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THE GEODESIC COMPLETENESS OF

COMPACT LORENTZIAN MANIFOLDS ADMITTING

A TIMELIKE KILLING VECTOR FIELD REVISITED:

TWO NEW PROOFS

Daniel de la Fuente

Abstract. Compact Lorentzian manifolds admitting a timelike Killing vector
field are shown to be complete by means of two different proofs to the original
one.

1. Introduction

Contrary to the Riemannian case, a compact Lorentzian manifold may be
geodesically incomplete (see for instance [8, p. 193], [9, 10]). This striking fact
motivated the search of sufficient assumptions under which compactness implies
(geodesically) completeness of such a manifolds or more generally of a compact in-
definite Riemannian manifold [10]. On the other hand, an homogeneous indefinite
Riemannian manifold need not be complete [8, p. 257]. However, in 1973, Marsden
proved that any compact indefinite homogeneous Riemannian manifold must be
complete [7], [1, Th. 4.2.22]. In Marsden’s result the key idea is to show that the
tangent bundle can be decomposed into a disjoint union of compact subsets which
are invariant under the geodesic flow. Thus, any integral curve of the geodesic
vector field remains in a compact subset of the tangent bundle, which implies that
it (and hence its projection on the manifold) can be defined on all the real line.

It should be remarked that any tangent vector v at a point p of a homogeneous
semi-Riemannian manifold (M, g) can be extended to a globally defined Killing
vector field V . Note that if gp(v, v) < 0, then g(V, V ) < 0 near the point p.
However, V is not timelike everywhere, in general. On the other hand, recall that
a necessary and sufficient condition for a compact manifold to admit a Lorentzian
metric is the existence of a nowhere zero vector field [8]. Thus it is natural to link
the completeness of a compact Lorentzian manifold with the existence of a suitable
timelike vector field.
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In 1993, Kamishima proved in that a compact Lorentzian manifold which ad-
mits a timelike Killing vector field and has constant sectional curvature must be
complete [5]. His technique depends on the rich group machinery of spaces of con-
stant sectional curvature and it is completely different from Marsden’s one. With
respect to the curvature assumption in Kamishima’s result, Klinger proved in 1996
that every compact Lorentzian manifold of constant sectional curvature c must be
complete [6], extending a previous result by Carriére [3] when c = 0. Moreover,
note that there is no compact Lorentzian manifold (M, g) of constant sectional cur-
vature c > 0, which follows from Klinger’s theorem and a classical result of Calabi
and Markus [2].

In 1995, Romero and Sánchez proved that a compact Lorentzian manifold which
admits a timelike conformal vector field must be complete [11]. Recall that a vector
field is called conformal if any of its (local) flows consists of (local) conformal
transformations. In particular, a Killing vector field is clearly conformal. The
existence of a timelike conformal vector field imposes a serious restriction on the
topology of an n-dimensional compact Lorentzian manifold, indeed, this implies
that a compact Lorentzian manifold is topologically a Seifert fiber space. However,
for a fixed topology the family of such Lorentzian metrics is very wide. In dimension
two, a complete description of all Lorentzian metrics on a 2-tori which admit a
nontrivial Killing vector field was given by Sánchez in [12].

The main aim of this note is to give two new proofs of the result in [11] in the
case Killing,

A compact Lorentzian manifold which admits

a timelike Killing vector field must be geodesically complete.

The two new proofs which follow could bring the researchers in analytical me-
chanics or second order ODEs on manifolds closer to this topic of Lorentzian ge-
ometry.

In Section 2 we follow a different strategy from the one in [11]. In fact, we pay
attention to two numbers associated to each geodesic γ, the first one showing its
causal character and the second one given by conservation law (2.2). Using each
couple of these numbers, we construct a compact subbundle of the tangent bundle
T M invariant under the geodesic flow and such that the velocity vector field of γ

lies within it at any value of its parameter. Finally, according also to the causal
character of the geodesics, we construct in Section 3 three subbundes of T M , each
of them invariant under the geodesic flow and under suitable assumptions in order
to apply Gordon’s approach, concluding the completeness of the restriction of the
geodesic vector field in each case.

2. Hamiltonian approach à la Marsden

Let (M, g) be a compact Lorentzian manifold which admits a timelike Killing
vector field K. The geodesics of (M, g) can be characterized as solutions of the
Hamiltonian system given by H : T M → R, H(p, v) = 1

2 gp(v, v) for all (p, v) ∈ T M .
Consider

(2.1) J : T M → R, J(p, v) = gp(Kp, v),
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for all (p, v) ∈ T M . Taking into account that K is Killing, if γ is a geodesic in M ,
then we get

(2.2) J(γ(t), γ′(t)) = α.

for all t. Notice that the function J is the associated momentum function relative
to the (complete) infinitesimal generator K of the action [1, Sect. 4.2], and α ∈ R

depends on the geodesic γ in M . Moreover, conservation law (2.2) is just the
Noether Theorem for the mechanical system.

Now, in (M, g) consider the time orientation defined by K. Thus, let us consider
a future pointing unit timelike geodesic in (M, g), i.e., a geodesic γ : I → M , 0 ∈ I,
with γ(0) = p ∈ M and γ′(0) = v ∈ TqM , gp(v, v) = −1 and gp(Kp, v) < 0. We
may assume g(K, K) < −1 (otherwise, we may change K to the Killing vector λK

with a suitable positive number λ).
The curve in the tangent bundle T M given by t 7→ (γ(t), γ′(t)) lies in the

following subbundle of T M

T Mα =
⋃

p∈M

T Mα
p , T Mα

p := {v ∈ TpM : gp(v, v) = −1, J(p, v) = α},

where α = gp(Kp, v) < 0. Notice that the submanifold T Mα of T M is invariant
under the geodesic flow. If a unit timelike geodesic is past pointing, changing its
parameter by its opposite we have a geodesic under the previous assumptions.

For each p ∈ M , T Mα
p is the intersection of the future component of the

hyperbolic space in TpM and the spacelike affine hyperplane {v ∈ TpM : J(p, v) =
α}. Thus, T Mα

p is homeomorphic to an (n − 2)-dimensional Euclidean sphere and,
in particular, a compact subset of TpM . Consequently, T Mα is also compact and
then the restriction of the geodesic vector field on T Mα is complete. Therefore, γ

may be extended as a geodesic on all R.
A similar argument works when the geodesic γ is assumed to be spacelike or

(future pointing) lightlike, yielding respectively the subbundles of T M

SMβ : = {(p, v) ∈ T M : gp(v, v) = 1, J(p, v) = β ∈ R},

LM ε : = {(p, v) ∈ T M : gp(v, v) = 0, J(p, v) = ε < 0}.

Both of them are invariant under the geodesic flow. The subspace {v ∈ TpM :
gp(v, v) = 1} of TpM is diffeomorphic to an (n − 1)-dimensional De Sitter space-
time whereas {v ∈ TpM : gp(v, v) = 0, gp(Kp, v) < 0} is diffeomorphic to an
(n − 1)-dimensional future light cone. Then, the intersection with the correspond-
ing spacelike affine hyperplane is also homeomorphic to an (n − 2)-dimensional
Euclidean sphere and, in particular, a compact subset of TpM . Consequently, the
corresponding fiber bundles are compact, which ends the proof.

3. Approach à la Gordon

First recall the following technical result [4] (see also [1, Lemma 2.1.20 ]) to be
used later.

Lemma 3.1. Let X ∈ X(N) be a vector field on a manifold N . Suppose that
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(i) There exists a function f ∈ C∞(N) such that |Xp(f)| 6 δ1|f(p)|, for any

p ∈ N , where δ1 is a non-negative constant.

(ii) There exists a proper function h ∈ C∞(N) such that |h(p)| 6 δ2 |f(p)|,
for any p ∈ N , where δ2 is a positive constant.

Then, X is complete.

Now, as in Section 2, let (M, g) be a compact Lorentzian manifold with a
timelike Killing vector field K. Formula (2.2) suggests to take N = T M and
f = J , the momentum function, in order to use Lemma 3.1. In fact, assumption (i)
is automatically satisfied by X the geodesic vector field, with δ1 = 0. However, no
smooth function h : T M → R satisfying (ii) is proper. Note that if such a function
does exist then it takes the zero value. Let p0 be a fixed arbitrary point of M and
consider K⊥

p0
= {v ∈ Tp

0
M : gp0

(Kp0
, v) = 0}. Clearly, K⊥

p0
⊂ h−1(0) and K⊥

p0
is

closed and noncompact. Therefore, h is not proper. The following argument is a
way to avoid this inconvenient.

Consider N = PM ε :=
⋃

p∈M PM ε
p , ε = −1, 0, +1, where

PM ε
p : = {v ∈ TpM : g(v, v) = ε}, for ε = −1, +1,

PM0
p : = {v ∈ TpM : g(v, v) = 0, gp(Kp, v) < 0}.

Note that the subbundle PM ε of T M is invariant under the geodesic flow.
Denote by Gε the restriction on PM ε of the geodesic vector field G.

In order to apply Lemma 3.1, we take f, h : PM ε → R defined as

f(p, v) = h(p, v) := J(p, v),

for all (p, v) ∈ PM ε. It is not difficult to see that f is proper.
We have

Gε(f)(p,v) = g
(D

dt

∣

∣

∣

t=0
(K ◦ γ)(t), γ′(t)

)

= 0,

where γ is the geodesic satisfying γ(0) = p and γ′(0) = v. Now, Lemma 3.1 with
δ1 = 0 and δ2 = 1 allow us to end the proof.
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