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Abstract. The fractional order Euler polynomials are introduced to obtain
the solution of the class of space fractional diffusion equations. This is an
innovative method for solving space fractional differential equations among
the fractional calculus. These properties are utilized to transform the partial
differential equation to algebraic equations with unknown Euler coefficients.
The fractional derivatives are described based on the Caputo sense by using
Riemann–Liouville fractional integral operator. A new hybrid function approx-
imation based on fractional Euler polynomials and the algebraic polynomial
is initiated. The solution obtained by our method coincides with the solution
obtained through other methods mentioned in the literature. Finally, several
numerical examples are given to illustrate the accuracy and stability of this
method.

1. Introduction

In recent years, due to the abundant applications in various fields of science
and engineering, considerable interest in fractional differential equations (FDEs)
have been stimulated. Important phenomenon in finance, electromagnetics, acous-
tics, viscoelasticity, electrochemistry and material science [4, 18, 19, 30] are well
described by differential equations of fractional order. Recently, Magin et al. [17]
have reviewed the FDEs in fractional signals and systems with applications to con-
trol theory. The edited volume of Machado [16] possessed various applications of
fractional calculus like image processing. The importance and necessity of frac-
tional calculus is very much apparent from these applications of interdisciplinary
sciences. Recently, to obtain exact and approximate analytic solutions, several
mathematical methods inclusive of the Adomian decomposition method [21], vari-
ational iteration method [23], homotopy perturbation method [25] and fractional
difference method [26] have been developed. A few of these methods makes use of
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transformations to reduce equations into simpler equations or systems of equations
and a few others give the solution in the form of a series which converges to an exact
solution. The Euler numbers and polynomials (so-named by Scherk in 1825) ap-
pear in Euler’s famous book, Institutiones Calculi Differentialis (1755, pp. 487–491
and p. 522). Euler polynomials appear in many classical results (see [1, Chap-
ter 23]). Let us recall the background on Euler numbers and polynomials. Let
N = {0, 1, 2, . . .} and Z

+ = {1, 2, 3, . . .}. In general, Euler polynomials are usually
defined by means of the generating function

∞
∑

n=0

En(x)
tn

n!
=

2ext

et + 1
, |t| < π.

The Euler numbers are also given by the following recursion

n
∑

k=0
2|n−k

(

n

k

)

Ek = 0, i.e., −

n−1
∑

k=0
2|n−k

(

n

k

)

Ek = En, (n = 1, 2, 3, . . . ) with E0 = 1.

The Euler numbers are integers and it is well known that, E2n+1 = 0 for n > 0.
The first few values of the Euler numbers are E0 = 1, E2 = −1, E4 = 5, E6 = −61.

In this paper, we consider the space-fractional diffusion equations [3]

(1.1)
∂u(x, t)

∂t
= d(x)

∂αu(x, t)

∂xα
+ p(x, t) 0 < x < 1, 0 6 t 6 T, 1 < α 6 2,

subject to the initial and boundary conditions: u(x, 0) = f(x), 0 < x < 1, u(0, t) =
g0(t), 0 < t 6 T , u(1, t) = g1(t), 0 < t 6 T . The function p(x, t) is a source term
and note that for α = 2, (1.1) is the classical diffusion equation.

Many physical problems [5,10,12,20] and finance [11] are successfully modeled
by using some partial differential equations of fractional order like one-dimensional
time-fractional diffusion-wave equation and space fractional differential equations.
Several authors have tried giving numerical solutions to a type of fractional par-
tial differential equations called the space fractional diffusion equations. As an
illustration, Khader [14] discretize space fractional diffusion equations to obtain a
linear system of ordinary differential equations by using the Chebyshev collocation
method and then used the finite difference method for solving the resulting sys-
tem whereas space fractional diffusion equations were solved by Saadatmandi and
Dehghan [28] using tau approach and Sousa [29] used splines approach.

Here we propose a new fractional Euler polynomial method (FEPM) for solving
space fractional partial differential equations by using fractional order Euler func-
tion. Moreover, the main characteristic of this technique is that it reduces these
problems to those of solving the fractional partial differential equation to algebraic
equations, thereby simplifying them.

This paper is organized as follows. In Section 2, we present some necessary
definitions and mathematics preliminaries of the fractional calculus theory. In
Section 3, fractional order Euler functions and its properties are discussed. In
Section 4, we demonstrate the accuracy of the proposed scheme by considering
some numerical examples. The conclusion is given in Section 5.
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2. Preliminaries and notations

In this section, we give some basic definitions and properties of fractional cal-
culus theory which are further used in this article [13].

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cµ,
µ ∈ R if there exists a real number p > µ, such that f(x) = xpf1(x), where
f1(x) ∈ C[0, ∞]. Clearly Cµ < Cβ if β < µ.

Definition 2.2. A function f(x), x > 0, is said to be in the space Cm
µ , m ∈

N ∪ {0} if f (m) ∈ Cµ.

Definition 2.3. The fractional derivative of f(x) in the Caputo sense is de-
fined as

Dα
∗ f(x) = Jm−αDmf(x) =

1

Γm − α

∫ x

0
(x − t)m−α−1f (m)(t)dt,

for m − 1 < α 6 m, m ∈ N, x > 0, f ∈ Cm
−1.

Caputo fractional derivative first computes an ordinary derivative followed by
a fractional integral to achieve the desired order of fractional derivative. Some
properties of the operator Dα, which are needed here, are as follows

DαDβf(x) = Dα+βf(x), DαC = 0, (C is a constant)

Dαxβ =

{

0, for β ∈ N0 and β < ⌈α⌉,
Γ(β+1)

Γ(β+1−α)xβ−α for β ∈ N0 and β > ⌈α⌉ or β /∈ N and β > ⌊α⌋,

We use the ceiling function ⌈α⌉ to denote the smallest integer greater than or
equal to α, and the floor function ⌊α⌋ to denote the largest integer less than or
equal to α. Also N = {1, 2, . . . } and N0 = {0, 1, 2, . . .}. Similar to the integer-order
derivative, the Caputo fractional derivative is a linear operation:

Dα

( n
∑

i=1

cifi(t)

)

=

n
∑

i=1

ciD
αfi(t),

where {ci}
n
i=1 are constants.

Lemma 2.1. If m − 1 < α 6 m, m ∈ N, and f ∈ Cm
µ , m > −1, then

Dα
∗ Jαf(x) = f(x), JαDα

∗ f(x) = f(x) −
m−1
∑

k=0

f (k)(0+)
xk

k!
, x > 0.

To obtain a numerical scheme for the approximation of the Caputo derivative,
we can use a representation introduced by Elliott [8];

Dq
∗f(x) =

1

Γ(−q)

∫ x

0

f(s) − f(0)

(x − s)1+q
ds, 0 < q < 1,

where the integral in the above equation is a Hadamard finite-part integral.



160 KRISHNARAJULU, SEVUGAN, AND SIVARAMAKRISHNAN GOPALAKRISHNAN

3. Fractional order Euler functions

In this section, we discuss the properties of fractional order Euler functions and
the function approximation based on Euler polynomials and its properties.

3.1. Euler polynomials. The Euler polynomials En(x) [15] satisfy the fol-
lowing equality for a product of two polynomials in the interval (0, 1) for m+n > 2,

∫ 1

0
Em(x)En(x)dx = 2(−1)m+1 m!n!Em+n+1

(m + n)!m + n + 1
.

and are given by Ei(x) =
∑i

k=0

(

i
k

)

Ek

2k

(

x − 1
2

)i−k
, where Ek = −

∑n−1
m=0

2|n−m

(

n
m

)

Em,

n = 1, 2, . . . , Ei(0) = 1, Ei(1) = 0. A function y(x), square integrable in (0, 1],
may be expressed in terms of Euler polynomials as y(x) =

∑∞
j=0 cjEj(x), where

the coefficients cj are given by

cj

∫ 1

0
(Ej(x))2dx =

∫ 1

0
y(x)Ej(x)dx, j = 1, 2, . . . .

3.2. Some properties of Euler polynomials. The well known properties of
Euler polynomials are En(x) + En(x+ 1) = 2xn, En(x+ y) =

∑n
k=0

(

n
k

)

Ek(x)yn−k,

and mk
∑m−1

a=0 (−1)aEk

(

x+a
m

)

= Ek(x).

3.3. Fractional order Euler functions. The series expansion of the efficient

method is of the form
∑N

i=0 cix
iα for solving the fractional differential equations of

order α, such as Adomian’s decomposition method (ADM) [9], homotopy pertur-
bation method (HPM) [25] and He’s variational iteration method [22].

Recently, Rida and Yousef [27] generated a fractional extension of the classical
Legendre polynomials by replacing the integer order derivative in Rodrigues formula
by fractional order derivatives. Subsequently, Kazem [13] generated the orthogonal
fractional order Legendre functions based on shifted Legendre polynomials to obtain
the solution of FDEs more simply and efficiently. In this paper, we generate a
fractional extension of Euler polynomials to solve FDEs effectively.

The fractional Euler polynomial FEα
i (x) of degree iα is defined as

FEα
i (x) =

i
∑

k=0

(

i

k

)

Ek

2k

(

x −
1

2

)(i−k)α

,

where FEα
0 (x) = 1, FEα

1 (x) = xα − 1/2.
The fractional Euler polynomials satisfy the following integral for a product of

two polynomials with respect to the weight function w(x) = xα−1 in the interval
(0, 1] for m + n > 2,

∫ 1

0
FEα

m(x)FEα
n (x)w(x)dx = 2(−1)m+1 m!n!Em+n+1

α(m + n)!m + n + 1
.



A NEW APPROACH TO SPACE FRACTIONAL. . . 161

For solving FPDE, we define u(x, t) and Dγ
xu(x, t) over the intervals (0, 1] as

u(x, t) =

∞
∑

j=0

( ∞
∑

i=0

cijFEα
i (x)

)

φj(t),(3.1)

where

cij =
α(m + n)!m + n + 1(j + 1)

(−1)m+1m!n!Em+n+1

∫ 1

0

∫ 1

0
FEα

i (x)w(x)u(x, t)φj (t)dt dx [13].

3.4. Function approximation. In practice, only the first nm-terms of (3.1)
are considered. Then we have

u(x, t) ≃

n−1
∑

j=0

( m−1
∑

i=0

cijFEα
i (x)

)

φj(t) = CT FEα(x)Φ(t),

where the Euler polynomials coefficient vector C and the Euler polynomials vector
FEα(x) are given by C = [c00, c10c20, . . . , cm−10, c01, c11c21, . . . , cm−11, . . . , c0n−1,
c1n−1c2n−1, . . . , cm−1n−1]T , FEα(x) = [FEα

0 (x), FEα
1 (x), . . . , FEα

m−1(x)]T , Φ(t) =

[φ0(t), φ1(t), . . . , φn−1(t)]T = [1, t, t2, . . . , tn−1]T .
Also FEα(x) ⊗ φ(t) is nm × 1 matrix displayed as

(3.2) FEα(x) ⊗ Φ(t) =











Φ0(t)FEα
0 (x)

Φ0(t)FEα
1 (x)

...
Φn − 1(t)FEα

m−1(x)











Now apply the following property of the Kronecker product (A1 ⊗ A2)(B1 ⊗ B2) =
A1B1 ⊗ A2B2 together with the operational matrix of FEFs, the partial derivatives
of FEα(x) ⊗ Φ(t) can be obtained as

∂α

∂xα
FEα(x) ⊗ Φ(t) ≃ (Dα

x ⊗ In)FEα(x) ⊗ Φ(t)(3.3)

∂

∂t
FEα(x) ⊗ Φ(t) ≃ (Im ⊗ Dt)FEα(x) ⊗ Φ(t)(3.4)

3.5. Description of the method. To solve (1.1), u(x, t) is replaced as given
in (3.2) also using (3.3) and (3.4)

∂u

∂t
≃ (Im ⊗ Dt)FEα(x) ⊗ Φ(t)(3.5)

d(x)
∂αu

∂xα
≃ CT K1(Dα

x ⊗ In)FEα(x) ⊗ Φ(t)(3.6)

p(x, t) ≃

n−1
∑

j=0

( m−1
∑

i=0

gijFEα
i (x)

)

Φj(t) = GT FEα(x) ⊗ Φ(t),(3.7)

Substituting (3.5), (3.6) and (3.7) in (1.1), one gets

(3.8) [CT (Im ⊗ Dt) + CT K(Dα
x ⊗ In) − GT ]FEα(x) ⊗ Φ(t) = 0
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Now to satisfy the initial and boundary conditions of (1.1), we can write

u(0, t) = g0(t) =
n−1
∑

j=0

m−1
∑

i=0

cij(FEα
i (0))Φj(t)(3.9)

u(1, t) = g1(t) =

n−1
∑

j=0

m−1
∑

i=0

cij(FEα
i (1))Φj(t)(3.10)

u(x, 0) = f(x) =

n−1
∑

j=0

m−1
∑

i=0

cij(FEα
i (x))Φj(0)(3.11)

Above (3.9), (3.10) and (3.11) generate 2n + m − 2 set of equations. Now we
should generate (m − 1)(n − 2) equations from (3.8) as follows

ET

∫ 1

0

∫ 1

0
(FEα(x) ⊗ Φ(t))FEα

i (x)Φj(t)wα(x)w(t)dt dx = 0,

where

ET = [CT (Im ⊗Dt)−CT K(Dα
x ⊗In)−GT ], i = 0, 1, . . . , m−2, j = 0, 1, . . . , n−3.

In case the exact solution to a problem is known, the accuracy and efficiency
of the proposed method based on maximum absolute error em,n defined as em,n =
max{|uexact(x, t) − um,n(x, t)|}, a 6 x 6 b, 0 < t < τ .

4. Numerical results and discussion

In order to check the efficiency and reliability of the proposed method, we
present some numerical examples. In the example, we compute the space fractional
diffusion equation with variable coefficients to check the accuracy.

Example 4.1. Consider the following space fractional differential equation [3]

∂u(x, t)

∂t
= d(x)

∂αu(x, t)

∂xα
+ p(x, t)

on a finite domain 0 < x < 1, 0 6 t 6 1, with the diffusion coefficient d(x) =
1
24 Γ(5−α)xα, the source function p(x, t) = −2e−tx4, the initial condition u(x, 0) =

x4, 0 < x < 1, and the boundary conditions u(0, t) = 0, u(1, t) = e−t. By the
fractional polynomial method when m = 9, n = 3 and α = 1.5 with initial and

boundary conditions, we get approximate solution of u(x, t) is x4
(

1 − t + t2

2

)

. The
approximate solution and absolute error values are shown in Figures 1(a) and 1(b)
respectively with m = 9, n = 10 for Example 4.1.

Example 4.2. Consider the following space fractional differential equation [7]

∂u(x, t)

∂t
= d(x)

∂αu(x, t)

∂xα
+ p(x, t)

on a finite domain 0 < x < 1, 1 < α 6 2, with the diffusion coefficient d(x) =
1
2 Γ(3 − α)xα, the source function p(x, t) = sin(−t)x2 − cos(−t)x2, with the initial

condition u(x, 0) = x2, 0 < x < 1, and the boundary conditions u(0, t) = 0,
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Figure 1. (a) Solution u(x, t) with m = 9, n = 10, for Example
4.1(b) Plot of error function |uexact(x, t)−u(x, t)|, for Example 4.1.

Figure 2. Solution u(x, t) with m = 12, n = 10 for Example 4.2.

u(1, t) = cos(−t) for t > 0. The proposed method solution with m = 12, n = 5 and

α = 1.5 with initial and boundary condition is u(x, t) = x2(1 + t2

2 + t4

24 ) for larger

values for m and n, the exact solution is u(x, t) = x2 cos(−t) [7]. The solution
u(x, t) obtained for example 4.2 by our method is depicted in Fig. 2. Note that
from Fig. 2 it can be seen that our method achieves a good approximation for the
above equation.

Example 4.3. Consider the following space fractional differential equation [2]

∂u(x, t)

∂t
= d(x)

∂1.8u(x, t)

∂x1.8 + p(x, t)

on a finite domain 0 < x < 1, with the diffusion coefficient d(x) = Γ(1.2)x1.8, the
source function

p(x, t) = e−t
{

x2(2 − x)2 + 8(x2 −
5

2
x3 +

25

22
x4)

}

,

with the initial condition u(x, 0) = (2 − x)2x2, 0 < x < 1, and the boundary
conditions u(0, t) = u(2, t) = 0.
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Figure 3. (a) Solution u(x, t) with m = 25, n = 10, for example
4.3(b) Plot of error function |uexact(x, t)−u(x, t)|, for Example 4.3.

We apply the presented technique with initial and boundary conditions, the

approximate solution of u(x, t) is (4x2 + x4 − 4x3)(1 − t + t2

2 ) when m = 25, n = 3

and α = 0.2. The closed form of the above solution is u(x, t) = (4x2 + x4 − 4x3)e−t

which is the exact solution [2]. The solution u(x, t) and the error obtained for
example 4.3 by our method are depicted in Figures 3a and 3b. Note that from
figures 3a and 3b, one can see that our method achieves a good approximation for
the above equation.

Example 4.4. Consider the following space fractional differential equation [6]

∂u(x, t)

∂t
= d(x)

∂1.8u(x, t)

∂x1.8 + p(x, t)

on a finite domain 0 < x < 1, with the diffusion coefficient d(x) = Γ(2.2)
6 x2.8, the

source function p(x, t) = −x3(x + 1)e−t, with the initial condition u(x, 0) = x3,
0 < x < 1 and the boundary conditions u(0, t) = 0, u(1, t) = e−t. According to
the presented method with m = 16, n = 3, α = 0.2 and applying initial, boundary

conditions we get that u(x, t) = x3(1 − t + t2

2 ) is the approximate solution and

u(x, t) = x3e(−t) for larger values for m and n, is the exact solution [6]. The
solution u(x, t) and the error obtained for example 4.4 by our method are depicted
in figures 4a and 4b. Note that from figures 4a and 4b can be seen our method
achieve a good approximation for the above equation.

Example 4.5. Consider the following space fractional differential equation [2]

∂u(x, t)

∂t
= d(x)

∂1.8u(x, t)

∂x1.8 + p(x, t)

on a finite domain 0 < x < 1, 0 6 t 6 1, with the diffusion coefficient d(x) =
Γ(0.2)x1.8, the source function p(x, t) = −(2x−11x2)e−t, with the initial condition
u(x, 0) = x(1 − x), 0 < x < 1, and the boundary conditions u(0, t) = 0, u(1, t) = 0.

By applying the fractional polynomial technique with initial and boundary

conditions with m = 12, n = 3, and α = 0.2, we get that u(x, t) = (x−x2)(1−t+ t2

2 )
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Figure 4. (a) Solution u(x, t) with m = 16, n = 10, for example
4.4(b) Plot of error function |uexact(x, t)−u(x, t)|, for Example 4.4.

is the approximate solution. Thus u(x, t) = (x−x2)e−t is the exact solution, which
is in full agreement with [2]. The solution u(x, t) and the error obtained for example
4.5 by our method are depicted in figures 5a and 5b. Note that from figures 5a and
5b it can be seen that our method achieves a good approximation for the above
equation.

Figure 5. (a) Solution u(x, t) with m = 12, n = 10, for Example
4.5(b) Plot of error function |uexact(x, t)−u(x, t)|, for Example 4.5.

Example 4.6. Consider the following Fisher’s nonlinear space-fractional equa-
tion [24]

∂u

∂t
−

∂1.5u

∂x1.5 − u(x, t)(1 − u(x, t)) = x2, x > 0

subject to the initial condition u(x, 0) = x. Now apply the fractional Euler poly-
nomial technique for m = 7, n = 5 and α = 0.5, then we have the series form of
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Figure 6. Solution u(x, t) with m = 15, n = 10, for Example 4.6.

Euler polynomials by substituting initial condition

u(x, t) = x + xt + (x − 2x2)
t2

2
+

(1

2
x − 3x2 + 2x3 −

2

Γ(3/2)
x1/2

) t3

3

−
(4

3
x2 −

8

3
x3 +

2

3Γ(3/2)
x1/2

) t4

4

is the approximate solution [24]. The solution u(x, t) obtained for example 4.6 by
our method is depicted in fig. 6. Note that from fig. 6 it can be seen that our method
achieves a good approximation for the above equation. The numerical solutions for
different values of x and t of Example 4.6 are presented in Table 1 and 2

Table 1. Numerical values for different values of x and t = 0.1, 0.2
of Example 4.6.

t = 0.1 t = 0.2

x GDTM VIM FEPM GDTM VIM FEPM

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.110233 0.110401 0.110401 0.120145 0.121559 0.121559

0.2 0.220348 0.220589 0.220589 0.240212 0.242240 0.242240

0.3 0.330259 0.330565 0.330565 0.359453 0.362026 0.362026

0.4 0.439957 0.440329 0.440329 0.477796 0.480928 0.480928

0.5 0.549441 0.549880 0.549880 0.595214 0.598938 0.598938
0.6 0.658707 0.659214 0.659214 0.711692 0.716018 0.716018

0.7 0.767755 0.768320 0.768320 0.827221 0.832097 0.832097

0.8 0.876585 0.877185 0.877185 0.941796 0.947058 0.947058

0.9 0.985196 0.985786 0.985786 1.055412 1.060735 1.060735
1.0 1.093587 1.094096 1.094096 1.168067 1.172904 1.172904



A NEW APPROACH TO SPACE FRACTIONAL. . . 167

Table 2. Numerical values for different values of x and t = 0.3, 0.4
of Example 4.6.

t = 0.3 t = 0.4

x GDTM VIM FEPM GDTM VIM FEPM

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.128281 0.133294 0.133294 0.132819 0.145276 0.145276

0.2 0.257431 0.264612 0.264612 0.269327 0.287146 0.287146

0.3 0.384716 0.393833 0.393833 0.402530 0.425163 0.425163

0.4 0.509872 0.520995 0.520995 0.531749 0.559433 0.559433

0.5 0.632794 0.646078 0.646078 0.656718 0.689927 0.689927
0.6 0.753428 0.768969 0.768969 0.777297 0.816392 0.816392

0.7 0.871744 0.889430 0.889430 0.893402 0.938285 0.938285

0.8 0.987718 1.007079 1.007079 1.004978 1.054714 1.054714

0.9 1.101336 1.121360 1.121360 1.111987 1.164378 1.164378
1.0 1.212587 1.231524 1.231524 1.214400 1.265508 1.265508

5. Conclusion

In this article, fractional order Euler polynomials techniques are used to reduce
the space fractional diffusion equation with variable coefficients to the solution of
algebraic equations. The fractional derivatives are described in the Caputo sense.
The solution quality and accuracy are verified through tables and figures. The
solution obtained by our method coincides with the solution obtained through other
methods mentioned in the literature. Also a numerical solution was obtained on
the basis of the fractional Euler polynomials for fractional order partial differential
equations.
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