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GENERALIZATIONS

OF RAD-SUPPLEMENTED MODULES

Engin Kaynar, Ergül Türkmen, and Yıldız Aydın

Abstract. Let R be an associative ring with identity. We introduce the
notion of semi-τ -supplemented modules, which is adapted from srs-modules,
for a preradical τ on R-Mod. We provide basic properties of these modules.
In particular, we study the objects of R-Mod for τ = Rad. We show that the
class of semi-τ -supplemented modules is closed under finite sums and factor
modules. We prove that, for an idempotent preradical τ on R-Mod, a module
M is semi-τ -supplemented if and only if it is τ -supplemented. For τ = Rad,
over a local ring every left module is semi-Rad-supplemented. We also prove
that a commutative semilocal ring whose semi-Rad-supplemented modules are
a direct sum of w-local left modules is an artinian principal ideal ring.

1. Introduction

Throughout this study, R will be an associative ring with identity and all
modules are unitary left R-modules, unless otherwise specified. Let M be such a
module over the ring R. By R-Mod we denote the category of left R-modules. The
notation N ⊆ M means that N is a submodule of M . A functor τ : R -Mod →
R -Mod is said to be a preradical if τ(M) ⊆ M for every M ∈ R -Mod and for every
homomorphism f : M → N in R-Mod, we have f(τ(M)) ⊆ τ(N). A preradical τ is
called radical if τ(M/τ(M)) = 0 for every left R-module M . A module M is called
τ -torsion (respectively, τ -torsion free) if τ(M) = M (respectively, τ(M) = 0).

A nonzero submodule N of a module M is called essential, written by N ⊳ M ,
if N ∩ K 6= 0 for every nonzero submodule K of M . Dually, a proper submodule
S of M is called small, denoted by S ≪ M , if S + K = M implies that K = M ,
where K is a submodule of M . By Rad(M) we will denote the Jacobson radical for
a module M . If M = Rad(M), then it is called radical. A nonzero module M is
said to be hollow if every proper submodule is small in M , and it is said to be local
if it is hollow and finitely generated. M is local if and only if it is finitely generated
and Rad(M) is maximal (see [6, 2.12 §2.15]).
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For two submodules N and K of a module M , K is said to be supplement of
N in M (or N is said to have a supplement K) if M = N + K and N ∩ K ≪ K.
M is called supplemented if every submodule of M has a supplement in M . Since
every direct summand of a module has a supplement, supplemented modules are a
proper generalization of semisimple modules. Hollow modules are supplemented.

Al-Takhman, Lomp and Wisbauer [1] generalize supplemented modules to τ -
supplemented modules for a preradical τ for R-Mod. A module M is called τ-
supplemented if every submodule N of M has a τ -supplement K in M , that is,
M = N + K and N ∩ K ⊆ τ(K) where τ is a preradical for R-Mod. Instead of a
preradical τ for R-Mod, we can use the radical Rad on R-Mod. A module M is
called Rad-supplemented if every submodule N of M has a Rad-supplement K in
M . Since the Jacobson radical of any module is the sum of all small submodules,
every supplement submodule is Rad-supplement, and so supplemented modules are
Rad-supplemented. Also, a noetherian Rad-supplemented module is supplemented.

For the properties and characterizations of (Rad-) supplemented modules and
in general τ -supplemented modules we refer to [1, 4, 10].

In [11], Zöschinger studied on modules whose Jacobson radical have a supple-
ment and termed these modules radical supplemented. He determined the structure
of these modules over local Dedekind domains. Büyükaşık and Türkmen called a
module M strongly radical supplemented (for shortly srs) if every submodule N of
M with Rad(M) ⊆ N have a supplement K in M (see [5]). They gave the various
properties of srs-modules in the same paper. In particular, it was shown in [5,
Proposition 2.3] that every finite sum of srs-modules is srs. By [5, Proposition 3.3],
over a local Dedekind domain a module is radical supplemented if and only if it is
srs.

In this paper, we introduce the notion of semi-τ -supplemented modules, which
is adapted from srs-modules, for a preradical τ on R-Mod. We provide basic proper-
ties of these modules. In particular, we study on the objects of R-Mod for τ = Rad.
We show that the class of semi-τ -supplemented modules is closed under finite sums
and factor modules. We prove that, for an idempotent preradical τ on R-Mod, a
module M is semi-τ -supplemented if and only if it is τ -supplemented. Let τ = Rad.
Any direct sum of w-local modules is semi-Rad-supplemented. It follows that over
a local ring every left module is semi-Rad-supplemented. We give some counterex-
amples to separate classes of semi-Rad-supplemented modules, Rad-supplemented
modules and srs-modules (see Example 3.3). We have that the following proper
implications on modules hold:

supplemented
ւ ց

srs Rad-supplemented
ց ւ

semi-Rad-supplemented

We also prove that a commutative semilocal ring whose semi-Rad-supplemented
modules are a direct sum of w-local left modules is an artinian principal ideal ring.
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2. Semi-τ -Supplemented Modules

Let τ be a preradical on R-Mod. We call a module M semi-τ-supplemented if
every submodule N of M with τ(M) ⊆ N has a τ -supplement in M . By definitions,
every τ -supplemented module is semi-τ -supplemented. In this section, we obtain
the various properties of semi-τ -supplemented modules. We prove that, for an
idempotent preradical τ on R-Mod, a module M is semi-τ -supplemented if and
only if it is τ -supplemented.

Recall from [2] that a module M is τ-local if it is τ -torsion or τ(M) is maximal.

Lemma 2.1. Every τ-local module is semi-τ-supplemented.

Proof. Let M be a τ -local module. If M is τ -torsion, it is clear. Suppose that
τ(M) is the maximal submodule of M . Then M = τ(M) + M and τ(M) ∩ M ⊆
τ(M). Thus it is semi-τ -supplemented. �

Corollary 2.1. Let M be a module and N be a maximal submodule of M .
Then every τ-supplement of N is semi-τ-supplemented.

Proof. It follows from [2, Lemma 2.2] and Lemma 2.1. �

Now we show that the finite sum of semi-τ -supplemented modules is semi-τ -
supplemented. For this fact, we use the standard lemma (see, [1, 2.3(1)]).

Lemma 2.2. Let M be an R-module and M1, U be submodules of M such that
M1 is semi-τ-supplemented, τ(M) ⊆ U and M1 + U has a τ-supplement V in M .
Then, M1 ∩ (U + V ) has a τ-supplement L in M1 and V + L is a τ-supplement of
U in M .

Theorem 2.1. Let M1 and M2 be semi-τ-supplemented modules. If M =
M1 + M2, then M is semi-τ-supplemented.

Proof. Let τ(M) ⊆ U ⊆ M . Since M = M1 + M2, M1 + (M2 + U) has the
trivial τ -supplement 0 in M . So by Lemma 2.2, M2 + U has a τ -supplement in M .
Again applying Lemma 2.2, we obtain a τ -supplement for U in M . Hence M is
semi-τ -supplemented. �

Corollary 2.2. A finite direct sum of semi-τ-supplemented modules is semi-
τ-supplemented.

A module M is said to be a duo module if every submodule N of M is fully
invariant [8]. Now we prove that arbitrary direct sums of semi-τ -supplemented
modules are semi-τ -supplemented, under a certain condition: namely, when M is
a duo module. The proof of the next result is the same as [7, Theorem 1].

Theorem 2.2. Let Mi (i ∈ I) be any collection of semi-τ-supplemented mod-
ules in R -Mod and M =

⊕

i∈I Mi. If M is a duo module, then it is a semi-τ-
supplemented module.

Proposition 2.1. If M is a semi-τ-supplemented module, then every factor
module of M is semi-τ-supplemented.
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Proof. For any submodule N of M , let U/N ⊆ M/N with τ(M/N) ⊆ U/N .
Since (τ(M) + N)/N ⊆ τ(M/N), we can write τ(M) ⊆ U . By the hypothesis, U
has a τ -supplement V in M , that is, M = U + V and U ∩ V ⊆ τ(V ) for some
submodule V of M . So M/N = U/N + (V + N)/N . Therefore,

U/N ∩ (V + N)/N = [U ∩ (V + N)]/N = (U ∩ V + N)/N

⊆ (τ(V ) + N)/N ⊆ τ(V + N)/N

and so (V + N)/N is a τ -supplement of U/N in M/N . Hence M/N is semi-τ -
supplemented. �

Recall that a module M is weakly supplemented if every submodule N of M
has a weak supplement K in M , that is, M = N + K and N ∩ K ≪ M [6, 17.8].

Lemma 2.3. Let M be a semi-τ-supplemented module. Suppose that τ(M) is
a small submodule of M . Then M is τ-supplemented. In particular, M is weakly
supplemented.

Proof. Let U be any submodule of M . Then, τ(M) ⊆ τ(M) + U . It follows
from the hypothesis that τ(M) + U has a τ -supplement V in M . So M = (τ(M) +
U) + V and (τ(M) + U) ∩ V ⊆ τ(V ). Since τ(M) ≪ M , we get M = U + V .
Therefore U ∩ V ⊆ (τ(M) + U) ∩ V ⊆ τ(V ), we obtain that U ∩ V ⊆ τ(V ). Hence
V is a τ -supplement of U in M .

Since U ∩ V ⊆ τ(V ) ⊆ τ(M), it follows from [10, 19.3(4)] that U ∩ V is small
in M . Hence V is a weak supplement of U in M . This means that M is a weakly
supplemented module. �

Corollary 2.3. Let M be a τ-torsion free module. Then the following state-
ments are equivalent:

(1) M is (semi) τ-supplemented.
(2) M is semisimple.

Proof. Clearly, we have the implications (2) ⇒ (1); since M is τ -torsion free,
τ(M) = 0. It follows from Lemma 2.3 that M is (semi-)τ -supplemented.

(1) ⇒ (2) is obvious. �

Corollary 2.4. Let M be a semi-τ-supplemented module. Suppose that τ is
radical. Then M/τ(M) is semisimple and Rad(M) ⊆ τ(M).

Proof. By Proposition 2.1, we get that M/τ(M) is semi-τ -supplemented.
Since τ is radical, M/τ(M) is a τ -torsion free module. Hence M/τ(M) is semisimple
by Corollary 2.3. It follows that Rad(M/τ(M)) = 0. Thus Rad(M) ⊆ τ(M). �

Proposition 2.2. Let M be a semi-τ-supplemented module. If τ(M) is τ-
supplemented, then M is τ-supplemented.

Proof. Let U ⊆ M . By the hypothesis, τ(M) + U has a τ -supplement in M .
Since τ(M) is τ -supplemented, by Lemma 2.2, U has a τ -supplement in M . �
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A preradical τ is said to be idempotent if τ(τ(M)) = τ(M) for every left R-
module M . For an example of an idempotent preradical on R-Mod, we consider an
idempotent ideal I of a ring R and put τI(M) = IM each M ∈ R-Mod. Then, τI

is an idempotent preradical for R-Mod.

Corollary 2.5. Let τ be an idempotent preradical on R -Mod. Then an R-
module M is semi-τ-supplemented if and only if it is τ-supplemented.

Proof. We only need to show that M is semi-τ -supplemented, then it is τ -
supplemented.

Let N ⊆ M . Let us look at the submodule N + τ(M). By the assumption,
there exists a submodule K such that

(N + τ(M)) + K = M and (N + τ(M)) ∩ K ⊆ τ(K).

Let K1 = τ(M) + K. We have N + K1 = M and we only need to prove that
N ∩ K1 ⊆ τ(K1), or, more explicitly, that N ∩ (τ(M) + K) ⊆ τ(τ(M) + K). So, let
x ∈ N ∩ (τ(M) + K). This means that x ∈ N and there exist elements m′ ∈ τ(M)
and k ∈ K such that x = m′+k. From this, we get that k = x−m′. Since x ∈ N and
m′ ∈ τ(M), we get k ∈ (N + τ(M)) ∩ K. Since (N + τ(M)) ∩ K ⊆ τ(K), it follows
that k ∈ τ(K). So, x ∈ τ(M) + τ(K) = τ(τ(M)) + τ(K) ⊆ τ(τ(M) + K), which
concludes our proof. The last inclusion follows from the fact that τ(A) + τ(B) ⊆
τ(A + B), since τ is a preradical. �

By Pτ (M) we denote the sum of all τ -torsion submodules of an R-module
M . It is clear that Pτ (M) is the largest τ -torsion submodule of M . Note that
Pτ (M) ⊆ τ(M) and Pτ is an idempotent preradical for R-Mod, whenever τ is a
radical on R-Mod.

Theorem 2.3. Let M be a module. Suppose that τ is a radical on R -Mod.
Then it is semi-τ-supplemented if and only if M/Pτ (M) is semi-τ-supplemented.

Proof. Let M be a semi-τ -supplemented module. It follows from Proposition
2.1 that M/Pτ (M) is semi-τ -supplemented as a factor module of M . Conversely,
suppose that U is any submodule of M with τ(M) ⊆ U . Then Pτ (M) ⊆ U . By
properties of a radical, we have τ(M/Pτ (M)) = τ(M)/Pτ (M) ⊆ U/Pτ (M). Since
M/Pτ (M) is a semi-τ -supplemented module, U/Pτ (M) has a τ -supplement, say
V/Pτ (M), in M/Pτ (M). So

M/Pτ (M) = U/Pτ (M) + V/Pτ (M),

U/Pτ (M) ∩ V/Pτ (M) ⊆ τ(V/Pτ (M)).

Therefore, M = U + V . Note that

(U ∩ V )/Pτ (M) = (U/Pτ (M)) ∩ (V/Pτ (M)) ⊆ τ(V/Pτ (M)) = τ(V )/Pτ (M)

and this implies U ∩ V ⊆ τ(V ). Consequently, M is semi-τ -supplemented. �

Let M be an R-module. M is said to be τ-reduced if Pτ (M) = 0. If τ is radical,
by [4, Theorem 3.1 (vii)], then Pτ (M/Pτ (M)) = 0 and so M/Pτ (M) is τ -reduced.
Using Theorem 2.3, we obtain the following fact.
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Corollary 2.6. Let R be a ring and τ be a radical on R-Mod. The following
statements are equivalent:

(1) Every left R-module is semi-τ-supplemented.
(2) Every left τ-reduced R-module is semi-τ-supplemented.

3. Semi-Rad-Supplemented Modules

In this section, we shall consider τ = Rad. Recall that a module M is semi-
Rad-supplemented if every submodule N of M with Rad(M) ⊆ N has a Rad-
supplement K in M , that is, M = N + K and N ∩ K ⊆ Rad(K). It is clear
that Rad-supplemented modules and srs-modules are semi-Rad-supplemented. For
modules with zero Jacobson radical the notions of semi-Rad-supplemented, Rad-
supplemented and being srs-module coincide by Corollary 2.3. In general, semi-
Rad-supplemented modules need not be Rad-supplemented and srs. Later we shall
give an example of such modules (see Example 3.3).

Recall that a module M is semilocal if M/ Rad(M) is semisimple. A ring R is
called semilocal if RR (or RR) is a semilocal module. It is known that a commutative
ring R is semilocal if R has only finitely many maximal ideals. Since the preradical
Rad is a radical on R-Mod, we obtain the following fact by Corollary 2.4.

Corollary 3.1. Semi-Rad-supplemented modules are semilocal.

Proof. It follows from Corollary 2.4. �

In the following example, we show that semilocal modules need not be semi-
Rad-supplemented, in general. Firstly, we need this simple lemma.

Lemma 3.1. Finitely generated semi-Rad-supplemented modules are Rad-supp-
lemented.

Proof. Let M be a finitely generated module. Then Rad(M) is a small sub-
module of M . If M is semi-Rad-supplemented, then it is Rad-supplemented by
Lemma 2.3. �

Example 3.1. Consider the localization ring Z(2,3) containing all rational num-
bers of the form a

b
with 2 ∤ b and 3 ∤ b for prime integers 2, 3 in Z. Let M be the

left Z(2,3)-module Z(2,3). Then M is a semilocal noetherian module, but not Rad-
supplemented. By Lemma 3.1, it is not semi-Rad-supplemented.

As a proper generalization of local modules, one calls a module M w-local if
Rad(M) is a maximal submodule of M as in [3].

Proposition 3.1. Every w-local module is semi-Rad-supplemented.

Proof. Let M be any w-local module and Rad(M) ⊆ U $ M . Since M is
w-local, we have U = Rad(M). Then, M = U + M and U ∩ M ⊆ Rad(M) and so
M is a Rad-supplement of U in M . Hence M is semi-Rad-supplemented. �

Theorem 3.1. Let M be any direct sum of w-local modules. Then it is semi-
Rad-supplemented.
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Proof. Let M =
⊕

i∈I Mi and each Mi be w-local. Let Rad(M) ⊆ U ⊆
M . For i ∈ I, we have that (Mi + Rad(M))/ Rad(M) ∼= Mi/ Rad(Mi) is simple
because Mi is w-local. Note that M/ Rad(M) =

⊕

i∈I(Mi + Rad(M))/ Rad(M).
So M/ Rad(M) is semisimple by [6, 2.8(5)]. It follows that

M/ Rad(M) = U/ Rad(M) ⊕

(

⊕

i∈J

(Mi + Rad(M))/ Rad(M)

)

for some J ⊆ I by [10, 20.1]. Let V =
⊕

i∈J Mi. Therefore, M = U + V and
U ∩ V ⊆ Rad(M). Since V is a direct summand of M , Rad(V ) = V ∩ Rad(M) and
so U ∩ V ⊆ Rad(V ). Hence U has a Rad-supplement in M as required. �

In the next Theorem, we characterize commutative semilocal rings in terms
of semi-Rad-supplemented modules. A ring R is called a left max ring if every
nonzero left R-module has a maximal submodule, and it is called left perfect if R
is semilocal and a left max ring. Note that over a left max ring every nonzero left
module has a small Jacobson radical. Left V -rings (i.e., every left simple module
is injective) are left max rings.

Lemma 3.2. Let R be a left max ring and M be a module over this ring. Then
the following statements are equivalent.

(1) M is semi-Rad-supplemented.
(2) M is Rad-supplemented.
(3) M is supplemented.
(4) M is an srs-module.

Proof. (1) ⇒ (2). By Lemma 2.3.
(2) ⇒ (3). It follows from [6, 20.7(3)].
(3) ⇒ (4) and (4) ⇒ (1) are clear. �

Theorem 3.2. Let R be a ring whose semi-Rad-supplemented modules are the
direct sum of w-local R-modules. Then R is a left max ring and every semi-Rad-
supplemented R-module is supplemented. If R is a commutative semilocal ring,
then R is an artinian principal ideal ring.

Proof. Since radical modules are semi-Rad-supplemented, it is enough to
prove that R has no radical modules. Let N = Rad(N) be an R-module. By
the assumption, we can write N =

⊕

i∈I Ni, where each Ni is a w-local R-module.
It follows that Ni = Rad(Ni). Therefore, Ni = 0 for every i ∈ I. Thus N = 0.
This means that R is a left max ring. Applying Lemma 3.2, every semi-Rad-
supplemented R-module is supplemented.

Let R be a commutative semilocal ring. Then, R is perfect. Let M be any
R-module. By [10, 43.9], M is supplemented. Since w-local modules over left max
rings are local, M is the direct sum of cyclic submodules. Hence R is an artinian
principal ideal ring by [9, Theorem 6.7]. �

Let n > 1 be a positive integer. Then the ring Zn is a commutative semilocal
ring which satisfies the above theorem.

A ring R is called local if R has a unique left maximal ideal.
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Theorem 3.3. Let R be a local ring. Then every left R-module is semi-Rad-
supplemented.

Proof. Let M be any left R-module. Then there exists an epimorphism
Ψ: R(I) → M , where I is an index set. Since R is local, by Theorem 3.1, the free
left R-module R(I) is semi-Rad-supplemented. Hence M is semi-Rad-supplemented
as a factor module of R(I) by Proposition 2.1. �

The following example shows that the converse of Theorem 3.3 is not true.

Example 3.2. Let R be the factor ring Z/6Z of the ring Z. Therefore, R is an
artinian principal ideal ring. Let M be any left R-module. Then M is a direct sum
of local R-modules. It follows from Theorem 3.3 that it is semi-Rad-supplemented.
However, R is not a local ring because R has two maximal ideals.

Now we give examples of a module, which is semi-Rad-supplemented but not
Rad-supplemented.

Example 3.3. (1) For a prime integer p ∈ Z, given Z(p) = { m
n

| m, n ∈ Z,
n 6= 0, p ∤ n}. Then Z(p) is a local Dedekind domain. Let F be the direct sum

Z(N)
(p) of countably many copies of Z(p). By Theorem 3.3, we get that F is semi-

Rad-supplemented. On the other hand, F is not Rad-supplemented according to
[4, Theorem 7.1(i)].

(2) Let p be a prime in Z and consider the left Z-module M =
⊕

i>1 Zpi which
is the sum of local Z-modules Zpi . Since local modules are w-local, we obtain that
M is a semi-Rad-supplemented module by Theorem 3.1. Suppose that M is Rad-
supplemented. Note that M is reduced. By [4, Theorem 4.6 and Proposition 3.5],
we get that Rad(M) is small in M . This is a contradiction. Consequently, M is
not Rad-supplemented.

The Example 3.3 (2) also shows that the class of semi-Rad-supplemented mod-
ules contains properly the class of srs-modules by [5, Example 2.2].

In [3], M is called cofinitely Rad-supplemented if every submodule N of M
with M/N which is finitely generated has a Rad-supplement in M . It was shown
in [3, Theoerem 3.7] that a module M is cofinitely Rad-supplemented if and only if
every maximal submodule has a Rad-supplement in M . Using the characterization
we get the result:

Corollary 3.2. Semi-Rad-supplemented modules are cofinitely Rad-supple-
mented.

Proof. Let M be a semi-Rad-supplemented module. Therefore, every maxi-
mal submodule of M has a Rad-supplement in M . It follows from [3, Theorem 3.7]
that it is cofinitely Rad-supplemented. �

The following example shows that a cofinitely Rad-supplemented module need
not be semi-Rad-supplemented. Let R be a Dedekind domain and M be an R-
module. We denote by T (M) the set of all elements m of M for which there exists
a nonzero element r of R such that rm = 0, i.e., Ann(m) 6= 0. Then T (M), which
is a submodule of M , is called the torsion submodule of M .
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Example 3.4. Consider the left Z-module M =
∏

p∈Ω Z/pZ, where Ω is an
infinite collection of distinct prime elements of Z. Then the torsion submodule
T (M) of M is the submodule

⊕

p∈Ω Z/pZ of M . Therefore, Rad(M) = 0 and there

exists a submodule N of M such that N/T (M) ∼= Q. Since Q is injective and Z is
a Dedekind domain, we get Rad(Q) = Q. So any maximal submodule of N does
not contain T (M). Thus every maximal submodule of N is direct summand. This
means that every maximal submodule of N has a Rad-supplement in N . By [3,
Theorem 3.7], N is cofinitely Rad-supplemented.

If N is Rad-supplemented, then it is semisimple according to Corollary 2.3.
Hence Q is semisimple as a factor module of N , a contradiction.

We prove an analogue of [5, Proposition 2.14] in the following.

Proposition 3.2. Let M be an R-module. Suppose that M/ Rad(M) is finitely
generated. If M is cofinitely Rad-supplemented, then it is semi-Rad-supplemented.

Proof. Let Rad(M) ⊆ U ⊆ M . Note that

(M/ Rad(M)/(U/ Rad(M)) ∼= M/U

is finitely generated. Since M is cofinitely Rad-supplemented, U has a Rad-
supplement in M . Hence M is a semi-Rad-supplemented module. �

Corollary 3.3. The following statements are equivalent for a finitely gener-
ated module M .

(1) M is Rad-supplemented.
(2) M is semi-Rad-supplemented.
(3) M is cofinitely Rad-supplemented.

Proof. (1) ⇒ (3) is clear.
(3) ⇒ (2) By Proposition 3.2
(2) ⇒ (1) It follows from Lemma 2.3 �
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