PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 104(118) (2018), 107–113

DOI: https://doi.org/10.2298/PIM1818107B

THE MODULE MULTIPLIER EMBEDDING PROBLEM

Ana Lucía Barrenechea and Carlos César Peña

ABSTRACT. We precise properties, embedding and isomorphism theorems of Banach module multipliers between a Banach algebra and modules on it. This task for Banach dual valued multipliers is a problem of interest because of its connection with the theory of induced Banach representations of Banach algebras and Frobenius reciprocity theorems.

1. Introduction

The concept of multipliers appeared in harmonic analysis in connection with the theory of Fourier series [6]. Since their formal introduction in 1956, operators of Banach algebras which commute with left or right multiplications are a matter of huge research [7]. Let \mathcal{A} be an abelian semisimple Banach algebra, considered as an algebra of continuous functions over its regular maximal ideal space $X_{\mathcal{A}}$. By a multiplier of \mathcal{A} is meant a function f on $X_{\mathcal{A}}$ such that $fG(\mathcal{A}) \subset G(\mathcal{A})$, where G denotes the Gélfand transform of \mathcal{A} . In this context it is readily seen that fdetermines a unique function m of \mathcal{A} into \mathcal{A} so that fG(a) = G(m(a)) if $a \in \mathcal{A}$. Moreover, m becomes a bounded linear operator on \mathcal{A} and

(1.1)
$$m(a)b = am(b) \quad \text{if } a, b \in \mathcal{A}$$

This motivates to say that a linear operator of any algebra that satisfies the equation (1.1) is a *multiplier*. For a first systematic study of multipliers on some commutative Banach algebras the reader can see [19].

Let $_{\mathcal{A}}H(\mathcal{A}, M)$ be the Banach space, endowed with the uniform norm, of left Mvalued module multipliers on a Banach algebra \mathcal{A} , or else bounded linear operators T between \mathcal{A} and a left Banach \mathcal{A} -module M so that the identity T(am) = aT(m)holds if $a \in \mathcal{A}, m \in M$. The structure of $_{\mathcal{A}}H(\mathcal{A}, M)$ reveals relevant information concerning \mathcal{A}, M and their conjugate spaces. Perhaps, on a nondiscrete locally compact group G, Wendel's isomorphism theorem $_{L^1(G)}H(L^1(G), L^1(G)) \approx M(G)$

107

²⁰¹⁰ Mathematics Subject Classification: Primary 46H25; Secondary 46H15.

Key words and phrases: module multipliers, tensor products of Banach modules over a Banach algebra, restricted and induced representations.

Communicated by Stevan Pilipović.

is one of the major insights in this area [21]. This theorem was restated in a more general setting succeeding a characterization of $_{L^1(G)}H(L^1(G), M)$ for Mwithin a wide class of Banach $L^1(G)$ -modules [8,9,11]. For consideration of more general bounded \mathcal{A} -module multipliers between Banach \mathcal{A} -modules and the important notion of \mathcal{A} -tensor products of Banach \mathcal{A} -modules the reader can see [14]. Given a left Banach \mathcal{A} -module M and a right Banach \mathcal{A} -module N the formula $(M \otimes_{\mathcal{A}} N)^* \approx_{\mathcal{A}} H(M, N^*)$ assimilates both constructions (cf. see [14, Corollary 2.13] or [15, (1.1)]).

Let G be a topological group and let π and ϱ be representations of G on Banach spaces X_{π} and X_{ϱ} respectively. Let $\mathcal{B}_G(\pi, \varrho)$ be the space of bounded operators $A \in \mathcal{B}(X_{\pi}, X_{\varrho})$ so that $A\pi(g) = \varrho(g)A$ if $g \in G$. Let G be a locally compact separable group and let K be a closed subgroup of G. Let us assume that G/K (right cosets) has a measure invariant under the operation of G by right translations on G/K. Let π and ϱ be representations of K and G respectively. In these conditions Moore proved the existence of an isometric isomorphism of $\mathcal{B}_K(\pi, \varrho|_K)$ onto $\mathcal{B}_G(\pi^{\text{ind}}, \varrho)$, where $\varrho|_K$ and π^{ind} denote the restriction of the representation ϱ to K and the induced representation by π of G [12,13]. In particular, Moore remarked that his development works if X_{ϱ} is reflexive or, more generally, a dual Banach space.

Throughout this article let M be a left Banach \mathcal{A} -module. As usualy M is said to be an *essential* \mathcal{A} -module if $\mathcal{A} \cdot M$, the linear manifold spanned by elements of the form am with $a \in \mathcal{A}$ and $m \in M$, is dense in M. We shall write $M_e = (\mathcal{A} \cdot M)^$ to the *essential submodule* of M. Further, the set $\{m \in M : \mathcal{A}m = \{0_M\}\}$ is a submodule of M, which we call the *order submodule* M_0 of M. We say that M is *order-free* if $M_0 = \{0_M\}$.

If \mathcal{A} is an approximately bounded Banach algebra and M is a left \mathcal{A} -module, then there is an isometric module isomorphism $[_{\mathcal{A}}H(\mathcal{A}, M)]_e \approx M_e$ (see [14, Theorem 4.5]). Moreover, if M is an essential left \mathcal{A} -module, then there is an isometric right \mathcal{A} -module isomorphism $_{\mathcal{A}}H(\mathcal{A}, (M^*)_e) \approx M^*$, while if besides M is reflexive, then $_{\mathcal{A}}H(\mathcal{A}, M) \approx M$ (Ibid., Theorem 8.9 and Corollary 8.10 respectively). The question (cf. [14, 8.17]) concerning whether this last isomorphism even holds if M is an essential dual Banach space was raised in connection with Moore's work. The following two conditions, each sufficient for an affirmative answer, are known: Let χ_M be the natural immersion of M into its second dual space M^{**} . If $\mathcal{A}\chi_M(M) \subseteq \chi_M(M)$ or the left \mathcal{A} -module M^{***} is essential, then $H_{\mathcal{A}}(\mathcal{A}, M^*) \approx M^*$ [3].

In our main result (Theorem 2.1), we describe several properties of $_{\mathcal{A}}H(\mathcal{A}, M)$. The connection with the above problem will be established in Theorem 2.2. Then we will determine $_{\mathcal{A}}H(\mathcal{A}, M)$ if M is a dual Banach space, under suitable conditions on the underlying algebra, depending on whether M is essential or not. We shall analyze various related examples in the context of group and measure algebras, W^* algebras, operator algebras, reflexive spaces, etc..

2. On the class $_{\mathcal{A}}H(\mathcal{A},M)$

THEOREM 2.1. The following assertions hold: (1) $_{\mathcal{A}}H(\mathcal{A}, M)$ has a left Banach \mathcal{A} -module structure.

- (2) Let $\theta: M \to_{\mathcal{A}} H(\mathcal{A}, M)$ be given as $\theta(m)(a) = am$ if $a \in \mathcal{A}, m \in M$. Then $\theta \in {}_{\mathcal{A}}H(M, {}_{\mathcal{A}}H(\mathcal{A}, M)).$
- (3) M is order-free if and only if θ is injective. Further, let us assume that A has a right bounded approximate identity. Then:
- (4) If $T \in {}_{\mathcal{A}}H(\mathcal{A}, M)$ there is $\bar{m}^{**} \in M^{**}$ so that $\chi_M(T(a)) = a\bar{m}^{**}$ if $a \in \mathcal{A}$.
- (5) The set $\mathcal{I}_{\mathcal{A}}(M) = \{m^{**} \in M^{**} : \mathcal{A}m^{**} \subseteq \chi_M(M)\}$ is a Banach subspace of M^{**} and there is an isomorphism of Banach left \mathcal{A} -modules

$$_{\mathcal{A}}H(\mathcal{A},M) \approx \mathcal{I}_{\mathcal{A}}(M)/(M^{**})_0.$$

(6) If

(2.1)
$$\mathcal{A} \cdot M^{**} \subseteq \chi_M(M)$$

then $_{\mathcal{A}}H(\mathcal{A},M) \approx (M^* \cdot \mathcal{A})^*$.

- (7) If M^* is an essential right \mathcal{A} -Banach module then $_{\mathcal{A}}H(\mathcal{A},M) \approx \mathcal{I}_{\mathcal{A}}(M)$.
- (8) Let $F: {}_{\mathcal{A}}H(\mathcal{A}, M) \to (M^* \cdot \mathcal{A})^*$, $F(T) = (i_{M^* \cdot \mathcal{A}})^*(\bar{m}^{**})$, where the element $\bar{m}^{**} \in M^{**}$ is given according to 2.1(4) and $i_{M^* \cdot \mathcal{A}}$ denotes the inclusion map $M^* \cdot \mathcal{A} \hookrightarrow M^*$. Then $F \in {}_{\mathcal{A}}H[{}_{\mathcal{A}}H(\mathcal{A}, M), (M^* \cdot \mathcal{A})^*]$ is a monomorphism. Moreover, it is an isomorphism of Banach spaces if and only if $\mathcal{I}_{\mathcal{A}}(M) = M^{**}$.

PROOF. (1) Given $a \in \mathcal{A}$ and $T \in {}_{\mathcal{A}}H(\mathcal{A}, M)$ let (a * T)(b) = bT(a) if $a, b \in \mathcal{A}$. It is easy to see that a * T is \mathbb{C} -linear bounded operator and that

(2.2)
$$||a * T|| \leq ||T(a)|| \leq ||T|| ||a||$$

Given $b, c \in \mathcal{A}$ we get (a * T)(bc) = (bc)T(a) = b(cT(a)) = b(a * T)(c), i.e., $a * T \in {}_{\mathcal{A}}H(\mathcal{A}, M)$. Further,

$$(a * (b * T))(c) = c(b * T)(a) = c(aT(b)) = cT(ab) = ((ab) * T)(c)$$

and we obtain that (ab) * T = a(b * T). By (2.2) $_{\mathcal{A}}H(\mathcal{A}, M)$ becomes a left Banach \mathcal{A} - module.

(2) Clearly $\theta(m)$ is a \mathbb{C} -linear operator if $m \in M$ and $\|\theta(m)\| \leq \|m\|$. Besides, given $a, b \in \mathcal{A}$ it is seen that $\theta(m)(ab) = (ab)m = a(bm) = a\theta(m)(b)$. Consequently, $\theta(m) \in {}_{\mathcal{A}}H(\mathcal{A}, M)$ and $\theta \in B(M, {}_{\mathcal{A}}H(\mathcal{A}, M))$. Moreover, as

$$(a*\theta(m))(b) = b\theta(m)(a) = b(am) = \theta(am)(b)$$

our claim holds.

(3) It is obvious.

(4) Let $\{e_i\}_{i\in I}$ be a right bounded approximate identity of \mathcal{A} . As it is bounded by Alaoglu's theorem there is a subnet $\{e_{i_j}\}_{j\in J}$ and an element $\bar{m}^{**} \in \mathcal{A}^{**}$ so that $\bar{m}^{**} = w^* - \lim_{j\in J} \chi_M\{T(e_{i_j})\}$. Given $T \in {}_{\mathcal{A}}H(\mathcal{A}, M)$, $a \in \mathcal{A}$ and $m^* \in M^*$ we now obtain

$$\langle m^*, \chi_M(T(a)) \rangle = \langle T(a), m^* \rangle = \lim_{j \in J} \langle T(ae_{i_j}), m^* \rangle = \lim_{j \in J} \langle aT(e_{i_j}), m^* \rangle$$
$$= \lim_{j \in J} \langle (Te_{i_j}), m^*a \rangle = \langle m^*a, \bar{m}^{**} \rangle = \langle m^*, a\bar{m}^{**} \rangle$$

and the fourth assertion follows.

(5) Since χ_M is isometric and

$$\langle m^*, \bar{m}^{**} \rangle | = \lim_{j \in J} |\langle T(e_{i_j}), m^* \rangle| \le ||m^*|| \lim_{j \in J} ||T(e_{i_j})||$$

we see that

(2.3)
$$||T|| \leq ||\bar{m}^{**}|| \leq ||T|| \sup_{i \in I} ||e_i||.$$

The set $\mathcal{I}(M)$ is clearly a subspace of M^{**} , and it becomes closed because χ_M is isometric and M is complete. Let

$$\kappa \colon {}_{\mathcal{A}}H(\mathcal{A}, M) \to \mathcal{I}(M)/(M^{**})_0,$$

$$\kappa(T) = m^{**} + (M^{**})_0 \quad \text{if} \quad \chi_M(T(a)) = am^{**} \quad \text{for} \quad a \in \mathcal{A}.$$

Clearly κ is a well defined complex linear functional. So, using (2.3), the former notation and the definition of the quotient norm, we get

$$||T|| \leqslant ||\kappa(T)|| \leqslant ||T|| \sup_{i \in I} ||e_i||$$

and so κ becomes a bounded monomorphism. The relation

(2.4)
$$a(m^{**} + (M^{**})_0) = am^{**} + (M^{**})_0 \text{ if } a \in \mathcal{A}, \ m^{**} \in M^{**},$$

provides to $\mathcal{I}(M)/(M^{**})_0$ of a Banach left \mathcal{A} -module structure. By considering $T \in {}_{\mathcal{A}}H(\mathcal{A}, M), a, b \in \mathcal{A}$ and $m^{**} \in \kappa(T)$, it follows that

$$\chi_M((a * T)(b)) = \chi_M(bT(a)) = \chi_M(T(ba)) = (ba)m^{**} = b(am^{**}).$$

Hence $\kappa(a * T) = am^{**} + (M^{**})_0$ because b is arbitrary and κ turns into a left homomorphism by (2.4). Now, if $m^{**} \in \mathcal{I}_{\mathcal{A}}(M)$ and $a \in \mathcal{A}$ there is a unique $m_a \in \mathcal{M}$ so that $am^{**} = \chi_M(m_a)$. If $T_{m^{**}}(a) = m_a$ we get a function $T_{m^{**}}: \mathcal{A} \to \mathcal{M}$ that is \mathbb{C} -linear. For, if $z \in \mathbb{C}$ and $a, b \in \mathcal{A}$ we have

$$\chi_M(T_{m^{**}}(za+b)) = (za+b)m^{**} = z(am^{**}) + bm^{**}$$
$$= z\chi_M(T_{m^{**}}(a)) + \chi_M(T_{m^{**}}(b))$$
$$= \chi_M(zT_{m^{**}}(a) + T_{m^{**}}(b))$$

and the claim holds because χ is injective. Indeed, as

$$||T_{m^{**}}(a)|| = ||am^{**}|| \leq ||a|| ||m^{**}|| \quad \text{if } a \in \mathcal{A},$$

then $T_{m^{**}}$ is bounded. Moreover, as $\chi_M \in {}_{\mathcal{A}}H(M, M^{**})$ given $a, b \in \mathcal{A}$ we can write

$$\chi_M(T_{m^{**}}(ab)) = (ab)m^{**} = a(bm^{**}) = a\chi_M(T_{m^{**}}(b)) = \chi_M(aT_{m^{**}}(b)),$$

i.e., $T_{m^{**}} \in {}_{\mathcal{A}}H(\mathcal{A}, M)$. It is now plain that $\kappa(T_{m^{**}}) = m^{**} + (M^{**})_0$.

(6) It is easily seen that

(2.5)
$$(M^{**})_0 = (M^* \cdot \mathcal{A})^o$$

and the hypothesis is equivalent to say that $M^{**} = \mathcal{I}_{\mathcal{A}}(M)$. It is straightforward to see that the well known isometric isomorphism $M^{**}/(M^* \cdot \mathcal{A})^o \approx (M^* \cdot \mathcal{A})^*$ becomes an isomorphism of Banach left \mathcal{A} -modules (cf. [16, §4.8, p. 96]).

110

(7) Since M^* is essential by (2.5) M^{**} becomes an order-free left Banach \mathcal{A} -module and our claim follows by 2.1(5).

(8) By construction it is easily seen that F is a well defined left bounded multiplier between Banach modules. It is easy to see that F is injective. Given $m^{**} \in M^{**}$, if F is surjective let us choose $m^{**} \in {}_{\mathcal{A}}H(\mathcal{A}, M)$ so that $F(T) = m^{**}$. Given $a \in \mathcal{A}$ and $m^* \in M^*$ we have

$$\langle m^*, am^{**} \rangle = \langle m^*a, m^{**} \rangle = \langle m^*a, F(T) \rangle \\ = \langle m^*a, \bar{m}^{**} \rangle = \langle m^*, \chi_M(T(a)) \rangle$$

i.e., $m^{**} \in \mathcal{I}_{\mathcal{A}}(M)$. On the other hand, given $\lambda \in (M^* \cdot \mathcal{A})^*$ by the Hahn–Banach theorem there is an extension $\Lambda \in M^{**}$. Thus $\Lambda \in \mathcal{I}_{\mathcal{A}}(M)$ and as in 2.1(5) we can choose $L \in {}_{\mathcal{A}}H(\mathcal{A}, M)$ so that $\kappa(L) = \Lambda + (M^{**})_0$. Consequently $\chi_M(L(a)) = a\Lambda$ if $a \in \mathcal{A}$ and so $\lambda = (\imath_{M^* \cdot \mathcal{A}})^*(\Lambda) = F(L)$.

EXAMPLE 2.1. Let G be a locally compact group. The Banach convolution algebra M(G) of complex regular Borel measures on G is unital while the group algebra $L^1(G)$ is approximately unital, being unital only in the discrete case (cf. [4, Theorem 3.3.23]). If $\mathcal{A} = M = M(G)$ or $\mathcal{A} = M = L^1(G)$ the condition (2.1) holds if and only if G is finite or compact respectively (cf. [20, Theorems 5 and 6]).

EXAMPLE 2.2. Clearly (2.1) is satisfied when M is reflexive. For instance, again on an underlying locally compact group G, this covers the case of $L^p(G)$ considered as a left- $L^1(G)$ -module if 1 .

EXAMPLE 2.3. Condition (2.1) holds for W^* algebras, i.e., C^* algebras that are dual Banach algebras. For, any C^* algebra is approximately unital (cf. [17, Lemma 1.1]) and a B^* algebra is a dual algebra if and only if its immersion in its second conjugate space is an ideal (cf. [18, Theorem 5.1]).

EXAMPLE 2.4. Let $\mathcal{A} = M = A(X)$ be the Banach algebra of approximable operators on a Banach space X whose dual has the bounded approximation property. Then X itself has the bounded approximation property, \mathcal{A} coincides with the Banach algebra of compact operators on X and it has also a bounded approximate identity (cf. [1, 5]). Now, (2.1) holds if and only if X is reflexive (cf. [20, Theorem 4]).

EXAMPLE 2.5. On a locally compact group G we consider $L^1(G)$ as a left Banach M(G)-module (cf. [10, Theorem 20.12]). Now (2.1) is no longer true even in the discrete case. For instance, $\chi_{l^1(\mathbb{Z})}(l^1(\mathbb{Z})) \subsetneq M(\mathbb{Z}) \cdot l^{\infty}(\mathbb{Z})^*$. For, let us consider the probability measure $\mu \in M(\mathbb{Z})$ so that $\mu(E) = 3^{-1} \sum_{m \in E} 2^{-|m|}$ if $E \in \mathcal{P}(\mathbb{Z})$. By Alaoglu's theorem there is an increasing sequence $\{n_k\}_{k \in \mathbb{N}}$ that determines a well defined functional

$$\Theta = w^* - \lim_{k \to \infty} \chi_{l^1(\mathbb{Z})}[1_{\{-n_k, \dots, n_k\}}]/(2n_k + 1)$$

in $l^{\infty}(\mathbb{Z})^*$. It will suffice to see that $\mu \cdot \Theta \notin \chi_{l^1(\mathbb{Z})}(l^1(\mathbb{Z}))$. Indeed, we can write $\mu \cdot \Theta = \chi_{l^1(\mathbb{Z})}(f)$ for some $f \in l^1(\mathbb{Z})$ and given $m \in \mathbb{Z}$ we have

$$\begin{split} f(m) &= \langle f, 1_{\{m\}} \rangle = \langle 1_{\{m\}}, \mu \cdot \Theta \rangle = \langle 1_{\{m\}} \cdot \mu, \Theta \rangle \\ &= \lim_{k \to \infty} \langle 1_{\{-n_k, \dots, n_k\}}, 1_{\{m\}} \cdot \mu \rangle / (2n_k + 1) \\ &= \lim_{k \to \infty} \frac{1}{2n_k + 1} \langle 1_{\{-n_k, \dots, n_k\}}, \{3^{-1} \cdot 2^{-|p-m|}\}_{p \in \mathbb{Z}} \rangle \\ &= \lim_{k \to \infty} \frac{3^{-1}}{2n_k + 1} \sum_{p \in \mathbb{Z}: |p| \leqslant n_k} 2^{-|p-m|} = \lim_{k \to \infty} \frac{3^{-1}}{2n_k + 1} \sum_{q = -n_k - m} 2^{-|q|} \\ &= \lim_{k \to \infty} \frac{3^{-1}}{2n_k + 1} \Big[\frac{1 - 2^{-n_k - m - 1}}{1/2} - 1 + \frac{1 - 2^{-n_k + m - 1}}{1/2} \Big] = 0, \end{split}$$

i.e., $f = 0_{l^1(\mathbb{Z})}$. Nevertheless, $\langle 1_{\mathbb{Z}}, \mu \cdot \Theta \rangle = \langle 1_{\mathbb{Z}} \cdot \mu, \Theta \rangle = \langle 1_{\mathbb{Z}}, \Theta \rangle = 1$ and we get a contradiction.

THEOREM 2.2. Let \mathcal{A} be a Banach algebra with a right bounded approximate identity and let N be a nontrivial right Banach \mathcal{A} -module.

- (1) If N is essential and reflexive then $_{\mathcal{A}}H(\mathcal{A}, N^*) \approx N^*$.
- (2) If N is not essential then $_{\mathcal{A}}H(\mathcal{A}, N^*) \approx \mathcal{I}_{\mathcal{A}}(N^*)/(N^{***})_0$, where the quotient is not trivial.
- (3) If N is not essential and reflexive then $_{\mathcal{A}}H(\mathcal{A}, N^*) \approx N^*/(N \cdot \mathcal{A})^o$, where the quotient is not trivial.

PROOF. (1) By Cohen's factorization theorem [2] is $N = N\mathcal{A}$, i.e., any element $n \in N$ can be factored as $n = n_1 a$ for suitable $n_1 \in N$ and $a \in \mathcal{A}$. Moreover, if N is reflexive $\chi_N(N) = N^{**} \cdot \mathcal{A}$ and $\mathcal{I}_{\mathcal{A}}(N^*) = N^*$ because N^* becomes reflexive. The result now follows from Theorem 2.1(7).

(2) Clearly it will suffice to prove the existence of $n^{***} \in N^{***}$ so that

(2.6)
$$\{0_{N^{***}}\} \neq \mathcal{A}n^{***} \subseteq \chi_{N^*}(N^*).$$

Precisely, $(N \cdot \mathcal{A})^o \neq \{0_{N^*}\}$ because N is not essential. If $(N \cdot \mathcal{A})^o = N^*$ then

$$\{0_{N^{**}}\} = (N \cdot \mathcal{A})^{oo} = \chi_N (N \cdot \mathcal{A})^{-w^*} \supseteq \chi_N (N \cdot \mathcal{A})^{-w}$$

Hence $\chi_N(N \cdot \mathcal{A})^- = \{0_{N^{**}}\}$ (cf. [16, Theorem 3.12]), which is impossible because χ_N is injective and N is a nontrivial \mathcal{A} -module. Consequently, let $n^* \in N^* - (N \cdot \mathcal{A})^0$. In particular, there exist $\tilde{a} \in \mathcal{A}$ and $n_0 \in N$ so that $\langle n_0 \tilde{a}, n^* \rangle \neq 0$. If $n^{***} \triangleq \chi_{N^*}(n^*)$ then

$$\langle \chi_N(n_0), \tilde{a}n^{***} \rangle = \langle \chi_N(n_0), \chi_{N^*}(\tilde{a}n^*) \rangle = \langle n_0, \tilde{a}n^* \rangle = \langle n_0\tilde{a}, n^* \rangle \neq 0,$$

and clearly n^{***} satisfies (2.6).

(3) By the reflexivity of N the Banach left \mathcal{A} -module isomorphism follows by Theorem 2.1(8). Moreover, $N \cdot \mathcal{A} \approx N^{**} \cdot \mathcal{A}$ and $N \cdot \mathcal{A} \subsetneq N$ because N is not essential. Therefore, by the Hahn–Banach theorem there exists a nonzero $n^* \in N^*$ that annihilates on $N \cdot \mathcal{A}$ and the result holds.

EXAMPLE 2.6. The condition of reflexivity in Theorem 2.2 is necessary. For instance, the abelian Banach algebra $\mathcal{A} = c_0(\mathbb{N})$ is approximately bounded. Since its conjugate space $l^1(\mathbb{N})$ is a $c_0(\mathbb{N})$ -essential Banach module by Theorem 2.1(7) is

112

$$\begin{split} & {}_{c_0(\mathbb{N})}H(c_0(\mathbb{N}),l^1(\mathbb{N}))\approx \mathcal{I}_{c_0(\mathbb{N})}(l^1(\mathbb{N})). \text{ However, } \imath_{l^1(\mathbb{N})}(l^1(\mathbb{N})) \varsubsetneq \mathcal{I}_{c_0(\mathbb{N})}(l^1(\mathbb{N})). \text{ For,} \\ & \text{the semidirect product } l^1(\mathbb{N})^{**} = \imath_{l^1(\mathbb{N})}(l^1(\mathbb{N})) \ltimes [\imath_{c_0(\mathbb{N})}(c_0(\mathbb{N}))]^0 \text{ holds (cf. [4, Example 2.6.22(iii)]). Let } \Phi \in l^1(\mathbb{N})^{**}, \ \Phi = \imath_{l^1(\mathbb{N})}(\lambda) + \Psi, \text{ with unique } \lambda \in l^1(\mathbb{N}) \\ & \text{and } \Psi \in [\imath_{c_0(\mathbb{N})}(c_0(\mathbb{N}))]^0. \text{ If } x \in c_0(\mathbb{N}) \text{ it is seen that } x\Psi \in [\imath_{c_0(\mathbb{N})}(c_0(\mathbb{N}))]^0 \text{ and} \\ & x\imath_{l^1(\mathbb{N})}(\lambda) = \imath_{l^1(\mathbb{N})}(x\lambda). \text{ Thus } \Phi \in \mathcal{I}_{c_0(\mathbb{N})}(l^1(\mathbb{N})) \text{ if and only if } x\Psi = 0_{l^1(\mathbb{N})^{**}} \text{ for all } x \in c_0(\mathbb{N}). \text{ By the Hahn-Banach theorem we can choose a nonzero functional } \\ & \Lambda \in [\imath_{c_0(\mathbb{N})}(c_0(\mathbb{N}))]^0 \text{ and it is plain that } \Lambda \in \mathcal{I}_{c_0(\mathbb{N})}(l^1(\mathbb{N})) - \imath_{l^1(\mathbb{N})}(l^1(\mathbb{N})). \end{split}$$

References

- 1. E. Berkson, H. Porta, Representations of B(X), J. Funct. Anal. 3 (1969), 1–34.
- 2. P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199–205.
- C. V. Comisky, *Multipliers of Banach modules*, Notices Am. Math. Soc. 17(213) (1970), Doctoral dissertation, University of Oregon.
- 4. H.G. Dales, Banach algebras and automatic continuity, Clarendon Press, Oxford, 2004.
- P.G. Dixon, Left approximate identities in algebras of compact operators on Banach spaces, Proc. R. Soc. Edinb., Sect. A, Math. 104 (1986), 169–175.
- G. H. Hardy, J. E. Littlewood, Some new properties of Fourier constants, Math. Ann. 97 (1927), 159–209.
- 7. S. Helgason, Multipliers of Banach algebras, Ann. Math. (2) 64 (1956), 240-254.
- S. L. Gulick, T.S. Liu, A.C. Van Rooij, Group algebra modules I, Can. J. Math. 19 (1967), 133–150.
- 9. _____, Group algebra modules II, Can. J. Math. 19 (1967), 151–173.
- E. Hewitt, K. A. Ross, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963.
- 11. T. S. Liu, A. C. Van Rooij, Translation invariant maps $L^{\infty}(G) \to L^{p}(G)$, Nederl. Akad. Wet., Proc., Ser. A **77** (1974), 306–316.
- G. W. Mackey, Induced representations of locally compact groups I, Ann. Math. (2) 55 (1952), 101–139.
- C. C. Moore, On the Frobenius reciprocity theorem for locally compact groups, Pac. J. Math. 12 (1962), 359–365.
- M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Funct. Anal. 1 (1967), 443–491.
- Multipliers and tensor products of L^p-spaces of locally compact groups, Stud. Math. 23 (1969), 71–82.
- 16. W. Rudin, Functional Analysis, 2nd Edition, McGraw-Hill Inc., 1991.
- I. Segal, Irreducible representation of operator algebras, Bull. Am. Math. Soc. 53 (1947), 73–78.
- B. J. Tomiuk, P. K. Wong, The Arens product and duality in B^{*} algebras, Proc. Am. Math. Soc. 25 (1970), 529–535.
- 19. J.-K. Wang, Multipliers of commutative Banach algebras, Pac. J. Math. 11 (1961), 1131–1149.
- S. Watanabe, A Banach algebra which is an ideal in the second conjugate space II, Sci. Rep. Niigata Univ., Ser. A 13 (1976), 43–48.
- J. G. Wendel, Left centralizers and isomorphism of group algebras, Pac. J. Math. 2 (1952), 251–261; (2006), 55–112.

Department of Mathematics (Red Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina analucia.barrenechea@gmail.com

ccpenia@gmail.com

(Received 04 03 2016)