PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 104(118) (2018), 139–148

DOI: https://doi.org/10.2298/PIM1818139K

GENERALIZATIONS OF RAD-SUPPLEMENTED MODULES

Engin Kaynar, Ergül Türkmen, and Yıldız Aydın

ABSTRACT. Let R be an associative ring with identity. We introduce the notion of semi- τ -supplemented modules, which is adapted from srs-modules, for a preradical τ on R-Mod. We provide basic properties of these modules. In particular, we study the objects of R-Mod for $\tau = \text{Rad}$. We show that the class of semi- τ -supplemented modules is closed under finite sums and factor modules. We prove that, for an idempotent preradical τ on R-Mod, a module M is semi- τ -supplemented if and only if it is τ -supplemented. For $\tau = \text{Rad}$, over a local ring every left module is semi-Rad-supplemented. We also prove that a commutative semilocal ring whose semi-Rad-supplemented modules are a direct sum of w-local left modules is an artinian principal ideal ring.

1. Introduction

Throughout this study, R will be an associative ring with identity and all modules are unitary left R-modules, unless otherwise specified. Let M be such a module over the ring R. By R-Mod we denote the category of left R-modules. The notation $N \subseteq M$ means that N is a submodule of M. A functor $\tau : R$ -Mod \rightarrow R-Mod is said to be a *preradical* if $\tau(M) \subseteq M$ for every $M \in R$ -Mod and for every homomorphism $f : M \to N$ in R-Mod, we have $f(\tau(M)) \subseteq \tau(N)$. A preradical τ is called *radical* if $\tau(M/\tau(M)) = 0$ for every left R-module M. A module M is called τ -torsion (respectively, τ -torsion free) if $\tau(M) = M$ (respectively, $\tau(M) = 0$).

A nonzero submodule N of a module M is called *essential*, written by $N \triangleleft M$, if $N \cap K \neq 0$ for every nonzero submodule K of M. Dually, a proper submodule S of M is called *small*, denoted by $S \ll M$, if S + K = M implies that K = M, where K is a submodule of M. By $\operatorname{Rad}(M)$ we will denote the Jacobson radical for a module M. If $M = \operatorname{Rad}(M)$, then it is called *radical*. A nonzero module M is said to be *hollow* if every proper submodule is small in M, and it is said to be *local* if it is hollow and finitely generated. M is local if and only if it is finitely generated and $\operatorname{Rad}(M)$ is maximal (see [6, 2.12 §2.15]).

²⁰¹⁰ Mathematics Subject Classification: Primary 16D10; Secondary 16N80. Key words and phrases: preradical, Jacobson radical, Rad-supplement, τ -supplement. Communicated by Zoran Petrović.

¹³⁹

For two submodules N and K of a module M, K is said to be supplement of N in M (or N is said to have a supplement K) if M = N + K and $N \cap K \ll K$. M is called supplemented if every submodule of M has a supplement in M. Since every direct summand of a module has a supplement, supplemented modules are a proper generalization of semisimple modules. Hollow modules are supplemented.

Al-Takhman, Lomp and Wisbauer [1] generalize supplemented modules to τ -supplemented modules for a preradical τ for R-Mod. A module M is called τ -supplemented if every submodule N of M has a τ -supplement K in M, that is, M = N + K and $N \cap K \subseteq \tau(K)$ where τ is a preradical for R-Mod. Instead of a preradical τ for R-Mod, we can use the radical Rad on R-Mod. A module M is called Rad-supplemented if every submodule N of M has a Rad-supplement K in M. Since the Jacobson radical of any module is the sum of all small submodules, every supplement submodule is Rad-supplement, and so supplemented modules are Rad-supplemented. Also, a noetherian Rad-supplemented module is supplemented.

For the properties and characterizations of (Rad-) supplemented modules and in general τ -supplemented modules we refer to [1, 4, 10].

In [11], Zöschinger studied on modules whose Jacobson radical have a supplement and termed these modules radical supplemented. He determined the structure of these modules over local Dedekind domains. Büyükaşık and Türkmen called a module M strongly radical supplemented (for shortly srs) if every submodule N of M with $\operatorname{Rad}(M) \subseteq N$ have a supplement K in M (see [5]). They gave the various properties of srs-modules in the same paper. In particular, it was shown in [5, Proposition 2.3] that every finite sum of srs-modules is srs. By [5, Proposition 3.3], over a local Dedekind domain a module is radical supplemented if and only if it is srs.

In this paper, we introduce the notion of semi- τ -supplemented modules, which is adapted from srs-modules, for a preradical τ on R-Mod. We provide basic properties of these modules. In particular, we study on the objects of R-Mod for $\tau = \text{Rad}$. We show that the class of semi- τ -supplemented modules is closed under finite sums and factor modules. We prove that, for an idempotent preradical τ on R-Mod, a module M is semi- τ -supplemented if and only if it is τ -supplemented. Let $\tau = \text{Rad}$. Any direct sum of w-local modules is semi-Rad-supplemented. It follows that over a local ring every left module is semi-Rad-supplemented. We give some counterexamples to separate classes of semi-Rad-supplemented modules, Rad-supplemented modules and srs-modules (see Example 3.3). We have that the following proper implications on modules hold:

We also prove that a commutative semilocal ring whose semi-Rad-supplemented modules are a direct sum of w-local left modules is an artinian principal ideal ring.

2. Semi- τ -Supplemented Modules

Let τ be a preradical on R-Mod. We call a module M semi- τ -supplemented if every submodule N of M with $\tau(M) \subseteq N$ has a τ -supplement in M. By definitions, every τ -supplemented module is semi- τ -supplemented. In this section, we obtain the various properties of semi- τ -supplemented modules. We prove that, for an idempotent preradical τ on R-Mod, a module M is semi- τ -supplemented if and only if it is τ -supplemented.

Recall from [2] that a module M is τ -local if it is τ -torsion or $\tau(M)$ is maximal.

LEMMA 2.1. Every τ -local module is semi- τ -supplemented.

PROOF. Let M be a τ -local module. If M is τ -torsion, it is clear. Suppose that $\tau(M)$ is the maximal submodule of M. Then $M = \tau(M) + M$ and $\tau(M) \cap M \subseteq \tau(M)$. Thus it is semi- τ -supplemented. \Box

COROLLARY 2.1. Let M be a module and N be a maximal submodule of M. Then every τ -supplement of N is semi- τ -supplemented.

PROOF. It follows from [2, Lemma 2.2] and Lemma 2.1.

Now we show that the finite sum of semi- τ -supplemented modules is semi- τ -supplemented. For this fact, we use the standard lemma (see, [1, 2.3(1)]).

LEMMA 2.2. Let M be an R-module and M_1 , U be submodules of M such that M_1 is semi- τ -supplemented, $\tau(M) \subseteq U$ and $M_1 + U$ has a τ -supplement V in M. Then, $M_1 \cap (U + V)$ has a τ -supplement L in M_1 and V + L is a τ -supplement of U in M.

THEOREM 2.1. Let M_1 and M_2 be semi- τ -supplemented modules. If $M = M_1 + M_2$, then M is semi- τ -supplemented.

PROOF. Let $\tau(M) \subseteq U \subseteq M$. Since $M = M_1 + M_2$, $M_1 + (M_2 + U)$ has the trivial τ -supplement 0 in M. So by Lemma 2.2, $M_2 + U$ has a τ -supplement in M. Again applying Lemma 2.2, we obtain a τ -supplement for U in M. Hence M is semi- τ -supplemented.

COROLLARY 2.2. A finite direct sum of semi- τ -supplemented modules is semi- τ -supplemented.

A module M is said to be a *duo module* if every submodule N of M is fully invariant [8]. Now we prove that arbitrary direct sums of semi- τ -supplemented modules are semi- τ -supplemented, under a certain condition: namely, when M is a duo module. The proof of the next result is the same as [7, Theorem 1].

THEOREM 2.2. Let M_i $(i \in I)$ be any collection of semi- τ -supplemented modules in R-Mod and $M = \bigoplus_{i \in I} M_i$. If M is a duo module, then it is a semi- τ -supplemented module.

PROPOSITION 2.1. If M is a semi- τ -supplemented module, then every factor module of M is semi- τ -supplemented.

PROOF. For any submodule N of M, let $U/N \subseteq M/N$ with $\tau(M/N) \subseteq U/N$. Since $(\tau(M) + N)/N \subseteq \tau(M/N)$, we can write $\tau(M) \subseteq U$. By the hypothesis, U has a τ -supplement V in M, that is, M = U + V and $U \cap V \subseteq \tau(V)$ for some submodule V of M. So M/N = U/N + (V + N)/N. Therefore,

$$U/N \cap (V+N)/N = [U \cap (V+N)]/N = (U \cap V+N)/N$$
$$\subseteq (\tau(V)+N)/N \subseteq \tau(V+N)/N$$

and so (V + N)/N is a τ -supplement of U/N in M/N. Hence M/N is semi- τ -supplemented.

Recall that a module M is weakly supplemented if every submodule N of M has a weak supplement K in M, that is, M = N + K and $N \cap K \ll M$ [6, 17.8].

LEMMA 2.3. Let M be a semi- τ -supplemented module. Suppose that $\tau(M)$ is a small submodule of M. Then M is τ -supplemented. In particular, M is weakly supplemented.

PROOF. Let U be any submodule of M. Then, $\tau(M) \subseteq \tau(M) + U$. It follows from the hypothesis that $\tau(M) + U$ has a τ -supplement V in M. So $M = (\tau(M) + U) + V$ and $(\tau(M) + U) \cap V \subseteq \tau(V)$. Since $\tau(M) \ll M$, we get M = U + V. Therefore $U \cap V \subseteq (\tau(M) + U) \cap V \subseteq \tau(V)$, we obtain that $U \cap V \subseteq \tau(V)$. Hence V is a τ -supplement of U in M.

Since $U \cap V \subseteq \tau(V) \subseteq \tau(M)$, it follows from [10, 19.3(4)] that $U \cap V$ is small in M. Hence V is a weak supplement of U in M. This means that M is a weakly supplemented module.

COROLLARY 2.3. Let M be a τ -torsion free module. Then the following statements are equivalent:

- (1) M is (semi) τ -supplemented.
- (2) M is semisimple.

PROOF. Clearly, we have the implications $(2) \Rightarrow (1)$; since M is τ -torsion free, $\tau(M) = 0$. It follows from Lemma 2.3 that M is (semi-) τ -supplemented.

 $(1) \Rightarrow (2)$ is obvious.

COROLLARY 2.4. Let M be a semi- τ -supplemented module. Suppose that τ is radical. Then $M/\tau(M)$ is semisimple and $\operatorname{Rad}(M) \subseteq \tau(M)$.

PROOF. By Proposition 2.1, we get that $M/\tau(M)$ is semi- τ -supplemented. Since τ is radical, $M/\tau(M)$ is a τ -torsion free module. Hence $M/\tau(M)$ is semisimple by Corollary 2.3. It follows that $\operatorname{Rad}(M/\tau(M)) = 0$. Thus $\operatorname{Rad}(M) \subseteq \tau(M)$. \Box

PROPOSITION 2.2. Let M be a semi- τ -supplemented module. If $\tau(M)$ is τ -supplemented, then M is τ -supplemented.

PROOF. Let $U \subseteq M$. By the hypothesis, $\tau(M) + U$ has a τ -supplement in M. Since $\tau(M)$ is τ -supplemented, by Lemma 2.2, U has a τ -supplement in M. A precadical τ is said to be *idempotent* if $\tau(\tau(M)) = \tau(M)$ for every left *R*-module *M*. For an example of an idempotent precadical on *R*-Mod, we consider an idempotent ideal *I* of a ring *R* and put $\tau^{I}(M) = IM$ each $M \in R$ -Mod. Then, τ^{I} is an idempotent precadical for *R*-Mod.

COROLLARY 2.5. Let τ be an idempotent preradical on R-Mod. Then an R-module M is semi- τ -supplemented if and only if it is τ -supplemented.

PROOF. We only need to show that M is semi- τ -supplemented, then it is τ -supplemented.

Let $N \subseteq M$. Let us look at the submodule $N + \tau(M)$. By the assumption, there exists a submodule K such that

$$(N + \tau(M)) + K = M$$
 and $(N + \tau(M)) \cap K \subseteq \tau(K)$.

Let $K_1 = \tau(M) + K$. We have $N + K_1 = M$ and we only need to prove that $N \cap K_1 \subseteq \tau(K_1)$, or, more explicitly, that $N \cap (\tau(M) + K) \subseteq \tau(\tau(M) + K)$. So, let $x \in N \cap (\tau(M) + K)$. This means that $x \in N$ and there exist elements $m' \in \tau(M)$ and $k \in K$ such that x = m' + k. From this, we get that k = x - m'. Since $x \in N$ and $m' \in \tau(M)$, we get $k \in (N + \tau(M)) \cap K$. Since $(N + \tau(M)) \cap K \subseteq \tau(K)$, it follows that $k \in \tau(K)$. So, $x \in \tau(M) + \tau(K) = \tau(\tau(M)) + \tau(K) \subseteq \tau(\tau(M) + K)$, which concludes our proof. The last inclusion follows from the fact that $\tau(A) + \tau(B) \subseteq \tau(A + B)$, since τ is a preradical.

By $P_{\tau}(M)$ we denote the sum of all τ -torsion submodules of an R-module M. It is clear that $P_{\tau}(M)$ is the largest τ -torsion submodule of M. Note that $P_{\tau}(M) \subseteq \tau(M)$ and P_{τ} is an idempotent preradical for R-Mod, whenever τ is a radical on R-Mod.

THEOREM 2.3. Let M be a module. Suppose that τ is a radical on R-Mod. Then it is semi- τ -supplemented if and only if $M/P_{\tau}(M)$ is semi- τ -supplemented.

PROOF. Let M be a semi- τ -supplemented module. It follows from Proposition 2.1 that $M/P_{\tau}(M)$ is semi- τ -supplemented as a factor module of M. Conversely, suppose that U is any submodule of M with $\tau(M) \subseteq U$. Then $P_{\tau}(M) \subseteq U$. By properties of a radical, we have $\tau(M/P_{\tau}(M)) = \tau(M)/P_{\tau}(M) \subseteq U/P_{\tau}(M)$. Since $M/P_{\tau}(M)$ is a semi- τ -supplemented module, $U/P_{\tau}(M)$ has a τ -supplement, say $V/P_{\tau}(M)$, in $M/P_{\tau}(M)$. So

$$M/P_{\tau}(M) = U/P_{\tau}(M) + V/P_{\tau}(M),$$

$$U/P_{\tau}(M) \cap V/P_{\tau}(M) \subseteq \tau(V/P_{\tau}(M)).$$

Therefore, M = U + V. Note that

$$(U \cap V)/P_{\tau}(M) = (U/P_{\tau}(M)) \cap (V/P_{\tau}(M)) \subseteq \tau(V/P_{\tau}(M)) = \tau(V)/P_{\tau}(M)$$

and this implies $U \cap V \subseteq \tau(V)$. Consequently, M is semi- τ -supplemented.

Let M be an R-module. M is said to be τ -reduced if $P_{\tau}(M) = 0$. If τ is radical, by [4, Theorem 3.1 (vii)], then $P_{\tau}(M/P_{\tau}(M)) = 0$ and so $M/P_{\tau}(M)$ is τ -reduced. Using Theorem 2.3, we obtain the following fact.

COROLLARY 2.6. Let R be a ring and τ be a radical on R-Mod. The following statements are equivalent:

- (1) Every left R-module is semi- τ -supplemented.
- (2) Every left τ -reduced R-module is semi- τ -supplemented.

3. Semi-Rad-Supplemented Modules

In this section, we shall consider $\tau = \text{Rad.}$ Recall that a module M is semi-Rad-supplemented if every submodule N of M with $\text{Rad}(M) \subseteq N$ has a Radsupplement K in M, that is, M = N + K and $N \cap K \subseteq \text{Rad}(K)$. It is clear that Rad-supplemented modules and srs-modules are semi-Rad-supplemented. For modules with zero Jacobson radical the notions of semi-Rad-supplemented, Radsupplemented and being srs-module coincide by Corollary 2.3. In general, semi-Rad-supplemented modules need not be Rad-supplemented and srs. Later we shall give an example of such modules (see Example 3.3).

Recall that a module M is *semilocal* if $M/\operatorname{Rad}(M)$ is semisimple. A ring R is called *semilocal* if $_RR$ (or R_R) is a semilocal module. It is known that a commutative ring R is semilocal if R has only finitely many maximal ideals. Since the preradical Rad is a radical on R-Mod, we obtain the following fact by Corollary 2.4.

COROLLARY 3.1. Semi-Rad-supplemented modules are semilocal.

PROOF. It follows from Corollary 2.4.

In the following example, we show that semilocal modules need not be semi-Rad-supplemented, in general. Firstly, we need this simple lemma.

LEMMA 3.1. Finitely generated semi-Rad-supplemented modules are Rad-supplemented.

PROOF. Let M be a finitely generated module. Then $\operatorname{Rad}(M)$ is a small submodule of M. If M is semi-Rad-supplemented, then it is Rad-supplemented by Lemma 2.3.

EXAMPLE 3.1. Consider the localization ring $\mathbb{Z}_{(2,3)}$ containing all rational numbers of the form $\frac{a}{b}$ with $2 \nmid b$ and $3 \nmid b$ for prime integers 2, 3 in \mathbb{Z} . Let M be the left $\mathbb{Z}_{(2,3)}$ -module $\mathbb{Z}_{(2,3)}$. Then M is a semilocal noetherian module, but not Rad-supplemented. By Lemma 3.1, it is not semi-Rad-supplemented.

As a proper generalization of local modules, one calls a module M w-local if $\operatorname{Rad}(M)$ is a maximal submodule of M as in [3].

PROPOSITION 3.1. Every w-local module is semi-Rad-supplemented.

PROOF. Let M be any w-local module and $\operatorname{Rad}(M) \subseteq U \subsetneqq M$. Since M is w-local, we have $U = \operatorname{Rad}(M)$. Then, M = U + M and $U \cap M \subseteq \operatorname{Rad}(M)$ and so M is a Rad-supplement of U in M. Hence M is semi-Rad-supplemented. \Box

THEOREM 3.1. Let M be any direct sum of w-local modules. Then it is semi-Rad-supplemented.

PROOF. Let $M = \bigoplus_{i \in I} M_i$ and each M_i be w-local. Let $\operatorname{Rad}(M) \subseteq U \subseteq M$. For $i \in I$, we have that $(M_i + \operatorname{Rad}(M))/\operatorname{Rad}(M) \cong M_i/\operatorname{Rad}(M_i)$ is simple because M_i is w-local. Note that $M/\operatorname{Rad}(M) = \bigoplus_{i \in I} (M_i + \operatorname{Rad}(M))/\operatorname{Rad}(M)$. So $M/\operatorname{Rad}(M)$ is semisimple by [6, 2.8(5)]. It follows that

$$M/\operatorname{Rad}(M) = U/\operatorname{Rad}(M) \oplus \left(\bigoplus_{i \in J} (M_i + \operatorname{Rad}(M))/\operatorname{Rad}(M)\right)$$

for some $J \subseteq I$ by [10, 20.1]. Let $V = \bigoplus_{i \in J} M_i$. Therefore, M = U + V and $U \cap V \subseteq \operatorname{Rad}(M)$. Since V is a direct summand of M, $\operatorname{Rad}(V) = V \cap \operatorname{Rad}(M)$ and so $U \cap V \subseteq \operatorname{Rad}(V)$. Hence U has a Rad-supplement in M as required. \Box

In the next Theorem, we characterize commutative semilocal rings in terms of semi-Rad-supplemented modules. A ring R is called a *left max ring* if every nonzero left R-module has a maximal submodule, and it is called *left perfect* if R is semilocal and a left max ring. Note that over a left max ring every nonzero left module has a small Jacobson radical. Left V-rings (i.e., every left simple module is injective) are left max rings.

LEMMA 3.2. Let R be a left max ring and M be a module over this ring. Then the following statements are equivalent.

- (1) M is semi-Rad-supplemented.
- (2) M is Rad-supplemented.
- (3) M is supplemented.
- (4) M is an srs-module.

PROOF. (1) \Rightarrow (2). By Lemma 2.3. (2) \Rightarrow (3). It follows from [6, 20.7(3)]. (3) \Rightarrow (4) and (4) \Rightarrow (1) are clear.

THEOREM 3.2. Let R be a ring whose semi-Rad-supplemented modules are the direct sum of w-local R-modules. Then R is a left max ring and every semi-Rad-supplemented R-module is supplemented. If R is a commutative semilocal ring, then R is an artinian principal ideal ring.

PROOF. Since radical modules are semi-Rad-supplemented, it is enough to prove that R has no radical modules. Let N = Rad(N) be an R-module. By the assumption, we can write $N = \bigoplus_{i \in I} N_i$, where each N_i is a w-local R-module. It follows that $N_i = \text{Rad}(N_i)$. Therefore, $N_i = 0$ for every $i \in I$. Thus N = 0. This means that R is a left max ring. Applying Lemma 3.2, every semi-Radsupplemented R-module is supplemented.

Let R be a commutative semilocal ring. Then, R is perfect. Let M be any R-module. By [10, 43.9], M is supplemented. Since w-local modules over left max rings are local, M is the direct sum of cyclic submodules. Hence R is an artinian principal ideal ring by [9, Theorem 6.7].

Let n > 1 be a positive integer. Then the ring \mathbb{Z}_n is a commutative semilocal ring which satisfies the above theorem.

A ring R is called *local* if R has a unique left maximal ideal.

THEOREM 3.3. Let R be a local ring. Then every left R-module is semi-Rad-supplemented.

PROOF. Let M be any left R-module. Then there exists an epimorphism $\Psi: R^{(I)} \to M$, where I is an index set. Since R is local, by Theorem 3.1, the free left R-module $R^{(I)}$ is semi-Rad-supplemented. Hence M is semi-Rad-supplemented as a factor module of $R^{(I)}$ by Proposition 2.1.

The following example shows that the converse of Theorem 3.3 is not true.

EXAMPLE 3.2. Let R be the factor ring $\mathbb{Z}/6\mathbb{Z}$ of the ring \mathbb{Z} . Therefore, R is an artinian principal ideal ring. Let M be any left R-module. Then M is a direct sum of local R-modules. It follows from Theorem 3.3 that it is semi-Rad-supplemented. However, R is not a local ring because R has two maximal ideals.

Now we give examples of a module, which is semi-Rad-supplemented but not Rad-supplemented.

EXAMPLE 3.3. (1) For a prime integer $p \in \mathbb{Z}$, given $\mathbb{Z}_{(p)} = \{\frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0, p \nmid n\}$. Then $\mathbb{Z}_{(p)}$ is a local Dedekind domain. Let F be the direct sum $\mathbb{Z}_{(p)}^{(\mathbb{N})}$ of countably many copies of $\mathbb{Z}_{(p)}$. By Theorem 3.3, we get that F is semi-Rad-supplemented. On the other hand, F is not Rad-supplemented according to $[\mathbf{4}, \text{Theorem 7.1(i)}]$.

(2) Let p be a prime in \mathbb{Z} and consider the left \mathbb{Z} -module $M = \bigoplus_{i \ge 1} \mathbb{Z}_{p^i}$ which is the sum of local \mathbb{Z} -modules \mathbb{Z}_{p^i} . Since local modules are w-local, we obtain that M is a semi-Rad-supplemented module by Theorem 3.1. Suppose that M is Radsupplemented. Note that M is reduced. By [4, Theorem 4.6 and Proposition 3.5], we get that $\operatorname{Rad}(M)$ is small in M. This is a contradiction. Consequently, M is not Rad-supplemented.

The Example 3.3 (2) also shows that the class of semi-Rad-supplemented modules contains properly the class of srs-modules by [5, Example 2.2].

In [3], M is called *cofinitely* Rad-*supplemented* if every submodule N of M with M/N which is finitely generated has a Rad-supplement in M. It was shown in [3, Theorem 3.7] that a module M is cofinitely Rad-supplemented if and only if every maximal submodule has a Rad-supplement in M. Using the characterization we get the result:

COROLLARY 3.2. Semi-Rad-supplemented modules are cofinitely Rad-supplemented.

PROOF. Let M be a semi-Rad-supplemented module. Therefore, every maximal submodule of M has a Rad-supplement in M. It follows from [3, Theorem 3.7] that it is cofinitely Rad-supplemented.

The following example shows that a cofinitely Rad-supplemented module need not be semi-Rad-supplemented. Let R be a Dedekind domain and M be an Rmodule. We denote by T(M) the set of all elements m of M for which there exists a nonzero element r of R such that rm = 0, i.e., $\operatorname{Ann}(m) \neq 0$. Then T(M), which is a submodule of M, is called the torsion submodule of M. EXAMPLE 3.4. Consider the left \mathbb{Z} -module $M = \prod_{p \in \Omega} \mathbb{Z}/p\mathbb{Z}$, where Ω is an infinite collection of distinct prime elements of \mathbb{Z} . Then the torsion submodule T(M) of M is the submodule $\bigoplus_{p \in \Omega} \mathbb{Z}/p\mathbb{Z}$ of M. Therefore, $\operatorname{Rad}(M) = 0$ and there exists a submodule N of M such that $N/T(M) \cong \mathbb{Q}$. Since \mathbb{Q} is injective and \mathbb{Z} is a Dedekind domain, we get $\operatorname{Rad}(\mathbb{Q}) = \mathbb{Q}$. So any maximal submodule of N does not contain T(M). Thus every maximal submodule of N is direct summand. This means that every maximal submodule of N has a Rad-supplement in N. By [3, Theorem 3.7], N is cofinitely Rad-supplemented.

If N is Rad-supplemented, then it is semisimple according to Corollary 2.3. Hence \mathbb{Q} is semisimple as a factor module of N, a contradiction.

We prove an analogue of [5, Proposition 2.14] in the following.

PROPOSITION 3.2. Let M be an R-module. Suppose that $M/\operatorname{Rad}(M)$ is finitely generated. If M is cofinitely Rad-supplemented, then it is semi-Rad-supplemented.

PROOF. Let $\operatorname{Rad}(M) \subseteq U \subseteq M$. Note that

 $(M/\operatorname{Rad}(M)/(U/\operatorname{Rad}(M)) \cong M/U$

is finitely generated. Since M is cofinitely Rad-supplemented, U has a Rad-supplement in M. Hence M is a semi-Rad-supplemented module.

COROLLARY 3.3. The following statements are equivalent for a finitely generated module M.

- (1) M is Rad-supplemented.
- (2) M is semi-Rad-supplemented.
- (3) M is cofinitely Rad-supplemented.

PROOF. (1) \Rightarrow (3) is clear.

 $(3) \Rightarrow (2)$ By Proposition 3.2

 $(2) \Rightarrow (1)$ It follows from Lemma 2.3

Acknowledgement. The authors sincerely thank Engin Büyükaşık for his interest and helpful suggestions. Supported by Scientific Research Project in Amasya University FMB-BAP 15-107.

References

- 1. K. Al-Takhman, C. Lomp, R. Wisbauer, $\tau\text{-}complemented$ and $\tau\text{-}supplemented$ modules, Algebra Discr. Math. 3 (2006), 1–16.
- E. Büyükaşık, Modules whose maximal submodules have τ-supplements, Algebra Discr. Math. 10(2) (2010), 1–9.
- E. Büyükaşık, C. Lomp, On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc. 78(2) (2008), 317–325.
- E. Büyükaşık, E. Mermut, S. Özdemir, Rad-supplemented modules, Rend. Semin. Mat. Univ. Padova 124 (2010), 157–177.
- E. Büyükaşık, E. Türkmen, Strongly radical supplemented modules, Ukr. Math. J. 106 (2011), 25–30.
- J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules. Supplements and projectivity in module theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006, 406.

KAYNAR, TÜRKMEN, AND AYDIN

- E. Türkmen, A. Pancar, Some properties of Rad-supplemented modules, Internat. J. Phys. Sci. 6(35) (2011), 7904–7909.
- 8. A. Ç. Özcan, A. Harmacı, P. F. Smith, Duo modules, Glasgow Math. J. 48 (2006), 533-545.
- 9. D. W. Sharpe, P. Vamos, Injective Modules, Cambridge University Press, Cambridge, 1972.
- 10. R. Wisbauer, Foundations of Modules and Rings, Gordon and Breach, 1991.
- H. Zöschinger, Moduln, die in jeder Erweiterung ein Komplement haben, Math. Scand. 35 (1974), 267–287.

Vocational School of Technical Sciences Amasya University Amasya Turkey engin.kaynar@amasya.edu.tr $(\mbox{Received 18 06 2015}) \\ (\mbox{Revised 14 06 2017}, \mbox{ and 21 11 2017}) \\$

Department of Mathematics Amasya University Amasya Turkey ergulturkmen@hotmail.com

Department of Mathematics Ondokuz Mayıs University Samsun Turkey yildizaydin60@hotmail.com