X, Y )ξ = 0. From this and
(1.5) we have

R̃(X, Y )ξ −
1

n − 2
[S̃(Y, ξ)X − S̃(X, ξ)Y + η(Y )Q̃X − η(X)Q̃Y ](5.1)

+
r̃

(n − 1)(n − 2)
[η(Y )X − η(X)Y ] = 0.

With the help of (3.2), (3.5) and (3.6) we have from (5.1)

η(Y )QX − η(X)QY =
[

1 +
r̃

n − 1

]

[η(Y )X − η(X)Y ]
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+ (n − 3)[η(Y )φX − η(X)φY ].

Substituting Y = ξ in the above equation and using (3.7) we have

(5.2) QX =
(

1 +
r

n − 1

)

X −
(

n +
r

n − 1

)

η(Y )ξ + (n − 3)φX.

Taking the inner product of (5.2) with Y , we have

(5.3) S(X, Y ) =
(

1 +
r

n − 1

)

g(X, Y ) −
(

n +
r

n − 1

)

η(X)η(Y ) + (n − 3)g(φX, Y ),

where S(X, Y ) = g(QX, Y ). Interchanging X and Y in the above equation we
obtain

(5.4) S(Y, X) =
(

1 +
r

n − 1

)

g(Y, X) −
(

n +
r

n − 1

)

η(Y )η(X) + (n − 3)g(φY, X).

Adding (5.3) and (5.4) and using fact (2.3) yields

(5.5) S(X, Y ) =
(

1 +
r

n − 1

)

g(X, Y ) −
(

n +
r

n − 1

)

η(X)η(Y ).

Therefore by Lemma 2.1, (5.5) shows that the manifold under consideration is an
η-Einstein manifold. This leads to the following:

Theorem 5.1. A ξ-conformally flat Kenmotsu manifold with respect to the
quarter-symmetric metric connection is an η-Einstein manifold.

Since the conformally flatness implies ξ-conformally flat, therefore from the
above theorem we state the following:

Corollary 5.1. A conformally flat Kenmotsu manifold with respect to the
quarter-symmetric metric connection is an η-Einstein manifold.

6. ξ-concircularly flat Kenmotsu manifolds with respect

to the quarter-symmetric metric connection

Analogously to the definition of ξ-conformally flat almost contact metric man-
ifold, we define ξ-concircularly flat Kenmotsu manifolds.

Definition 6.1. A Kenmotsu manifold M is said to be ξ-concircularly flat
with respect to the quarter-symmetric metric connection if it satisfies

(6.1) Z̃(X, Y )ξ = 0,

for any vector fields X, Y ∈ χ(M) and Z̃ is the concircular curvature tensor defined
by (1.4) with respect to the quarter-symmetric metric connection.

In this section we study ξ-concircularly flat Kenmotsu manifolds with respect
to the quarter-symmetric metric connection ∇̃. Then from (1.4) and (6.1), we have

(6.2) R̃(X, Y )ξ −
r̃

n(n − 1)
[η(Y )X − η(X)Y ] = 0.

Using (3.2) and (3.7) we obtain from (6.2)

(6.3)
[

1 +
r

n(n − 1)

]

[η(X)Y − η(Y )X ] − η(X)φY + η(Y )φX = 0.
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Taking the inner product of (6.3) with U we obtain
[

1 +
r

n(n − 1)

]

[η(X)g(Y, U) − η(Y )g(X, U)](6.4)

−η(X)g(φY, U) + η(Y )g(φX, U) = 0.

Now putting Y = U = ei in (6.4), where {ei} is an orthonormal basis of the tangent
space at each point of the manifold, and taking summation over i = 1, 2, . . . , n

we get
[

1 + r
n(n−1)

]

(n − 1)η(X) = 0. Hence for n > 3, the scalar curvature

r = −n(n − 1). Therefore we conclude the following:

Theorem 6.1. If an n-dimensional (n > 3) Kenmotsu manifold is ξ-concircula-
rly flat with respect to the quarter-symmetric metric connection, then the scalar
curvature r = −n(n − 1).

7. Kenmotsu Manifolds Satisfying the Condition Z̃(ξ, Y ) · S̃ = 0

This section is devoted to study Kenmotsu manifold satisfying the condition

(7.1) Z̃(ξ, Y ) · S̃ = 0,

where Z̃ and S̃ are the concircular curvature tensor and Ricci tensor respectively
with respect to the quarter-symmetric metric connection. Equation (7.1) implies

(7.2) S̃(Z̃(ξ, Y )U, V ) + S̃(U, Z̃(ξ, Y )V ) = 0.

In view of (3.5) and (7.2) we have

S(Z̃(ξ, Y )U, V ) − g(Z̃(ξ, Y )U, φV )(7.3)

+ S(U, Z̃(ξ, Y )V ) + g(φU, Z̃(ξ, Y )V ) = 0.

Putting U = ξ in (7.3), we get

(7.4) S(Z̃(ξ, Y )ξ, V ) − g(Z̃(ξ, Y )ξ, φV ) + S(ξ, Z̃(ξ, Y )V ) = 0.

With the help of (3.7), (3.8) and (3.9) we have from (7.4)

(7.5)
[

1 +
r

n(n − 1)

]

[S(Y, V ) + (n − 1)η(Y )η(V )]

− S(φY, V ) −
{[

1 +
r

n(n − 1)

]

g(Y, φV ) − g(φY, φV )
}

− (n − 1)
{[

1 +
r

n(n − 1)

]

[η(V )η(Y ) − g(Y, V )] + g(φY, V )
}

= 0.

Interchanging Y and V in (7.5) yields

(7.6)
[

1 +
r

n(n − 1)

]

[S(V, Y ) + (n − 1)η(V )η(Y )]

− S(φV, Y ) −
{[

1 +
r

n(n − 1)

]

g(V, φY ) − g(φV, φY )
}

− (n − 1)
{[

1 +
r

n(n − 1)

]

[η(Y )η(V ) − g(V, Y )] + g(φV, Y )
}

= 0.



CERTAIN CURVATURE CONDITIONS ON KENMOTSU MANIFOLDS 177

Subtracting (7.5) from (7.6), we get

S(φY, V ) − S(φV, Y ) −
[

1 +
r

n(n − 1)

]

[g(V, φY )(7.7)

− g(Y, φV )] − (n − 1)[g(φV, Y ) − g(φY, V )] = 0.

In view of (2.7), (2.3) and (7.7) we have

(7.8) S(φY, V ) =
[

2 − n +
r

n(n − 1)

]

g(φY, V ).

Substituting V = φV in (7.8) and using (2.6) and (2.2) we obtain

(7.9) S(Y, V ) =
[

2 − n +
r

n(n − 1)

]

g(Y, V ) −
[

1 +
r

n(n − 1)

]

η(Y )η(V ).

Hence by Lemma 2.1, (7.9) shows the manifold under consideration is an η-Einstein
manifold.

From the above discussions we have the following:

Theorem 7.1. If a Kenmotsu manifold satisfies the condition Z̃(ξ, Y ) · S̃ = 0
with respect to the quarter-symmetric metric connection, then the manifold is an
η-Einstein manifold with respect to the Levi-Civita connection.

8. Non-existence of Certain Kinds of Kenmotsu Manifolds with

Respect to the Quarter-symmetric Metric Connection

Theorem 8.1. There is no ξ-projectively flat Kenmotsu manifold with respect
to the quarter-symmetric metric connection ∇̃.

Proof. Let us suppose that there exists a ξ-projectively flat Kenmotsu mani-
fold M with respect to the quarter-symmetric metric connection ∇̃. Then we have
P̃ (X, Y )ξ = 0, for any vector fields X and Y on M . From this and (1.6) we have

(8.1) R̃(X, Y )ξ −
1

n − 1
[S̃(Y, ξ)X − S̃(X, ξ)Y ] = 0.

With the help of (3.2) and (3.6) we obtain from (8.1)

(8.2) η(Y )φX − η(X)φY = 0.

Taking Y = ξ in (8.2) and using the facts φξ = 0 and η(ξ) = 1, we get φX = 0,
which is a contradiction. Therefore the statement of this theorem follows. �

Theorem 8.2. There is no pseudo Riccisymmetric Kenmotsu manifold with
respect to the quarter-symmetric metric connection ∇̃.

Proof. Suppose that there exists a pseudo Riccisymmetric Kenmotsu man-
ifold M with respect to the quarter-symmetric metric connection ∇̃. Then from
(1.7) we have

(8.3) (∇̃X S̃)(Y, U) = 2α(X)S̃(Y, U) + α(Y )S̃(X, U) + α(U)S̃(Y, X).

Taking U = ξ in (8.3) and using (3.6) we obtain

(8.4) (∇̃X S̃)(Y, ξ) = −2(n − 1)α(X)η(Y ) − (n − 1)α(Y )η(X) + α(ξ)S̃(Y, X).
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On the other hand, by the covariant differentiation of the Ricci tensor S̃ with
respect to the quarter-symmetric metric connection ∇̃, we have

(8.5) (∇̃X S̃)(Y, U) = ∇̃X S̃(Y, U) − S̃(∇̃XY, U) − S̃(Y, ∇̃XU).

So putting U = ξ in (8.5) and using (3.5), (3.1) and (2.4) we get

(8.6) (∇̃X S̃)(Y, ξ) = −(n − 1)g(X, Y ) − S(X, Y ) − g(X, φY ).

Then comparing the right hand sides of equations (8.4) and (8.6), we obtain

−2(n − 1)α(X)η(Y ) − (n − 1)α(Y )η(X) + α(ξ)S̃(Y, X)

= −(n − 1)g(X, Y ) − S(X, Y ) − g(X, φY ).

Substituting X and Y with ξ in the above equation we find (since n > 3)

(8.7) α(ξ) = 0.

Now we show that α = 0 holds for any vector field on M . Taking Y = ξ in (8.4)
and using (8.7) we have (∇̃X S̃)(ξ, ξ) = −2(n − 1)α(X). By the use of (8.6) we find
α(X) = 0 for every vector field X on M , which implies that α = 0 on M . This
contradicts to the definition of pseudo Riccisymmetry. �

9. Example of a 5-dimensional Kenmotsu Manifold Admitting a

Quarter-symmetric Metric Connection

We consider the 5-dimensional manifold M = {(x, y, z, u, v) ∈ R
5}, where

(x, y, z, u, v) are the standard coordinates in R
5. We choose the vector fields

e1 = e−v ∂

∂x
, e2 = e−v ∂

∂y
, e3 = e−v ∂

∂z
, e4 = e−v ∂

∂u
, e5 =

∂

∂v
,

which are linearly independent at each point of M .
Let g be the Riemannian metric defined by

g(ei, ej) = 0, i 6= j, i, j = 1, 2, 3, 4, 5

g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = g(e5, e5) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e5), for any Z ∈ χ(M).
Let φ be the (1, 1)-tensor field defined by

φe1 = e3, φe2 = e4, φe3 = −e1, φe4 = −e2, φe5 = 0.

Using the linearity of φ and g, we have

η(e5) = 1, φ2(Z) = −Z + η(Z)e5, g(φZ, φU) = g(Z, U) − η(Z)η(U),

for any U, Z ∈ χ(M). Thus, for e5 = ξ, M(φ, ξ, η, g) defines an almost contact
metric manifold. The 1-form η is closed. We have

Ω
( ∂

∂x
,

∂

∂z

)

= g
( ∂

∂x
, φ

∂

∂z

)

= g
( ∂

∂x
, −

∂

∂x

)

= −e2v.
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Hence, we obtain Ω = −e2vdx ∧ dz. Thus, dΩ = −2e2vdv ∧ dx ∧ dz = 2η ∧ Ω.
Therefore, M(φ, ξ, η, g) is an almost Kenmotsu manifold. It can be seen that
M(φ, ξ, η, g) is normal. So, it is a Kenmotsu manifold. Then we have

[e1, e2] = [e1, e3] = [e1, e4] = [e2, e3] = 0, [e1, e5] = e1,

[e4, e5] = e4, [e2, e4] = [e3, e4] = 0, [e2, e5] = e2, [e3, e5] = e3.

The Levi-Civita connection ∇ of the metric tensor g is given by Koszul’s formula
which is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(X, Z) − Zg(X, Y )

− g(X, [Y, Z]) − g(Y, [X, Z]) + g(Z, [X, Y ]).

Taking e5 = ξ and using Koszul’s formula we get the following

∇e1
e1 = −e5, ∇e1

e2 = 0, ∇e1
e3 = 0, ∇e1

e4 = 0, ∇e1
e5 = e1,

∇e2
e1 = 0, ∇e2

e2 = −e5, ∇e2
e3 = 0, ∇e2

e4 = 0, ∇e2
e5 = e2,

∇e3
e1 = 0, ∇e3

e2 = 0, ∇e3
e3 = −e5, ∇e3

e4 = 0, ∇e3
e5 = e3,

∇e4
e1 = 0, ∇e4

e2 = 0, ∇e4
e3 = 0, ∇e4

e4 = −e5, ∇e4
e5 = e4,

∇e5
e1 = 0, ∇e5

e2 = 0, ∇e5
e3 = 0, ∇e5

e4 = 0, ∇e5
e5 = 0.

Using the above relations in (3.1), we obtain

∇̃e1
e1 = −e5, ∇̃e1

e2 = 0, ∇̃e1
e3 = 0, ∇̃e1

e4 = 0, ∇̃e1
e5 = e1,

∇̃e2
e1 = 0, ∇̃e2

e2 = −e5, ∇̃e2
e3 = 0, ∇̃e2

e4 = 0, ∇̃e2
e5 = e2,

∇̃e3
e1 = 0, ∇̃e3

e2 = 0, ∇̃e3
e3 = −e5, ∇̃e3

e4 = 0, ∇̃e3
e5 = e3,

∇̃e4
e1 = 0, ∇̃e4

e2 = 0, ∇̃e4
e3 = 0, ∇̃e4

e4 = −e5, ∇̃e4
e5 = e4,

∇̃e5
e1 = −e3, ∇̃e5

e2 = −e4, ∇̃e5
e3 = e1, ∇̃e5

e4 = e2, ∇̃e5
e5 = 0.

By the above results, we can easily obtain the non-vanishing components of the
curvature tensors as follows:

R(e1, e2)e2 = R(e1, e3)e3 = R(e1, e4)e4 = R(e1, e5)e5 = −e1,

R(e1, e2)e1 = e2, R(e1, e3)e1 = R(e5, e3)e5 = R(e2, e3)e2 = e3,

R(e2, e3)e3 = R(e2, e4)e4 = R(e2, e5)e5 = −e2, R(e3, e4)e4 = −e3,

R(e2, e5)e2 = R(e1, e5)e1 = R(e4, e5)e4 = R(e3, e5)e3 = e5,

R(e1, e4)e1 = R(e2, e4)e2 = R(e3, e4)e3 = R(e5, e4)e5 = e4,

R̃(e1, e2)e2 = R̃(e1, e3)e3 = R̃(e1, e4)e4 = −e1,

R̃(e1, e2)e1 = e2, R̃(e1, e3)e1 = R̃(e2, e3)e2 = e3,

R̃(e2, e3)e3 = R̃(e2, e4)e4 = −e2, R̃(e2, e5)e5 = e4 − e2,

R̃(e3, e4)e4 = −e3, R̃(e2, e5)e2 = R̃(e1, e5)e1 = R̃(e4, e5)e4 = e5,

R̃(e3, e5)e3 = e5, R̃(e1, e4)e1 = R̃(e2, e4)e2 = R̃(e3, e4)e3 = e4,

R̃(e1, e5)e5 = e3 − e1, R̃(e3, e5)e5 = −e1 − e3, R̃(e4, e5)e5 = −e2 − e4.
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With the help of the above results we get the Ricci tensors as follows:

S(e1, e1) = S(e2, e2) = S(e3, e3) = S(e4, e4) = S(e5, e5) = −4(9.1)

S̃(e1, e1) = S̃(e2, e2) = S̃(e3, e3) = S̃(e4, e4) = S̃(e5, e5) = −4.(9.2)

Therefore r =
∑5

i=1 S(ei, ei) = −20 and r̃ =
∑5

i=1 S̃(ei, ei) = −20.
From (9.2) it can be easily verified that the manifold is Ricci semisymmetric

with respect to the quarter-symmetric metric connection. Also from (9.1) it follows
that the manifold is Einstein with respect to the Levi-Civita connection. Therefore
Theorem 4.2 is verified.

Also r̃ = r = −20. Again from the expressions of the curvature tensor we can
easily verify that the manifold is ξ-concircularly flat with respect to the quarter-
symmetric metric connection. Hence Theorem 6.1 is verified.
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