
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 104(118) (2018), 149–156 DOI: https://doi.org/10.2298/PIM1818149G

THE NUMBER OF SOLUTIONS TO
y2 = px(Ax2 + 2)

Tarek Garici, Omar Kihel, and Jesse Larone

Abstract. We find a bound for the number of the positive solutions to the
titled equation, improving a result of Togbé. As a consequence, we prove a
conjecture of Togbé in a few cases.

1. Introduction

Cassels [2] was challenged to determine when the sum of three consecutive
cubes equals a square. He [2] reduced the problem to finding integral points on the
elliptic curve y2 = 3x(x2 +2). Using the arithmetic of certain quartic number fields,
he obtained that the integral points on the above elliptic curve were (x, y) = (0, 0),
(1, 3), (2, 6), and (24, 204).

Using the classical work of Ljunggren [5] and its generalizations (see [1,4,10,
11]), Luca and Walsh [6] considered the problem of finding the number of positive
integer solutions to the Diophantine equation y2 = nx(x2 + 2), where n > 1 is
a positive integer. They proved that the number of positive integer solutions to
y2 = nx(x2 + 2) is at most 3 · 2ω(n) − 1, where ω(n) is the number of distinct prime
factors of n. In [3], Chen considered the case where n is a prime number greater
than 3. He proved, in particular, that the Diophantine equation y2 = nx(x2 + 2)
has at most two positive integer solutions.

Recently, Togbé [8] considered the more general Diophantine equation

(1.1) y2 = px(Ax2 + 2),

where p is a prime number and A is an odd integer greater than 1. He proved the
following theorem.

Theorem 1.1. For any prime p and any odd positive integer A > 1, the Dio-

phantine equation (1.1) has at most seven positive integer solutions (x, y).
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Using results obtained through MAGMA, he then made the following conjec-
ture on sharp bounds for the number of solutions to equation (1.1).

Conjecture 1.1. Let p be a prime and A > 1 any odd positive integer.

(1) If (A, p) ≡ (1, 1), (1, 5), (1, 7), (3, 1), (3, 3), (3, 7), (5, 1), (5, 5), (5, 7),
(7, 3), or (7, 5) (mod 8), then Diophantine equation (1.1) has at most one

positive integer solution (x, y).
(2) If (A, p) ≡ (1, 3) or (7, 1), then Diophantine equation (1.1) has at most

two positive integer solutions (x, y).
(3) If (A, p) ≡ (3, 5) or (7, 7), then Diophantine equation (1.1) has at most

three positive integer solutions (x, y).

Our aim is to improve the bound on the number of solutions to Diophantine
equation (1.1) provided in Theorem 1.1, and to prove Conjecture 1.1 in some cases.
The main result of the paper is the following theorem.

Theorem 1.2. Let p be a prime and let A > 1 be an odd integer.

(i) If p = 2, then Diophantine equation (1.1) has at most one positive integer

solution (x, y).
(ii) Suppose that p | A or

(

−2A
p

)

= −1, where p is odd.

(a) If (A, p) ≡ (7, 1) or (7, 7) (mod 8), then Diophantine equation (1.1)
has at most three positive integer solutions (x, y).

(b) Diophantine equation (1.1) has at most one positive integer solution

(x, y) otherwise.

(iii) Suppose that
(

−2A
p

)

= 1, where p is odd.

(1) If (A, p) ≡ (1, 5), (1, 7), (3, 3), (5, 5), (7, 3), or (7, 5) (mod 8), then

Diophantine equation (1.1) has at most one positive integer solution

(x, y).
(2) If (A, p) ≡ (1, 1), (3, 1), (3, 7), (5, 1), (5, 3), or (5, 7) (mod 8), then

Diophantine equation (1.1) has at most two positive integer solutions

(x, y).
(3) If (A, p) ≡ (1, 3) or (3, 5) (mod 8), then Diophantine equation (1.1)

has at most three positive integer solutions (x, y).
(4) If (A, p) ≡ (7, 7) (mod 8), then Diophantine equation (1.1) has at

most four positive integer solutions (x, y).
(5) If (A, p) ≡ (7, 1) (mod 8), then Diophantine equation (1.1) has at

most six positive integer solutions (x, y).

We also prove the following result.

Theorem 1.3. Let p be a prime and let A > 1 be an even integer.

(i) If p = 2, then Diophantine equation (1.1) has at most two positive integer

solutions (x, y). Moreover, if A ≡ 0 (mod 4) and A 6= 26 · 1785, then

Diophantine equation (1.1) has at most one positive integer solution (x, y).
(ii) Suppose that p | A or

(

−2A
p

)

= −1, where p is odd.

(1) If A ≡ 0 (mod 4), then Diophantine equation (1.1) has at most one

positive integer solution (x, y).
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(2) If A ≡ 2 (mod 4), then Diophantine equation (1.1) has at most two

positive integer solutions (x, y).
(iii) Suppose that

(

−2A
p

)

= 1, where p is odd.

(1) If (A, p) ≡ (0, 3) (mod 4), then Diophantine equation (1.1) has at

most one positive integer solution (x, y).
(2) If (A, p) ≡ (0, 1) (mod 4), then Diophantine equation (1.1) has at

most two positive integer solutions (x, y).
(3) If (A, p) ≡ (2, 3) (mod 4), then Diophantine equation (1.1) has at

most three positive integer solutions (x, y).
(4) If (A, p) ≡ (2, 1) (mod 4), then Diophantine equation (1.1) has at

most four positive integer solutions (x, y).

2. Preliminary results

We present the results required to prove Theorem 1.2 and Theorem 1.3. Recall
that if q is a prime number, νq(m) denotes the q-adic valuation of m.

Let a and b be odd positive integers for which the equation aX2 − bY 2 = 2 has
a solution in positive integers (X, Y ). Let (a1, b1) be the minimal positive solution
to this equation and define

α =
a1

√
a + b1

√
b√

2
.

For an odd integer k, define ak and bk by

αk =
ak

√
a + bk

√
b√

2
.

Luca and Walsh proved the following result in [6] regarding the solutions to the
equation

(2.1) aX2 − bY 4 = 2.

Theorem 2.1. (1) If b1 is not a square, then equation (2.1) has no solution.

(2) If b1 is a square and b3 is not a square, then (X, Y ) = (a1,
√

b1) is the

only solution to equation (2.1).
(3) If b1 and b3 are both squares, then (X, Y ) = (a1,

√
b1) and (a3,

√
b3) are

the only solutions to equation (2.1).

Ljunggren proved the following result in [5].

Theorem 2.2. Let a > 1 and b be two positive integers. The equation

aX2 − bY 4 = 1

has at most one solution in positive integers (X, Y ).

Let D be a positive non-square integer, and let ǫD = T1 + U1
√

D denote the
minimal unit greater than 1, of norm 1, in Z[

√
D]. Define ǫD

k = Tk + Uk

√
D for

k > 1. Togbé, Voutier, and Walsh proved the following result in [9].

Theorem 2.3. Let D be a positive non-square integer. There are at most two

positive integer solutions (X, Y ) to the equation X2 − DY 4 = 1.
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(1) If two solutions such that Y1 < Y2 exist, then Y1
2 = U1 and Y2

2 = U2,

except only if D = 1785 or D = 16 · 1785, in which case Y1
2 = U1 and

Y2
2 = U4.

(2) If only one positive integer solution (X, Y ) to the equation X2 − DY 4 = 1
exists, then Y 2 = Uℓ where U1 = ℓv2 for some square-free integer ℓ, and

either ℓ = 1, ℓ = 2, or ℓ = p for some prime p ≡ 3 (mod 4).

We make Theorem 1.2 more precise when D is even.

Lemma 2.1. Let D be a positive non-square integer. Suppose that D = 2d where

d is a positive integer different from 8 · 1785. Then the equation X2 − DY 4 = 1 has

at most one positive solution (X, Y ).

Proof. Suppose that there exist two solutions to the equation X2 −DY 4 = 1.
Then there exist positive integer solutions (X1, Y1) and (X2, Y2) such that Y1 < Y2.
It follows from Theorem 2.3 that Y1

2 = U1, Y2
2 = U2, and U2 = 2T1U1, so Y2

2 =
2T1Y1

2. Then

(2.2) 2ν2(Y2) = 1 + ν2(T1) + 2ν2(Y1).

Since ǫD = T1 + U1
√

D is a unit of norm 1 in Z[
√

D] and D = 2d, we obtain
T1

2 − 2dU1
2 = 1, so that T1 is odd. Then ν2(T1) = 0, which is a contradiction

with (2.2). �

3. Main results

Proof of Theorem 1.2. Let p = 2, and let A be an odd positive integer.
Let x, y be positive integers such that y2 = 2x(Ax2 + 2). It is not difficult to see
that 4 divides x and y. Let y = 4w and x = 4z. Then we obtain w2 = z(8Az2 + 1).
Since gcd(z, 8Az2 + 1) = 1, there exist positive integers u and v such that z = u2,
8Az2 + 1 = v2, and v2 − 8Au4 = 1. By Lemma 2.1, this equation has at most one
positive integer solution (u, v).

Let p be an odd prime, and let A be an odd positive integer. Let x, y be positive
integers such that y2 = px(Ax2 + 2). We remark that gcd(x, Ax2 + 2) = 1 or 2,
so we consider two cases depending on the parity of x, with each case yielding two
equations. Suppose first that x is even, so we let x = 2z. Since p is prime, we let
y = 2pw. Then we obtain pw2 = z(2Az2 + 1). Since gcd(z, 2Az2 + 1) = 1, there
exist positive integers u and v such that either z = pu2, 2Az2 + 1 = v2, and

(3.1) v2 − 2Ap2u4 = 1,

or z = u2, 2Az2 + 1 = pv2, and

(3.2) pv2 − 2Au4 = 1.

Suppose next that x is odd. Since p is prime, we let y = pw. Then we obtain

pw2 = x(Ax2 + 2).

Since gcd(x, Ax2 +2) = 1, there exist odd integers u and v such that either x = pu2,
Ax2 + 2 = v2, and

(3.3) v2 − Ap2u4 = 2,
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or x = u2, Ax2 + 2 = pv2, and

(3.4) pv2 − Au4 = 2.

We consider each of the above four equations separately to determine upper bounds
for the number of positive integer solutions to equation (1.1).

We begin with equation (3.1). Let D = 2Ap2. By Lemma 2.1, equation (3.1)
has at most one positive integer solution.

We next consider equation (3.2), which has at most one positive integer solution
by Theorem 2.2. It follows from this equation that v is odd and that u is even if
and only if p ≡ 1 (mod 8). If p ≡ 3, 5, or 7 (mod 8), then u is odd, and we obtain
p − 2A ≡ 1 (mod 8). Then equation (3.2) has a solution only if (A, p) ≡ (1, 1),
(3, 1), (5, 1), (7, 1), (1, 3), (5, 3), (3, 7), or (7, 7) (mod 8). Furthermore, equation
(3.2) has a solution only if

(

−2A
p

)

= 1.

Equation (3.3) has at most two positive integer solutions by Theorem 2.1. Since
u and v are both odd, we have 1 − A ≡ 2 (mod 8) so A ≡ 7 (mod 8) and v2 ≡ 2
(mod p) so

(

2
p

)

= 1. Then p ≡ 1 or 7 (mod 8), and equation (3.3) has at least one

solution only if (A, p) ≡ (7, 1) or (7, 7) (mod 8).
Equation (3.4) has at most two positive integer solutions by Theorem 2.1. Since

u and v are odd, we have p − A ≡ 2 (mod 8) so that equation (3.4) has a solution
only if (A, p) ≡ (1, 3), (3, 5), (5, 7), or (7, 1) (mod 8). In particular, suppose that
equation (3.4) has two solutions, and let (a1, b1) be the minimal positive solution
of pX2 − AY 2 = 2, so pa1

2 − Ab1
2 = 2. Let

α =
a1

√
p + b1

√
A√

2
,

and compute α3 to obtain

b3 =
3a1

2pb1 + b1
3A

2
.

Since we assume that two solutions exist to equation (3.4), b1 and b3 must both be
squares by Theorem 2.1. It follows that there exist two positive integers B1 and
B3 such that b1 = B1

2, b3 = B3
2, and

3a1
2pB1

2 + B1
6A = 2B3

2.

This yields
(

2
p

)

=
(

A
p

)

. Since −Au4 ≡ 2 (mod p), we obtain
(

−A
p

)

=
(

2
p

)

=
(

A
p

)

so
(

−1
p

)

= 1. It follows that p ≡ 1 (mod 4), so p ≡ 1 or 5 (mod 8). Therefore

equation (3.4) has at most two positive integer solutions only if (A, p) ≡ (3, 5) or
(7, 1) (mod 8), and it has at most one positive integer solution only if (A, p) ≡ (1, 3)
or (5, 7) (mod 8). Furthermore, equation (3.4) has a solution only if

(

−2A
p

)

= 1.

Since the number of solutions to equations (3.2) and (3.4) depends on the
value of

(

−2A
p

)

, we first suppose that p | A or
(

−2A
p

)

= −1. Then equations (3.2)

and (3.4) have no integer solution, equation (3.1) has at most one solution, and
equation (3.3) has at most two positive integer solutions only if (A, p) ≡ (7, 1), or
(7, 7) (mod 8). Therefore when p | A or

(

−2A
p

)

= −1, equation (1.1) has at most
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three positive integer solutions if (A, p) ≡ (7, 1), or (7, 7) (mod 8), and it has at
most one positive integer solution in all other cases.

We next suppose that
(

−2A
p

)

= 1. Then equation (3.2) has at most one positive

integer solution.
If A ≡ 1 (mod 8), then equation (3.1) has at most one solution, equation (3.2)

has at most one solution and only if p ≡ 1 or 3 (mod 8), equation (3.3) has no
solution, and equation (3.4) has at most one solution and only if p ≡ 3 (mod 8).

If A ≡ 3 (mod 8), then equation (3.1) has at most one solution, equation (3.2)
has at most one solution and only if p ≡ 1 or 7 (mod 8), equation (3.3) has no
solution, and equation (3.4) has at most two solutions and only if p ≡ 5 (mod 8).

If A ≡ 5 (mod 8), then equation (3.1) has at most one solution, equation (3.2)
has at most one solution and only if p ≡ 1 or 3 (mod 8), equation (3.3) has no
solution, and equation (3.4) has at most one solution and only if p ≡ 7 (mod 8).

If A ≡ 7 (mod 8), then equation (3.1) has at most one solution, equation (3.2)
has at most one solution and only if p ≡ 1 or 7 (mod 8), equation (3.3) has at most
two solutions and only if p ≡ 1 or 7 (mod 8), and equation (3.4) has at most tow
solutions and only if p ≡ 1 (mod 8). �

Proof of Theorem 1.3. If A is even and p is odd, we let A = 2A′. Then
y2 = 2px(A′x2 + 1). We let y = 2pw, and we obtain 2pw2 = x(A′x2 + 1). Since
gcd(x, A′x2 +1) = 1, there exist positive integers u and v such that either x = 2pu2,
A′x2 + 1 = v2, and

(3.5) v2 − 4A′p2u4 = 1,

or x = 2u2, A′x2 + 1 = pv2 and

(3.6) pv2 − 4A′u4 = 1,

or x = u2, A′x2 + 1 = 2pv2 and

(3.7) 2pv2 − A′u4 = 1,

or x = pu2, A′x2 + 1 = 2v2 and

(3.8) 2v2 − A′p2u4 = 1.

If A′ is a perfect square, then equation (3.5) has no positive integer solution, oth-
erwise it has at most one positive integer solution by Lemma 2.1.

By Theorem 2.2, each of equations (3.6), (3.7), and (3.8) has at most one

solution. Equation (3.6) has a solution only if p ≡ 1 (mod 4) and
(

−A′

p

)

= 1,

equation (3.7) has a solution only if A′ is odd and
(

−A′

p

)

= 1, and equation (3.8)

has a solution only if A′ is odd. Since the number of solutions to equations (3.6)

and (3.7) depends on the value of
(

−A′

p

)

=
(

−2A
p

)

, we first suppose that p | A or
(

−2A
p

)

= −1. Then equations (3.6) and (3.7) have no integer solution.

If A ≡ 0 (mod 4), then equation (3.5) has at most one solution, equation (3.6)
has no solution, equation (3.7) has no solution, and equation (3.8) has no solution.
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If A ≡ 2 (mod 4), then equation (3.5) has at most one solution, equation (3.6)
has no solution, equation (3.7) has no solution, and equation (3.8) has at most one
solution.

We now suppose that
(

−2A
p

)

= 1. Then equations (3.6) and (3.7) have at most

one positive integer solution.
If A ≡ 0 (mod 4), then equation (3.5) has at most one solution, equation (3.6)

has at most one solution only if p ≡ 1 (mod 4), equation (3.7) has no solution, and
equation (3.8) has no solution.

If A ≡ 2 (mod 4), then equation (3.5) has at most one solution, equation (3.6)
has at most one solution only if p ≡ 1 (mod 4), equation (3.7) has at most one
solution, and equation (3.8) has at most one solution.

If A is even and p = 2, we let A = 2A′. Then y2 = 2x(2A′x2 + 2). We let
y = 2w, and we obtain w2 = x(A′x2 + 1). Since gcd(x, A′x2 + 1) = 1, there exist
positive integers u and v such that x = u2, A′x2 + 1 = v2, and

(3.9) v2 − A′u4 = 1,

which has no solution if A′ is a perfect square and at most two solutions by Theorem
2.3. Moreover, if A′ is even and A′ 6= 25 · 1785, then by Lemma 2.1 equation (3.9)
has at most one solution. �

Remark 3.1. When we had finished writing the paper, we noticed that a proof
of the result stated in Lemma 2.1 already existed within the proof of Theorem 1
by Luca and Walsh in [7]. Our proof of Lemma 2.1 seems to be different from the
proof of the result in [7].

Remark 3.2. Theorem 1.2 implies that Conjecture 1.1 is true if (A, p) ≡ (1, 5),
(1, 7), (3, 3), (3, 5), (5, 3), (7, 3), or (7, 5) (mod 8).
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