
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 104(118) (2018), 107–113 DOI: https://doi.org/10.2298/PIM1818107B

THE MODULE MULTIPLIER

EMBEDDING PROBLEM

Ana Lucía Barrenechea and Carlos César Peña

Abstract. We precise properties, embedding and isomorphism theorems of
Banach module multipliers between a Banach algebra and modules on it. This
task for Banach dual valued multipliers is a problem of interest because of
its connection with the theory of induced Banach representations of Banach
algebras and Frobenius reciprocity theorems.

1. Introduction

The concept of multipliers appeared in harmonic analysis in connection with
the theory of Fourier series [6]. Since their formal introduction in 1956, operators
of Banach algebras which commute with left or right multiplications are a matter
of huge research [7]. Let A be an abelian semisimple Banach algebra, considered
as an algebra of continuous functions over its regular maximal ideal space XA. By
a multiplier of A is meant a function f on XA such that fG(A) ⊂ G(A), where
G denotes the Gélfand transform of A. In this context it is readily seen that f
determines a unique function m of A into A so that fG(a) = G(m(a)) if a ∈ A.
Moreover, m becomes a bounded linear operator on A and

(1.1) m(a)b = am(b) if a, b ∈ A.

This motivates to say that a linear operator of any algebra that satisfies the equation
(1.1) is a multiplier. For a first systematic study of multipliers on some commutative
Banach algebras the reader can see [19].

Let AH(A, M) be the Banach space, endowed with the uniform norm, of left M -

valued module multipliers on a Banach algebra A, or else bounded linear operators
T between A and a left Banach A-module M so that the identity T (am) = aT (m)
holds if a ∈ A, m ∈ M . The structure of AH(A, M) reveals relevant information
concerning A, M and their conjugate spaces. Perhaps, on a nondiscrete locally
compact group G, Wendel’s isomorphism theorem L1(G)H(L1(G), L1(G)) ≈ M(G)
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is one of the major insights in this area [21]. This theorem was restated in a
more general setting succeeding a characterization of L1(G)H(L1(G), M) for M

within a wide class of Banach L1(G)-modules [8,9,11]. For consideration of more
general bounded A-module multipliers between Banach A-modules and the impor-
tant notion of A-tensor products of Banach A-modules the reader can see [14].
Given a left Banach A-module M and a right Banach A-module N the formula
(M ⊗A N)∗ ≈A H(M, N∗) assimilates both constructions (cf. see [14, Corollary
2.13] or [15, (1.1)]).

Let G be a topological group and let π and ̺ be representations of G on Banach
spaces Xπ and X̺ respectively. Let BG(π, ̺) be the space of bounded operators A ∈
B(Xπ, X̺) so that Aπ(g) = ̺(g)A if g ∈ G. Let G be a locally compact separable
group and let K be a closed subgroup of G. Let us assume that G/K (right cosets)
has a measure invariant under the operation of G by right translations on G/K.
Let π and ̺ be representations of K and G respectively. In these conditions Moore
proved the existence of an isometric isomorphism of BK(π, ̺|K) onto BG(πind, ̺),
where ̺|K and πind denote the restriction of the representation ̺ to K and the
induced representation by π of G [12,13]. In particular, Moore remarked that his
development works if X̺ is reflexive or, more generally, a dual Banach space.

Throughout this article let M be a left Banach A-module. As usualy M is said
to be an essential A-module if A · M , the linear manifold spanned by elements of
the form am with a ∈ A and m ∈ M , is dense in M . We shall write Me = (A·M)−

to the essential submodule of M . Further, the set {m ∈ M : Am = {0M}} is a
submodule of M , which we call the order submodule M0 of M . We say that M is
order-free if M0 = {0M}.

If A is an approximately bounded Banach algebra and M is a left A-module,
then there is an isometric module isomorphism [AH(A, M)]e ≈ Me (see [14, The-
orem 4.5]). Moreover, if M is an essential left A-module, then there is an iso-
metric right A-module isomorphism AH(A, (M∗)e) ≈ M∗, while if besides M is
reflexive, then AH(A, M) ≈ M (Ibid., Theorem 8.9 and Corollary 8.10 respec-
tively). The question (cf. [14, 8.17]) concerning whether this last isomorphism
even holds if M is an essential dual Banach space was raised in connection with
Moore’s work. The following two conditions, each sufficient for an affirmative an-
swer, are known: Let χM be the natural immersion of M into its second dual
space M∗∗. If AχM (M) ⊆ χM (M) or the left A-module M∗∗∗ is essential, then
HA(A, M∗) ≈ M∗ [3].

In our main result (Theorem 2.1), we describe several properties of AH(A, M).
The connection with the above problem will be established in Theorem 2.2. Then
we will determine AH(A, M) if M is a dual Banach space, under suitable conditions
on the underlying algebra, depending on whether M is essential or not. We shall
analyze various related examples in the context of group and measure algebras, W ∗

algebras, operator algebras, reflexive spaces, etc..

2. On the class AH(A, M)

Theorem 2.1. The following assertions hold:

(1) AH(A, M) has a left Banach A-module structure.
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(2) Let θ : M →A H(A, M) be given as θ(m)(a) = am if a ∈ A, m ∈ M . Then

θ ∈ AH(M,A H(A, M)).
(3) M is order-free if and only if θ is injective.

Further, let us assume that A has a right bounded approximate identity. Then:

(4) If T ∈ AH(A, M) there is m̄∗∗ ∈ M∗∗ so that χM (T (a)) = am̄∗∗ if a ∈ A.

(5) The set IA(M) = {m∗∗ ∈ M∗∗ : Am∗∗ ⊆ χM (M)} is a Banach subspace of

M∗∗ and there is an isomorphism of Banach left A-modules

AH(A, M) ≈ IA(M)/(M∗∗)0.

(6) If

(2.1) A · M∗∗ ⊆ χM (M)

then AH(A, M) ≈ (M∗ · A)∗.

(7) If M∗ is an essential right A-Banach module then AH(A, M) ≈ IA(M).
(8) Let F : AH(A, M) → (M∗ · A)∗, F (T ) = (ıM∗·A)∗(m̄∗∗), where the element

m̄∗∗ ∈ M∗∗ is given according to 2.1(4) and ıM∗·A denotes the inclusion map

M∗ · A →֒ M∗. Then F ∈ AH [AH(A, M), (M∗ · A)∗] is a monomorphism.

Moreover, it is an isomorphism of Banach spaces if and only if IA(M) = M∗∗.

Proof. (1) Given a ∈ A and T ∈ AH(A, M) let (a ∗ T )(b) = bT (a) if a, b ∈ A.
It is easy to see that a ∗ T is C-linear bounded operator and that

(2.2) ‖a ∗ T ‖ 6 ‖T (a)‖ 6 ‖T ‖‖a‖.

Given b, c ∈ A we get (a ∗ T )(bc) = (bc)T (a) = b(cT (a)) = b(a ∗ T )(c), i.e.,
a ∗ T ∈ AH(A, M). Further,

(a ∗ (b ∗ T ))(c) = c(b ∗ T )(a) = c(aT (b)) = cT (ab) = ((ab) ∗ T )(c)

and we obtain that (ab) ∗ T = a(b ∗ T ). By (2.2) AH(A, M) becomes a left Banach
A- module.

(2) Clearly θ(m) is a C-linear operator if m ∈ M and ‖θ(m)‖ 6 ‖m‖. Besides,
given a, b ∈ A it is seen that θ(m)(ab) = (ab)m = a(bm) = aθ(m)(b). Consequently,
θ(m) ∈ AH(A, M) and θ ∈ B(M,A H(A, M)). Moreover, as

(a ∗ θ(m))(b) = bθ(m)(a) = b(am) = θ(am)(b)

our claim holds.

(3) It is obvious.

(4) Let {ei}i∈I be a right bounded approximate identity of A. As it is bounded
by Alaoglu’s theorem there is a subnet {eij

}j∈J and an element m̄∗∗ ∈ A∗∗ so that
m̄∗∗ = w∗ − limj∈J χM {T (eij)}. Given T ∈ AH(A, M), a ∈ A and m∗ ∈ M∗ we
now obtain

〈m∗, χM (T (a))〉 = 〈T (a), m∗〉 = lim
j∈J

〈T (aeij
), m∗〉 = lim

j∈J
〈aT (eij

), m∗〉

= lim
j∈J

〈(T eij),m
∗a〉 = 〈m∗a, m̄∗∗〉 = 〈m∗, am̄∗∗〉

and the fourth assertion follows.
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(5) Since χM is isometric and

|〈m∗, m̄∗∗〉| = lim
j∈J

|〈T (eij
), m∗〉| 6 ‖m∗‖ lim

j∈J
‖T (eij

)‖

we see that

(2.3) ‖T ‖ 6 ‖m̄∗∗‖ 6 ‖T ‖ sup
i∈I

‖ei‖.

The set I(M) is clearly a subspace of M∗∗, and it becomes closed because χM is
isometric and M is complete. Let

κ : AH(A, M) → I(M)/(M∗∗)0,

κ(T ) = m∗∗ + (M∗∗)0 if χM (T (a)) = am∗∗ for a ∈ A.

Clearly κ is a well defined complex linear functional. So, using (2.3), the former
notation and the definition of the quotient norm, we get

‖T ‖ 6 ‖κ(T )‖ 6 ‖T ‖ sup
i∈I

‖ei‖

and so κ becomes a bounded monomorphism. The relation

(2.4) a(m∗∗ + (M∗∗)0) = am∗∗ + (M∗∗)0 if a ∈ A, m∗∗ ∈ M∗∗,

provides to I(M)/(M∗∗)0 of a Banach left A-module structure. By considering
T ∈ AH(A, M), a, b ∈ A and m∗∗ ∈ κ(T ), it follows that

χM ((a ∗ T )(b)) = χM (bT (a)) = χM (T (ba)) = (ba)m∗∗ = b(am∗∗).

Hence κ(a ∗ T ) = am∗∗ + (M∗∗)0 because b is arbitrary and κ turns into a left
homomorphism by (2.4). Now, if m∗∗ ∈ IA(M) and a ∈ A there is a unique ma ∈
M so that am∗∗ = χM (ma). If Tm∗∗(a) = ma we get a function Tm∗∗ : A → M
that is C-linear. For, if z ∈ C and a, b ∈ A we have

χM (Tm∗∗(za + b)) = (za + b)m∗∗ = z(am∗∗) + bm∗∗

= zχM (Tm∗∗(a)) + χM (Tm∗∗(b))

= χM (zTm∗∗(a) + Tm∗∗(b))

and the claim holds because χ is injective. Indeed, as

‖Tm∗∗(a)‖ = ‖am∗∗‖ 6 ‖a‖‖m∗∗‖ if a ∈ A,

then Tm∗∗ is bounded. Moreover, as χM ∈ AH(M, M∗∗) given a, b ∈ A we can
write

χM (Tm∗∗(ab)) = (ab)m∗∗ = a(bm∗∗) = aχM (Tm∗∗(b)) = χM (aTm∗∗(b)),

i.e., Tm∗∗ ∈ AH(A, M). It is now plain that κ(Tm∗∗) = m∗∗ + (M∗∗)0.

(6) It is easily seen that

(2.5) (M∗∗)0 = (M∗ · A)o

and the hypothesis is equivalent to say that M∗∗ = IA(M). It is straightforward
to see that the well known isometric isomorphism M∗∗/(M∗ · A)o ≈ (M∗ · A)∗

becomes an isomorphism of Banach left A-modules (cf. [16, §4.8, p. 96]).
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(7) Since M∗ is essential by (2.5) M∗∗ becomes an order-free left Banach A-
module and our claim follows by 2.1(5).

(8) By construction it is easily seen that F is a well defined left bounded
multiplier between Banach modules. It is easy to see that F is injective. Given
m∗∗ ∈ M∗∗, if F is surjective let us choose m∗∗ ∈ AH(A, M) so that F (T ) = m∗∗.
Given a ∈ A and m∗ ∈ M∗ we have

〈m∗, am∗∗〉 = 〈m∗a, m∗∗〉 = 〈m∗a, F (T )〉

= 〈m∗a, m̄∗∗〉 = 〈m∗, χM (T (a))〉

i.e., m∗∗ ∈ IA(M). On the other hand, given λ ∈ (M∗ · A)∗ by the Hahn–Banach
theorem there is an extension Λ ∈ M∗∗. Thus Λ ∈ IA(M) and as in 2.1(5) we can
choose L ∈ AH(A, M) so that κ(L) = Λ + (M∗∗)0. Consequently χM (L(a)) = aΛ
if a ∈ A and so λ = (ıM∗·A)∗(Λ) = F (L). �

Example 2.1. Let G be a locally compact group. The Banach convolution
algebra M(G) of complex regular Borel measures on G is unital while the group
algebra L1(G) is approximately unital, being unital only in the discrete case (cf. [4,
Theorem 3.3.23]). If A = M = M(G) or A = M = L1(G) the condition (2.1) holds
if and only if G is finite or compact respectively (cf. [20, Theorems 5 and 6]).

Example 2.2. Clearly (2.1) is satisfied when M is reflexive. For instance, again
on an underlying locally compact group G, this covers the case of Lp(G) considered
as a left-L1(G)-module if 1 < p < ∞.

Example 2.3. Condition (2.1) holds for W ∗ algebras, i.e., C∗ algebras that are
dual Banach algebras. For, any C∗ algebra is approximately unital (cf. [17, Lemma
1.1]) and a B∗ algebra is a dual algebra if and only if its immersion in its second
conjugate space is an ideal (cf. [18, Theorem 5.1]).

Example 2.4. Let A = M = A(X) be the Banach algebra of approximable
operators on a Banach space X whose dual has the bounded approximation prop-
erty. Then X itself has the bounded approximation property, A coincides with the
Banach algebra of compact operators on X and it has also a bounded approximate
identity (cf. [1, 5]). Now, (2.1) holds if and only if X is reflexive (cf. [20, Theo-
rem 4]).

Example 2.5. On a locally compact group G we consider L1(G) as a left
Banach M(G)-module (cf. [10, Theorem 20.12]). Now (2.1) is no longer true even
in the discrete case. For instance, χl1(Z)(l

1(Z)) ( M(Z)·l∞(Z)∗. For, let us consider

the probability measure µ ∈ M(Z) so that µ(E) = 3−1 ∑

m∈E 2−|m| if E ∈ P(Z).
By Alaoglu’s theorem there is an increasing sequence {nk}k∈N that determines a
well defined functional

Θ = w∗ − lim
k→∞

χl1(Z)[1{−nk,...,nk}]/(2nk + 1)

in l∞(Z)∗. It will suffice to see that µ · Θ 6∈ χl1(Z)(l
1(Z)). Indeed, we can write

µ · Θ = χl1(Z)(f) for some f ∈ l1(Z) and given m ∈ Z we have
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f(m) = 〈f, 1{m}〉 = 〈1{m}, µ · Θ〉 = 〈1{m} · µ, Θ〉

= lim
k→∞

〈1{−nk,...,nk}, 1{m} · µ〉/(2nk + 1)

= lim
k→∞

1

2nk + 1
〈1{−nk,...,nk}, {3−1 · 2−|p−m|}p∈Z〉

= lim
k→∞

3−1

2nk + 1

∑

p∈Z:|p|6nk

2−|p−m| = lim
k→∞

3−1

2nk + 1

nk−m
∑

q=−nk−m

2−|q|

= lim
k→∞

3−1

2nk + 1

[1 − 2−nk−m−1

1/2
− 1 +

1 − 2−nk+m−1

1/2

]

= 0,

i.e., f = 0l1(Z). Nevertheless, 〈1Z, µ · Θ〉 = 〈1Z · µ, Θ〉 = 〈1Z, Θ〉 = 1 and we get a
contradiction.

Theorem 2.2. Let A be a Banach algebra with a right bounded approximate

identity and let N be a nontrivial right Banach A-module.

(1) If N is essential and reflexive then AH(A, N∗) ≈ N∗.

(2) If N is not essential then AH(A, N∗) ≈ IA(N∗)/(N∗∗∗)0, where the quo-

tient is not trivial.

(3) If N is not essential and reflexive then AH(A, N∗) ≈ N∗/(N · A)o, where

the quotient is not trivial.

Proof. (1) By Cohen’s factorization theorem [2] is N = NA, i.e., any element
n ∈ N can be factored as n = n1a for suitable n1 ∈ N and a ∈ A. Moreover, if
N is reflexive χN (N) = N∗∗ · A and IA(N∗) = N∗ because N∗ becomes reflexive.
The result now follows from Theorem 2.1(7).

(2) Clearly it will suffice to prove the existence of n∗∗∗ ∈ N∗∗∗ so that

(2.6) {0N∗∗∗} 6= An∗∗∗ ⊆ χN∗(N∗).

Precisely, (N · A)o 6= {0N∗} because N is not essential. If (N · A)o = N∗ then

{0N∗∗} = (N · A)oo = χN (N · A)−w∗

⊇ χN (N · A)−w.

Hence χN(N · A)− = {0N∗∗} (cf. [16, Theorem 3.12]), which is impossible because
χN is injective and N is a nontrivial A-module. Consequently, let n∗ ∈ N∗− (N ·A)0.

In particular, there exist ã ∈ A and n0 ∈ N so that 〈n0ã, n∗〉 6= 0. If n∗∗∗ , χN∗(n∗)
then

〈χN (n0), ãn∗∗∗〉 = 〈χN (n0), χN∗(ãn∗)〉 = 〈n0, ãn∗〉 = 〈n0ã, n∗〉 6= 0,

and clearly n∗∗∗ satisfies (2.6).
(3) By the reflexivity of N the Banach left A-module isomorphism follows by

Theorem 2.1(8). Moreover, N · A ≈ N∗∗ · A and N · A ( N because N is not
essential. Therefore, by the Hahn–Banach theorem there exists a nonzero n∗ ∈ N∗

that annihilates on N · A and the result holds. �

Example 2.6. The condition of reflexivity in Theorem 2.2 is necessary. For
instance, the abelian Banach algebra A = c0(N) is approximately bounded. Since
its conjugate space l1(N) is a c0(N)-essential Banach module by Theorem 2.1(7) is
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c0(N)H(c0(N), l1(N)) ≈ Ic0(N)(l
1(N)). However, ıl1(N)(l

1(N)) & Ic0(N)(l
1(N)). For,

the semidirect product l1(N)∗∗ = ıl1(N)(l
1(N)) ⋉ [ıc0(N)(c0(N))]0 holds (cf. [4, Ex-

ample 2.6.22(iii)]). Let Φ ∈ l1(N)∗∗, Φ = ıl1(N)(λ) + Ψ, with unique λ ∈ l1(N)

and Ψ ∈ [ıc0(N)(c0(N))]0. If x ∈ c0(N) it is seen that xΨ ∈ [ıc0(N)(c0(N))]0 and

xıl1(N)(λ) = ıl1(N)(xλ). Thus Φ ∈ Ic0(N)(l
1(N)) if and only if xΨ = 0l1(N)∗∗ for

all x ∈ c0(N). By the Hahn–Banach theorem we can choose a nonzero functional
Λ ∈ [ıc0(N)(c0(N))]0 and it is plain that Λ ∈ Ic0(N)(l

1(N)) − ıl1(N)(l
1(N)).
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